A Novel Mechanism-Equivalence-Based Tweedie Exponential Dispersion Process for Adaptive Degradation Modeling and Life Prediction
Abstract
1. Introduction
1.1. Background
1.2. Literature Review
1.3. Overview
2. TEDP Model and Its Mechanism Equivalence Conditions
2.1. Review of TEDP Model
- (1)
- ;
- (2)
- has statistically independent increments;
- (3)
- The probability density function (PDF) of the increment is
2.2. Mechanism Equivalence Conditions for TEDP Model
3. The ME-Based TEDP Model
3.1. ME-Based TEDP Model Construction
3.2. Special Cases of the ME-Based TEDP Model
- Special case 1. ME-based Wiener process
- Special case 2. ME-based gamma process
- Special case 3. ME-based IG process
4. Adaptive Degradation Modeling and RUL Prediction Using the Proposed Model
4.1. Parameter Estimation
4.2. Mechanism Test for Different Degradation Phases
- (1)
- Construction of MEF Samples
- (2)
- Normality Test of MEF Samples
- (3)
- Mechanism Equivalence Testing of MEF Samples
4.3. RUL Prediction
5. Case Study
5.1. Data Collection
5.2. Degradation Feature Extraction
5.3. Parameter Estimation
5.4. Mechanism Test
- (1)
- Construction of MEF Samples
- (2)
- Normality Test of MEF Estimation Values
- (3)
- Mechanism Equivalence Testing of MEF Estimation Values
5.5. RUL Prediction
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiong, S.C.; Zhang, L.P.; Yang, Y.X.; Zhou, H.D.; Zhang, L.L. Multi-Source Information-Based Bearing Fault Diagnosis Using Multi-Branch Selective Fusion Deep Residual Network. Sensors 2024, 24, 6581. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Xia, T.B.; Li, Y.P.; Pan, E. Random-Effect Models for Degradation Analysis Based on Nonlinear Tweedie Exponential-Dispersion Processes. IEEE Trans. Reliab. 2022, 71, 47–62. [Google Scholar] [CrossRef]
- Chen, Z.; Xia, T.; Li, Y.; Pan, E. Tweedie Exponential Dispersion Processes for Degradation Modeling, Prognostic, and Accelerated Degradation Test Planning. IEEE Trans. Reliab. 2020, 69, 887–902. [Google Scholar] [CrossRef]
- Chen, S.W.; Wang, M.N.; Huang, D.S.; Wen, P.F.; Wang, S.Y.; Zhao, S. Remaining Useful Life Prediction for Complex Systems with Multiple Indicators Based on Particle Filter and Parameter Correlation. IEEE Access 2020, 8, 215145–215156. [Google Scholar] [CrossRef]
- Ferreira, J.C.; Freitas, M.A.; Colosimo, E.A. Degradation data analysis for samples under unequal operating conditions: A case study on train wheels. J. Appl. Stat. 2012, 39, 2721–2739. [Google Scholar] [CrossRef]
- Zhou, S.; Xu, A. Exponential Dispersion Process for Degradation Analysis. IEEE Trans. Reliab. 2019, 68, 398–409. [Google Scholar] [CrossRef]
- Peng, C.Y.; Tseng, S.T. Mis-specification analysis of linear degradation models. IEEE Trans. Reliab. 2009, 58, 444–455. [Google Scholar] [CrossRef]
- Liao, C.M.; Tseng, S.T. Optimal design for step-stress accelerated degradation tests. IEEE Trans. Reliab. 2006, 55, 59–66. [Google Scholar] [CrossRef]
- Whitmore, G.A.; Schenkelberg, F. Modelling accelerated degradation data using Wiener dispersion with a time scale transformation. Lifetime Data Anal. 1997, 3, 27–45. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Zhao, J.L.; Chang, Z.Z.; Tang, Q. Prediction of high-pressure valve life based on Wiener process degradation model. J. Hebei Univ. Technol. 2022, 51, 27–45. [Google Scholar] [CrossRef]
- Lawless, J.F.; Crowder, M. Covariates and random effects in a gamma process model with application to degradation and failure. Lifetime Data Anal. 2004, 10, 213–227. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, S.B.; Chen, B.Y.; Mei, G.M.; Zhang, W.H.; Peng, H.; Tian, G.R. An improved envelope spectrum via candidate fault frequency optimization-gram for bearing fault diagnosis. J. Sound Vib. 2022, 523, 116746. [Google Scholar] [CrossRef]
- Duan, F.; Wang, G. Exponential-dispersion degradation process models with random effects and covariates. IEEE Trans. Reliab. 2018, 67, 1128–1142. [Google Scholar] [CrossRef]
- Luo, C.L.; Shen, L.J.; Xu, A.C. Modelling and estimation of system reliability under dynamic operating environments and lifetime ordering constraints. Reliab. Eng. Syst. Saf. 2022, 218, 108–136. [Google Scholar] [CrossRef]
- Cheng, Y.; Yana, J.K.; Zhang, F.; L, M.D.; Zhou, N.; Shia, C.J.; Jin, B.; Zhang, W.H. Surrogate modeling of pantograph-catenary system interactions. Mech. Syst. Signal Process. 2025, 224, 112134. [Google Scholar] [CrossRef]
- Sun, Z. A condition that the failure mechanism remains unchanged. Reliab. Environ. Test. Electron. Prod. 2008, 26, 6–8. [Google Scholar]
- Suo, B.; Tan, Q.T.; Hu, T.S.; Tang, J.Y. Equivalence testing of failure mechanism based on the principle of constant acceleration factor. Electro Opt. Control 2021, 28, 10–14. [Google Scholar]
- Dong, J.C.; Chen, J.H.; Hu, Y.P.; Yang, X.Y. Equivalence determination of failure mechanism in accelerated degradation test based on inverse Gaussian process. Intensity Environ. 2019, 46, 23–29. [Google Scholar]
- Wang, H.W.; Xu, T.X.; Wang, W.Y. Equivalence testing method for failure mechanism based on degradation model. J. Aeronaut. 2015, 36, 889–897. [Google Scholar]
- Wang, H.; Ma, X.B.; Zhao, Y. An improved Wiener process model with adaptive drift and diffusion for online remaining useful life prediction. Mech. Syst. Signal Process. 2019, 127, 370–387. [Google Scholar] [CrossRef]
- Yan, J.; Cheng, Y.; Wang, Q.; Liu, L.; Zhang, W.; Jin, B. Transformer and Graph Convolution-Based Unsupervised Detection of Machine Anomalous Sound Under Domain Shifts. IEEE Trans. Emerg. Top. Comput. Intell. 2024, 8, 2827–2842. [Google Scholar] [CrossRef]
- Chen, J.; Chen, L.; Qian, L.; Chen, G.; Miao, W. Dynamic reliability analysis of gear transmission system based on sparse grid numerical integration and saddle-point approximation method. Qual. Reliab. Eng. Int. 2023, 39, 25–46. [Google Scholar] [CrossRef]
- Liu, Y.J.; Wang, H.; Ma, X.B. A novel random-effect Birnbaum-Saunders distribution for reliability assessment considering accelerated mechanism equivalence. Qual. Technol. Quant. Manag. 2024; early access. [Google Scholar] [CrossRef]
- Wang, H.; Liao, H.T.; Ma, X.B.; Bao, R.; Zhao, Y. A new class of mechanism-equivalence-based Wiener process models for reliability analysis. IISE Trans. 2022, 55, 129–146. [Google Scholar] [CrossRef]
- Ma, X.B.; Lin, F.C.; Zhao, Y. An adjustment to the Bartlett’s test for small sample size. Commun. Stat. Simul. Comput. 2015, 44, 257–269. [Google Scholar] [CrossRef]
- Fu, G.Q.; Zhang, L.; Fu, J.Z.; Gao, H.L.; Jin, Y.A. F test-based automatic modeling of single geometric error component for error compensation of five-axis machine tools. Int. J. Adv. Manuf. Technol. 2018, 94, 4493–4505. [Google Scholar] [CrossRef]
- Kishore, K.; Jaswal, V.; Singh, T. Statistics Corner: Analysis of Variance. J. Postgrad. Med. Educ. Res. 2024, 58, 38–42. [Google Scholar] [CrossRef]
- Ma, X.B.; Yan, B.X.; Wang, H.; Liao, H.T. Decision-level machinery fault prognosis using N-BEATS-based degradation feature prediction and reconstruction. Mech. Syst. Signal Process. 2023, 198, 110435. [Google Scholar] [CrossRef]
- Yang, F.; Habibullah, M.S.; Zhan, T.; Xu, Z.; Lim, P.; Nadarajan, S. Health index-based prognostics for remaining useful life predictions in electrical machines. IEEE Trans. Ind. Electron. 2016, 63, 2633–2644. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, L.; Xu, J. Degradation feature selection for remaining useful life prediction of rolling element bearings. Qual. Reliab. Eng. Int. 2015, 32, 547–554. [Google Scholar] [CrossRef]
- Rudrapatna, V.A.; Ravindranath, V.G.; Arneson, D.V.; Mosenia, A.; Butte, A.J.; Wang, S. Sequential regression and simulation: A method for estimating causal effects from heterogeneous clinical trials without a common control group. BMC Med. Res. Methodol. 2023, 23, 218. [Google Scholar] [CrossRef] [PubMed]
- Bai, Z.; Hu, J.; Choi, K.P.; Fujikoshi, Y. Asymptotics of AIC, BIC and Cp model selection rules in high-dimensional regression. Bernoulli Soc. Math. Stat. Probab. 2022, 28, 2375–2403. [Google Scholar] [CrossRef]
Model Parameter | Wiener Process | Gamma Process | IG Process |
---|---|---|---|
0 | 2 | 3 | |
Time Domain Feature | Equation |
---|---|
Mean | |
Standard deviation | |
Root mean square | |
Maximum | |
Minimum | |
Amplitude factor | |
Waveform factor | |
Impulse factor | |
Margin factor | |
Energy |
Time Domain Features | Monotonic Index Value | |
---|---|---|
Wheel 1 | Mean | 0.12 |
Root mean square | 0.12 | |
Energy | 0.12 | |
Wheel 2 | Mean | 0.12 |
Root mean square | 0.10 | |
Energy | 0.10 | |
Wheel 3 | Mean | 0.16 |
Root mean square | 0.08 | |
Energy | 0.08 | |
Wheel 4 | Mean | 0.02 |
Root mean square | 0.02 | |
Energy | 0.02 | |
Wheel 5 | Mean | 0.12 |
Root mean square | 0.14 | |
Energy | 0.14 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Wheel 1 | 0.037 | 0.053 | 0.086 | 0.127 | 0.147 | 0.102 | 0.220 | 0.243 | 0.370 | 0.422 | |
3.282 | 2.453 | 3.002 | 2.453 | 1.351 | 1.678 | 2.062 | 2.028 | 0.574 | 1.302 | ||
0.015 | 0.621 | 0.049 | 0.920 | 6.501 | 18.109 | 4.720 | 3.370 | 32.091 | 25.993 | ||
0.036 | 0.023 | 0.149 | 0.054 | 0.079 | 0.012 | 0.042 | 0.069 | 0.048 | 0.030 | ||
Wheel 2 | 0.060 | 0.029 | 0.120 | 0.086 | 0.135 | 0.129 | 0.205 | 0.291 | 0.356 | 0.379 | |
2.388 | 2.462 | 1.048 | 2.479 | 3.921 | 3.221 | 1.278 | 2.766 | 1.572 | 2.531 | ||
1.202 | 0.458 | 16.021 | 1.437 | 0.315 | 0.242 | 13.844 | 1.754 | 9.735 | 3.727 | ||
0.017 | 0.012 | 0.056 | 0.018 | 0.009 | 0.044 | 0.046 | 0.064 | 0.057 | 0.061 | ||
Wheel 3 | 0.031 | 0.081 | 0.071 | 0.120 | 0.100 | 0.189 | 0.191 | 0.273 | 0.318 | 0.486 | |
1.745 | 3.255 | 2.203 | 1.228 | 1.172 | 0.192 | 2.925 | 4.139 | 1.882 | 2.498 | ||
14.445 | 0.254 | 6.030 | 22.799 | 70.043 | 111.314 | 1.157 | 0.488 | 6.900 | 10.121 | ||
0.005 | 0.014 | 0.007 | 0.027 | 0.010 | 0.035 | 0.036 | 0.035 | 0.053 | 0.034 | ||
Wheel 4 | 0.040 | 0.038 | 0.074 | 0.138 | 0.097 | 0.131 | 0.273 | 0.273 | 0.315 | 0.428 | |
3.328 | 1.552 | 0.922 | 2.002 | 2.794 | 2.467 | 2.431 | 1.060 | 1.636 | 1.204 | ||
0.034 | 32.087 | 51.546 | 3.753 | 0.396 | 1.223 | 10.300 | 36.591 | 7.595 | 9.834 | ||
0.016 | 0.005 | 0.024 | 0.037 | 0.038 | 0.042 | 0.015 | 0.025 | 0.063 | 0.085 | ||
Wheel 5 | 0.064 | 0.090 | 0.084 | 0.088 | 0.122 | 0.099 | 0.239 | 0.304 | 0.277 | 0.453 | |
2.493 | 2.014 | 3.031 | 2.251 | 2.445 | 2.473 | 0.830 | 8.510 | 1.227 | 1.508 | ||
2.497 | 1.674 | 1.374 | 0.783 | 0.806 | 1.258 | 94.538 | 0.012 | 20.845 | 14.586 | ||
0.007 | 0.052 | 0.005 | 0.061 | 0.059 | 0.026 | 0.013 | 0.011 | 0.036 | 0.046 |
Stage | RUL Expectancy (km) | Wiener Process (km) | Gamma Process (km) | Inverse Gaussian Process (km) | Traditional TEDP (km) | ME-Based TEDP (km) |
1–6 | 8 × 104 | 8.33 × 10−14 | 2.21 × 103 | 4.43 × 10−17 | 5.48 × 104 | 6.24 × 104 |
1–7 | 6 × 104 | 1.48 × 10−16 | 2.10 × 103 | 1.86 × 105 | 3.75 × 104 | 4.26 × 104 |
1–8 | 4 × 104 | 1.15 × 105 | 1.82 × 103 | 1.16 × 105 | 2.34 × 104 | 2.69 × 104 |
1–9 | 2 × 104 | 5.66 × 104 | 1.38 × 103 | 5.73 × 104 | 1.18 × 104 | 1.42 × 104 |
1–10 | 0 | 6.80 × 102 | 7.07 × 102 | 1.52 × 103 | 2.13 × 103 | 5.62 × 102 |
Wiener Process | Gamma Process | Inverse Gaussian Process | Traditional TEDP | ME-Based TEDP | |
---|---|---|---|---|---|
AIC | −463.4044 | −719.9949 | −648.7202 | −1101.5236 | −1323.8538 |
BIC | −454.9952 | −711.5858 | −640.3111 | −1088.9099 | −1311.2401 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Liu, Y.; Wang, H.; Ma, X.; Zhao, Y. A Novel Mechanism-Equivalence-Based Tweedie Exponential Dispersion Process for Adaptive Degradation Modeling and Life Prediction. Sensors 2025, 25, 347. https://doi.org/10.3390/s25020347
Wu J, Liu Y, Wang H, Ma X, Zhao Y. A Novel Mechanism-Equivalence-Based Tweedie Exponential Dispersion Process for Adaptive Degradation Modeling and Life Prediction. Sensors. 2025; 25(2):347. https://doi.org/10.3390/s25020347
Chicago/Turabian StyleWu, Jiayue, Yujie Liu, Han Wang, Xiaobing Ma, and Yu Zhao. 2025. "A Novel Mechanism-Equivalence-Based Tweedie Exponential Dispersion Process for Adaptive Degradation Modeling and Life Prediction" Sensors 25, no. 2: 347. https://doi.org/10.3390/s25020347
APA StyleWu, J., Liu, Y., Wang, H., Ma, X., & Zhao, Y. (2025). A Novel Mechanism-Equivalence-Based Tweedie Exponential Dispersion Process for Adaptive Degradation Modeling and Life Prediction. Sensors, 25(2), 347. https://doi.org/10.3390/s25020347