Mounting Angle Prediction for Automotive Radar Using Complex-Valued Convolutional Neural Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurements
2.1.1. Configuration of Vehicle and Radar System
2.1.2. Waveform Design of DDMA-Based MIMO Radar
2.1.3. Measurement Methods
2.2. Preprocessing
2.2.1. Structure of Measurement Data
2.2.2. External Data-Based Preprocessing
2.2.3. TRx Channel Preprocessing
2.3. Design of CV-CNN Model
2.3.1. Overview of CV-CNN
2.3.2. Architecture of AutoRAD-Net Model
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Giuffrida, L.; Masera, G.; Martina, M. A survey of automotive radar and lidar signal processing and architectures. Chips 2023, 2, 243–261. [Google Scholar] [CrossRef]
- Mathew, R.; Gharat, E.S.; Hooda, S. A Review Paper on Contour Estimation Techniques in High-Resolution Auto-motive Radars. In Proceedings of the 2023 11th International Symposium on Electronic Systems Devices and Computing (ESDC), Sri City, India, 4–6 May 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Bilik, I. Comparative analysis of radar and lidar technologies for automotive applications. IEEE Intell. Transp. Syst. Mag. 2023, 15, 244–269. [Google Scholar] [CrossRef]
- Kocić, J.; Jovičić, N.; Drndarević, V. Sensors and Sensor Fusion in Autonomous Vehicles. In Proceedings of the 2018 26th Telecommunications Forum (TELFOR), Belgrade, Serbia, 20–21 November 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 420–425. [Google Scholar] [CrossRef]
- Li, B.; Chan, P.H.; Baris, G.; Higgins, M.D.; Donzella, V. Analysis of automotive camera sensor noise factors and impact on object detection. IEEE Sens. J. 2022, 22, 22210–22219. [Google Scholar] [CrossRef]
- Cenkeramaddi, L.R.; Bhatia, J.; Jha, A.; Vishkarma, S.K.; Soumya, J. A Survey on Sensors for Autonomous Systems. In Proceedings of the 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA), Kristiansand, Norway, 9–13 November 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1182–1187. [Google Scholar] [CrossRef]
- Jung, J.; Lee, S.; Lim, S.; Kim, S.C. Machine learning-based estimation for tilted mounting angle of automotive radar sensor. IEEE Sens. J. 2020, 20, 2928–2937. [Google Scholar] [CrossRef]
- Kim, J.; Jeong, T.; Lee, S. DNN-based estimation for misalignment state of automotive radar sensor. Sensors 2023, 23, 6472. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Lee, S. Ground reflection-based misalignment detection of automotive radar sensors. IEEE Access 2023, 11, 66949–66959. [Google Scholar] [CrossRef]
- Bobaru, A.; Nafornita, C.; Vesa, V.C. Unsupervised Online Horizontal Misalignment Detection Algorithm for Automotive Radar. In Proceedings of the 2022 14th International Conference on Communications (COMM), Bucharest, Romania, 16–18 June 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Bobaru, A.; Nafornita, C.; Copacean, G.; Vesa, V.C.; Skutek, M. Contributions to Unsupervised Online Misalignment Detection and Bumper Error Compensation for Automotive Radar. Sensors 2023, 23, 6785. [Google Scholar] [CrossRef] [PubMed]
- Ameen, Y.K.; Ryan, P.A. Method and Apparatus for Calibrating Azimuth Boresight in a Radar System. U.S. Patent 5,977,906, 2 November 1999. [Google Scholar]
- Suzuki, K.; Yamano, C.; Miyake, Y.; Kitamura, T. Bias angle error self-correction for automotive applications using phased array radars installed behind bumpers. In Proceedings of the 2017 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), Nagoya, Japan, 19–21 March 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 155–158. [Google Scholar] [CrossRef]
- Choi, K.; Seo, G.; Lee, J.; Jeong, S.; Oh, J. Automatic radar horizontal alignment scheme using stationary target on public road. In Proceedings of the 2013 European Microwave Conference, Nuremberg, Germany, 6–10 October 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1863–1866. [Google Scholar]
- Bassey, J.; Qian, L.; Li, X. A survey of complex-valued neural networks. arXiv 2021, arXiv:2101.12249. [Google Scholar]
- Hirose, A. Complex-Valued Neural Networks: The Merits and Their Origins. In Proceedings of the 2009 International Joint Conference on Neural Networks, Atlanta, GA, USA, 14–19 June 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1237–1244. [Google Scholar] [CrossRef]
- Lee, C.; Hasegawa, H.; Gao, S. Complex-valued neural networks: A comprehensive survey. IEEE/CAA J. Autom. Sin. 2022, 9, 1406–1426. [Google Scholar] [CrossRef]
- Kotsovsky, V.; Batyuk, A.; Yurchenko, M. New Approaches in the Learning of Complex-Valued Neural Networks. In Proceedings of the 2020 IEEE Third International Conference on Data Stream Mining & Processing (DSMP), Lviv, Ukraine, 21–25 August 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 50–54. [Google Scholar] [CrossRef]
- Barrachina, J.A.; Ren, C.; Morisseau, C.; Vieillard, G.; Ovarlez, J.P. Complex-Valued Vs. Real-Valued Neural Networks for Classification Perspectives: An Example on Non-Circular Data. In Proceedings of the ICASSP 2021—2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 2990–2994. [Google Scholar] [CrossRef]
- Automotive, Second-Generation 76-GHz to 81-GHz High-Performance SoC for Corner and Long-Range Radar. Available online: https://www.ti.com/product/AWR2944 (accessed on 26 November 2024).
- DCA1000 Evaluation Module for Real-Time Data Capture and Streaming. Available online: https://www.ti.com/tool/DCA1000EVM (accessed on 26 November 2024).
- Xu, F.; Vorobyov, S.A.; Yang, F. Transmit beamspace DDMA based automotive MIMO radar. IEEE Trans. Veh. Technol. 2022, 71, 1669–1684. [Google Scholar] [CrossRef]
- Hong, W.; Shen, S.; Zhang, Y.; Zhou, J. Multiple subbands coherent accumulation target detection algorithm for DDMA-MIMO radar. IEEE Trans. Intell. Transp. Syst. 2024, 25, 11485–11496. [Google Scholar] [CrossRef]
- Sun, H.; Brigui, F.; Lesturgie, M. Analysis and Comparison of MIMO Radar Waveforms. In Proceedings of the 2014 International Radar Conference, Lille, France, 13–17 October 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1–6. [Google Scholar] [CrossRef]
- User’s Guide AWR2944 Evaluation Module. Available online: https://www.ti.com/lit/ug/spruj22b/spruj22b.pdf (accessed on 26 November 2024).
- Iovescu, C.; Rao, S. The fundamentals of millimeter wave sensors. Tex. Instrum. 2017, 1–8. Available online: https://www.ti.com/lit/wp/spyy005a/spyy005a.pdf?ts=1732565342390 (accessed on 26 November 2024).
- Rao, S. Introduction to mmWave sensing: FMCW radars. Tex. Instrum. (TI) Mmwave Train. Ser. 2017, 1–11. Available online: https://www.ti.com/content/dam/videos/external-videos/zh-tw/2/3816841626001/5415203482001.mp4/subassets/mmwaveSensing-FMCW-offlineviewing_0.pdf (accessed on 26 November 2024).
- Grimm, C.; Farhoud, R.; Fei, T.; Warsitz, E.; Haeb-Umbach, R. Detection of Moving Targets in Automotive Radar with Distorted Ego-Velocity Information. In Proceedings of the 2017 IEEE Microwaves, Radar and Remote Sensing Symposium (MRRS), Kiev, Ukraine, 29–31 August 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 111–116. [Google Scholar] [CrossRef]
- Kellner, D.; Barjenbruch, M.; Klappstein, J.; Dickmann, J.; Dietmayer, K. Instantaneous Ego-Motion Estimation Using Doppler Radar. In Proceedings of the 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), The Hague, The Netherlands, 6–9 October 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 869–874. [Google Scholar] [CrossRef]
- Kingery, A.; Song, D. Improving ego-velocity estimation of low-cost Doppler radars for vehicles. IEEE Robot. Autom. Lett. 2022, 7, 9445–9452. [Google Scholar] [CrossRef]
- Basha, S.H.S.; Dubey, S.R.; Pulabaigari, V.; Mukherjee, S. Impact of fully connected layers on performance of convolutional neural networks for image classification. Neurocomputing 2020, 378, 112–119. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
) | 77.10 GHz | ) | 256 |
) | 77.31 GHz | ) | 129 |
Bandwidth (BW) | 211.35 MHz | ) | 50 ms |
Sample rate (SR) | 20 MHz | ) | 0.71 m |
) | 12.8 µs | ) | 90.78 m |
) | 16.51 MHz/µs | ) | 0.38 m/s |
Pulse repetition interval (PRI) | 40 µs | ) | 24.27 m/s |
Mounting Angle Offsets | Preprocessed Frames (100%) | Split Frames | ||
---|---|---|---|---|
Training (80%) | Validation (10%) | Test (10%) | ||
−3° | 5454 | 4363 | 545 | 546 |
−2° | 5118 | 4094 | 512 | 512 |
−1° | 5110 | 4088 | 511 | 511 |
−0° | 5661 | 4528 | 566 | 567 |
+1° | 5197 | 4157 | 520 | 520 |
+2° | 4895 | 3916 | 489 | 490 |
+3° | 4740 | 3792 | 474 | 474 |
Total frames | 36,175 | 28,938 | 3617 | 3620 |
Layer Name | Input Size | Output Size | AutoRAD-Net | AutoRADs-Net | ||
---|---|---|---|---|---|---|
Channels | Channels | |||||
In | Out | In | Out | |||
Input | - | 128 × 43 | - | 12 | - | 13 |
CV CONV 1 | 128 × 43 | 128 × 43 | 12 | 32 | 13 | 32 |
CV CONV 2 | 128 × 43 | 64 × 22 | 32 | 64 | 32 | 64 |
CV CONV 3 | 64 × 22 | 32 × 11 | 64 | 128 | 64 | 128 |
CV FC1 | 45,056 | 512 | - | - | - | - |
CV FC2 | 512 | 1 | - | - | - | - |
Parameters | - | 46,331,522 | 46,332,098 |
Category | AutoRAD-Net | Conventional Method |
---|---|---|
Median angle | ° | ° |
Minimum angle | ° | ° |
Maximum angle | ° | ° |
25th percentile (Q1) | ° | ° |
75th percentile (Q3) | ° | ° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moon, S.; Kim, Y. Mounting Angle Prediction for Automotive Radar Using Complex-Valued Convolutional Neural Network. Sensors 2025, 25, 353. https://doi.org/10.3390/s25020353
Moon S, Kim Y. Mounting Angle Prediction for Automotive Radar Using Complex-Valued Convolutional Neural Network. Sensors. 2025; 25(2):353. https://doi.org/10.3390/s25020353
Chicago/Turabian StyleMoon, Sunghoon, and Younglok Kim. 2025. "Mounting Angle Prediction for Automotive Radar Using Complex-Valued Convolutional Neural Network" Sensors 25, no. 2: 353. https://doi.org/10.3390/s25020353
APA StyleMoon, S., & Kim, Y. (2025). Mounting Angle Prediction for Automotive Radar Using Complex-Valued Convolutional Neural Network. Sensors, 25(2), 353. https://doi.org/10.3390/s25020353