Modeling of Severity Classification Algorithm Using Abdominal Aortic Aneurysm Computed Tomography Image Segmentation Based on U-Net with Improved Noise Reduction Performance
Highlights
- The application of the median-modified Wiener filter significantly improved the U-Net-based segmentation performance on abdominal aortic aneurysm CT images with added Poisson–Gaussian noise.
- Segmentation quality directly influenced automated severity classification performance. When MMWF was used as a preprocessing step, the Hough circle-based classification achieved 100% sensitivity, precision, and accuracy.
- Integrating classical filtering methods into deep learning-based segmentation pipelines can enhance robustness against noise without modifying network architecture.
- Accurate segmentation via preprocessing contributes to more reliable automated severity classification of AAAs, supporting improved clinical decision-making in noisy imaging conditions.
Abstract
1. Introduction
2. Materials and Methods
2.1. Compliance with Ethical Standards
2.2. Acquisition and Filtering of AAA Images
2.3. U-Net-Based Segmentation Model Modeling
2.4. Quantitative Evaluation of Segmentation Performance
2.5. Classification of AAA Severity Using the Hough Circle Algorithm
3. Results
3.1. Segmentation Results Using U-Net After Filtering
3.2. Severity Classification of AAAs Using the Hough Circle Algorithm
4. Discussions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AAA | Abdominal aortic aneurysm |
| MMWF | Median-modified Wiener filter |
| CT | Computed tomography |
| MCC | Matthews correlation coefficient |
| DSC | Dice score |
| JC | Jaccard coefficient |
| MSD | Mean surface distance |
| ICC | Intra-class correlation coefficient |
| 3D | Three-dimensional |
| EVAR | Endovascular aortic repair |
| BSA | Body surface area |
References
- Sakalihasan, N.; Michel, J.B.; Katsargyris, A.; Kuivaniemi, H.; Defraigne, J.O.; Nchimi, A.; Powell, J.T.; Yoshimura, K.; Hultgren, R. Abdominal aortic aneurysms. Nat. Rev. Dis. Primers 2018, 4, 34. [Google Scholar] [CrossRef]
- Sakalihasan, N.; Limet, R.; Defawe, O.D. Abdominal aortic aneurysm. Lancet 2005, 365, 1577–1589. [Google Scholar] [CrossRef]
- Michel, J.B.; Martin-Ventura, J.L.; Egido, J.; Sakalihasan, N.; Treska, V.; Lindholt, J.S.; Allaire, E.; Thorsteinsdottir, U.; Cockerill, G.; Swedenborg, J.; et al. Novel aspects of the pathogenesis of aneurysms of the abdominal aorta in humans. Cardiovasc. Res. 2011, 90, 18–27. [Google Scholar] [CrossRef]
- Schermerhorn, M.L.; O’Malley, A.J.; Jhaveri, A.; Cotterill, P.; Pomposelli, F.; Landon, B.E. Endovascular vs. open repair of abdominal aortic aneurysms in the Medicare population. N. Engl. J. Med. 2008, 358, 464–474. [Google Scholar] [CrossRef]
- Wang, Y.; Seguro, F.; Kao, E.; Zhang, Y.; Faraji, F.; Zhu, C.; Haraldsson, H.; Hope, M.; Saloner, D.; Liu, J. Segmentation of lumen and outer wall of abdominal aortic aneurysms from 3D black-blood MRI with a registration based geodesic active contour model. Med. Image Anal. 2017, 40, 1–10. [Google Scholar] [CrossRef]
- Mancas, M.; Gosselin, B.; Macq, B. Segmentation using a region-growing thresholding. SPIE Proc. 2005, 5672. [Google Scholar] [CrossRef]
- Hore, S.; Chakraborty, S.; Dey, N. An integrated interactive technique for image segmentation using stack based seeded region growing and thresholding. Int. J. Eng. Technol. 2016, 6, 2773. [Google Scholar] [CrossRef]
- Habijan, M.; Galic, I.; Leventic, H.; Romic, K.; Babin, D. Abdominal aortic aneurysm segmentation from CT images using modified 3D U-net with deep supervision. In Proceedings of the 2020 International Symposium ELMAR, Zadar, Croatia, 14–15 September 2020; IEEE: New York, NY, USA, 2020; pp. 123–128. [Google Scholar] [CrossRef]
- Plaksyvyi, A.; Skublewska-Paszkowska, M.; Powroznik, P. A comparative analysis of image segmentation using classical and deep learning approach. Adv. Sci. Technol. Res. J. 2023, 17, 127–139. [Google Scholar] [CrossRef]
- Azad, R.; Khosravi, N.; Zhou, S.K.; Tajbakhsh, N. Medical image segmentation on MRI images with missing modalities: A review. arXiv 2022, arXiv:2203.06217. [Google Scholar] [CrossRef]
- Azad, R.; Aghdam, E.K.; Rauland, A.; Jia, Y.; Avval, A.H.; Bozorgpour, A.; Karimijafarbigloo, S.; Cohen, J.P.; Adeli, E.; Merhof, D. Medical image segmentation review: The success of U-net. IEEE Trans. Pattern. Anal. Mach. Intell. 2024, 46, 10076–10095. [Google Scholar] [CrossRef]
- Islam, M.; Khan, K.N.; Rahman, M.M.; Hasan, M.K.; Wahid, K.A. Evaluation of preprocessing techniques for U-Net based automated liver segmentation. In Proceedings of the International Conference on Artificial Intelligence, Montreal, QC, Canada, 19–27 August 2021. [Google Scholar]
- Fan, L.; Zhang, F.; Fan, H.; Zhang, C. Brief review of image denoising techniques. Vis. Comput. Ind. Biomed. Art. 2019, 2, 7. [Google Scholar] [CrossRef]
- Yin, L.; Yang, R.; Gabbouj, M.; Neuvo, Y. Weighted median filters: A tutorial. IEEE Trans. Circuits Syst. II 1996, 43, 157–192. [Google Scholar] [CrossRef]
- Chen, J.; Benesty, J.; Huang, Y.; Doclo, S. New insights into the noise reduction Wiener filter. IEEE Trans. Audio Speech Lang. Process 2006, 14, 1218–1234. [Google Scholar] [CrossRef]
- Cannistraci, C.V.; Montevecchi, F.M.; Alessio, M. Median-modified Wiener filter provides efficient denoising, preserving spot edge and morphology in 2-DE image processing. Proteomics 2009, 9, 4908–4919. [Google Scholar] [CrossRef]
- Chang, C.C.; Hsiao, J.Y.; Hsieh, C.P. An adaptive median filter for image denoising. In Proceedings of the 2008 Second International Symposium on Intelligent Information Technology Application, Shanghai, China, 20–22 December 2008; IEEE: New York, NY, USA, 2008; pp. 346–350. [Google Scholar] [CrossRef]
- McGregor, J.C.; Pollock, J.G.; Anton, H.C. The value of ultrasonography in the diagnosis of abdominal aortic aneurysm. Scott. Med. J. 1975, 20, 133–137. [Google Scholar] [CrossRef]
- Tajima, Y.; Goto, H.; Ohara, M.; Hashimoto, M.; Akamatsu, D.; Shimizu, T.; Miyama, N.; Tsuchida, K.; Kawamura, K.; Umetsu, M.; et al. Oral steroid use and abdominal aortic aneurysm expansion—Positive association. Circ. J. 2017, 81, 1774–1782. [Google Scholar] [CrossRef]
- Moll, F.L.; Powell, J.T.; Fraedrich, G.; Verzini, F.; Haulon, S.; Waltham, M.; van Herwaarden, J.A.; Holt, P.J.; van Keulen, J.W.; Rantner, B.; et al. Management of abdominal aortic aneurysms clinical practice guidelines of the European society for vascular surgery. Eur. J. Vasc. Endovasc. Surg. 2011, 41 (Suppl. S1), S1–S58. [Google Scholar] [CrossRef]
- Claridge, R.; Arnold, S.; Morrison, N.; van Rij, A.M. Measuring abdominal aortic diameters in routine abdominal computed tomography scans and implications for abdominal aortic aneurysm screening. J. Vasc. Surg. 2017, 65, 1637–1642. [Google Scholar] [CrossRef]
- Mohammadi, S.; Mohammadi, M.; Dehlaghi, V.; Ahmadi, A. Automatic segmentation, detection, and diagnosis of abdominal aortic aneurysm (AAA) using convolutional neural networks and hough circles algorithm. Cardiovasc. Eng. Technol. 2019, 10, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Lee, M.S.; Kang, M.G. Poisson–Gaussian noise analysis and estimation for low-dose X-ray images in the NSCT domain. Sensors 2018, 18, 1019. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Liu, Y.; Zeng, J.; Liu, Y.; Li, Y.; Xie, Q. Image smoothing method based on global gradient sparsity and local relative gradient constraint optimization. Sci. Rep. 2024, 14, 15152. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, H.; Cai, Y.; Fu, B. Salt and pepper noise removal method based on the edge-adaptive total variation model. Front. Appl. Math. Stat. 2022, 8, 918357. [Google Scholar] [CrossRef]
- Mohamed, K.M.; Hardie, R.C. A collaborative adaptive Wiener filter for image restoration using a spatial-domain multi-patch correlation model. EURASIP J. Adv. Signal Process 2015, 2015. [Google Scholar] [CrossRef]
- Cannistraci, C.V.; Abbas, A.; Gao, X. Median modified Wiener filter for nonlinear adaptive spatial denoising of protein NMR multidimensional spectra. Sci. Rep. 2015, 5, 8017. [Google Scholar] [CrossRef] [PubMed]
- Oulefki, A.; Agaian, S.; Trongtirakul, T.; Kassah Laouar, A. Automatic COVID-19 lung infected region segmentation and measurement using CT-scans images. Pattern Recognit. 2021, 114, 107747. [Google Scholar] [CrossRef]
- Suzuki, H.; Kawata, Y.; Aokage, K.; Matsumoto, Y.; Sugiura, T.; Tanabe, N.; Nakano, Y.; Tsuchida, T.; Kusumoto, M.; Marumo, K.; et al. Aorta and main pulmonary artery segmentation using stacked U-Net and localization on non-contrast-enhanced computed tomography images. Med. Phys. 2024, 51, 1232–1243. [Google Scholar] [CrossRef]
- Yuen, H.K.; Princen, J.; Illingworth, J.; Kittler, J. Comparative study of Hough transform methods for circle finding. Image Vis. Comput. 1990, 8, 71–77. [Google Scholar] [CrossRef]
- Hirsch, A.T.; Haskal, Z.J.; Hertzer, N.R.; Bakal, C.W.; Creager, M.A.; Halperin, J.L.; Hiratzka, L.F.; Murphy, W.R.; Olin, J.W.; Puschett, J.B.; et al. ACC/AHA 2005 Practice Guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): A collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With peripheral arterial disease): Endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. Circulation 2006, 113, e463–e654. [Google Scholar] [CrossRef]
- Jordan, W.D.; Alcocer, F.; Wirthlin, D.J.; Westfall, A.O.; Whitley, D. Abdominal aortic aneurysms in “high-risk” surgical patients: Comparison of open and endovascular repair. Ann. Surg. 2003, 237, 623–629; discussion 629. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, S.; Qamar, A.; Sharma, V.; Sharma, A. Abdominal aortic aneurysm: A comprehensive review. Exp. Clin. Cardiol. 2011, 16, 11–15. [Google Scholar]
- Siegel, C.L.; Cohan, R.H. CT of abdominal aortic aneurysms. AJR Am. J. Roentgenol. 1994, 163, 17–29. [Google Scholar] [CrossRef]
- Schmitz-Rixen, T.; Böckler, D.; Vogl, T.J.; Grundmann, R.T. Endovascular and open repair of abdominal aortic aneurysm. Dtsch. Ärztebl Int. 2020, 117, 813–819. [Google Scholar] [CrossRef] [PubMed]
- Mafi, M.; Martin, H.; Cabrerizo, M.; Andrian, J.; Barreto, A.; Adjouadi, M. A comprehensive survey on impulse and Gaussian denoising filters for digital images. Signal Process 2019, 157, 236–260. [Google Scholar] [CrossRef]
- Candemir, S.; Nguyen, X.V.; Folio, L.R.; Prevedello, L.M. Training strategies for radiology deep learning models in data-limited scenarios. Radiol. Artif. Intell. 2021, 3, e210014. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.; Traverso, A.; Niraula, D.; Zou, J.; Luo, Y.; Owen, D.; Naqa, I.E.; Wei, L. Interpretable artificial intelligence in radiology and radiation oncology. Br. J. Radiol. 2023, 96, 20230142. [Google Scholar] [CrossRef]
- Gul, S.; Khan, M.S.; Bibi, A.; Khandakar, A.; Ayari, M.A.; Chowdhury, M.E.H. Deep learning techniques for liver and liver tumor segmentation: A review. Comput. Biol. Med. 2022, 147, 105620. [Google Scholar] [CrossRef]
- Johansen, K.; Devin, J. Mycotic aortic aneurysms: A reappraisal. Arch. Surg. 1983, 118, 583–588. [Google Scholar] [CrossRef]
- Machida, K.; Tasaka, A. CT patterns of mural thrombus in aortic aneurysms. J. Comput. Assist. Tomogr. 1980, 4, 840–842. [Google Scholar] [CrossRef]





| Parameter | Dimension |
|---|---|
| Size of input and output images | 256 × 256 |
| Training data | 3062 |
| Validating data | 802 |
| Testing data | 186 |
| Number of epochs | 200 |
| Size of batch | 3 |
| Number of channels | 64, 128, 256, 512, and 1024 |
| Learning rate | 5 × 10−4 |
| Objective function | Mean Squared Error Loss |
| Optimization solver | Adaptive momentum estimation (Adam) |
| Filter | Unit: mm | 30 | 55 | 55 | Sensitivity (%) | Precision (%) | Accuracy (%) |
|---|---|---|---|---|---|---|---|
| Noisy | 30 | 4 | 1 | 1 | 100 | 66.67 | 100 |
| 55 | 0 | 11 | 5 | 91.67 | 68.75 | 91.67 | |
| 55 | 0 | 0 | 13 | 68.42 | 100 | 68.42 | |
| Total | 4 | 12 | 19 | 89.67 | 78.47 | 89.67 | |
| Average | 30 | 4 | 1 | 1 | 100 | 66.67 | 100 |
| 55 | 0 | 11 | 5 | 91.67 | 68.75 | 91.67 | |
| 55 | 0 | 0 | 13 | 68.42 | 100 | 68.42 | |
| Total | 4 | 12 | 19 | 89.67 | 78.47 | 89.67 | |
| Median | 30 | 4 | 0 | 1 | 100 | 100 | 100 |
| 55 | 0 | 12 | 2 | 100 | 85.71 | 100 | |
| 55 | 0 | 0 | 17 | 89.47 | 100 | 89.47 | |
| Total | 4 | 12 | 19 | 96.49 | 95.24 | 96.49 | |
| Wiener | 30 | 4 | 0 | 0 | 100 | 100 | 100 |
| 55 | 0 | 12 | 1 | 100 | 92.3 | 100 | |
| 55 | 0 | 0 | 18 | 94.74 | 100 | 94.74 | |
| Total | 4 | 12 | 19 | 98.25 | 97.43 | 98.25 | |
| MMWF | 30 | 4 | 0 | 0 | 100 | 100 | 100 |
| 55 | 0 | 12 | 0 | 100 | 100 | 100 | |
| 55 | 0 | 0 | 19 | 100 | 100 | 100 | |
| Total | 4 | 12 | 19 | 100 | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, S.; Kim, H.; Seo, K.-H.; Lee, Y. Modeling of Severity Classification Algorithm Using Abdominal Aortic Aneurysm Computed Tomography Image Segmentation Based on U-Net with Improved Noise Reduction Performance. Sensors 2025, 25, 6509. https://doi.org/10.3390/s25216509
Lim S, Kim H, Seo K-H, Lee Y. Modeling of Severity Classification Algorithm Using Abdominal Aortic Aneurysm Computed Tomography Image Segmentation Based on U-Net with Improved Noise Reduction Performance. Sensors. 2025; 25(21):6509. https://doi.org/10.3390/s25216509
Chicago/Turabian StyleLim, Sewon, Hajin Kim, Kang-Hyeon Seo, and Youngjin Lee. 2025. "Modeling of Severity Classification Algorithm Using Abdominal Aortic Aneurysm Computed Tomography Image Segmentation Based on U-Net with Improved Noise Reduction Performance" Sensors 25, no. 21: 6509. https://doi.org/10.3390/s25216509
APA StyleLim, S., Kim, H., Seo, K.-H., & Lee, Y. (2025). Modeling of Severity Classification Algorithm Using Abdominal Aortic Aneurysm Computed Tomography Image Segmentation Based on U-Net with Improved Noise Reduction Performance. Sensors, 25(21), 6509. https://doi.org/10.3390/s25216509
