Autonomous Sea Floor Coverage with Constrained Input Autonomous Underwater Vehicles: Integrated Path Planning and Control
Abstract
:1. Introduction
1.1. Optimal Coverage Path Planning
1.2. Prescribed Performance Control with Input Constraints
1.3. Limitations of Existing Methodologies
1.4. Contribution
1.5. Organization
2. Problem Formulation
3. Materials and Methods
3.1. Underwater Vehicle Kinematics and Dynamics
3.2. Coverage Path Planning
3.2.1. Minimum Turn Decomposition
3.2.2. Minimum Cost Path
Algorithm 1 A* Grid Construction |
|
Algorithm 2 GTSP-A* Transition Cost Matrix Calculation |
|
3.3. Control Design
3.3.1. Reference Modification Module
3.3.2. Waypoint Tracking Control Design
4. Results
4.1. Simulation Software
4.2. Coverage Path Planning
4.3. Controller Design and Parameter Selection
4.4. Simulation Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Galgani, F.; Souplet, A.; Cadiou, Y. Accumulation of debris on the deep sea floor off the French Mediterranean coast. Mar. Ecol. Prog. Ser. 1996, 142, 225–234. [Google Scholar] [CrossRef]
- Moore, C.J. Synthetic polymers in the marine environment: A rapidly increasing, long-term threat. Environ. Res. 2008, 108, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, S.; Wang, Y.; Liu, Y.; Yang, Y.; Zhou, T.; Bian, H. Subsea pipeline leak inspection by autonomous underwater vehicle. Appl. Ocean Res. 2021, 107, 102321. [Google Scholar] [CrossRef]
- Danovaro, R.; Fanelli, E.; Aguzzi, J.; Billett, D.; Carugati, L.; Corinaldesi, C.; Dell’Anno, A.; Gjerde, K.; Jamieson, A.J.; Kark, S.; et al. Ecological variables for developing a global deep-ocean monitoring and conservation strategy. Nat. Ecol. Evol. 2020, 4, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Wibisono, A.; Piran, M.J.; Song, H.K.; Lee, B.M. A survey on unmanned underwater vehicles: Challenges, enabling technologies, and future research directions. Sensors 2023, 23, 7321. [Google Scholar] [CrossRef]
- Galceran, E.; Carreras, M. Efficient seabed coverage path planning for ASVs and AUVs. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 7–12 October 2012; pp. 88–93. [Google Scholar]
- Hert, S.; Tiwari, S.; Lumelsky, V. A terrain-covering algorithm for an AUV. In Underwater Robots; Springer: Berlin/Heidelberg, Germany, 1996; pp. 17–45. [Google Scholar]
- Englot, B.; Hover, F. Sampling-based coverage path planning for inspection of complex structures. In Proceedings of the International Conference on Automated Planning and Scheduling, Sao Paulo, Brazil, 24–28 June 2012; Volume 22, pp. 29–37. [Google Scholar]
- Zhu, J.; Yang, Y.; Cheng, Y. SMURF: A fully autonomous water surface cleaning robot with a novel coverage path planning method. J. Mar. Sci. Eng. 2022, 10, 1620. [Google Scholar] [CrossRef]
- Oksanen, T.; Visala, A. Coverage path planning algorithms for agricultural field machines. J. Field Robot. 2009, 26, 651–668. [Google Scholar] [CrossRef]
- Cho, S.W.; Park, H.J.; Lee, H.; Shim, D.H.; Kim, S.Y. Coverage path planning for multiple unmanned aerial vehicles in maritime search and rescue operations. Comput. Ind. Eng. 2021, 161, 107612. [Google Scholar] [CrossRef]
- Galceran, E.; Carreras, M. A survey on coverage path planning for robotics. Robot. Auton. Syst. 2013, 61, 1258–1276. [Google Scholar] [CrossRef]
- Choset, H. Coverage for robotics—A survey of recent results. Ann. Math. Artif. Intell. 2001, 31, 113–126. [Google Scholar] [CrossRef]
- Choset, H.; Pignon, P. Coverage path planning: The boustrophedon cellular decomposition. In Field and Service Robotics; Springer: London, UK, 1998; pp. 203–209. [Google Scholar]
- Cabreira, T.M.; Brisolara, L.B.; Paulo, R.F.J. Survey on coverage path planning with unmanned aerial vehicles. Drones 2019, 3, 4. [Google Scholar] [CrossRef]
- Tan, C.S.; Mohd-Mokhtar, R.; Arshad, M.R. A comprehensive review of coverage path planning in robotics using classical and heuristic algorithms. IEEE Access 2021, 26, 119310–119342. [Google Scholar] [CrossRef]
- Huang, W.H. Optimal line-sweep-based decompositions for coverage algorithms. In Proceedings of the 2001 ICRA, IEEE International Conference on Robotics and Automation, Seoul, Republic of Korea, 21–26 May 2001; Volume 1, pp. 27–32. [Google Scholar]
- Jin, J.; Tang, L. Optimal coverage path planning for arable farming on 2D surfaces. Trans. ASABE 2010, 53, 283–295. [Google Scholar] [CrossRef]
- Bochkarev, S.; Smith, S.L. On minimizing turns in robot coverage path planning. In Proceedings of the 2016 IEEE International Conference on Automation Science and Engineering (CASE), Fort Worth, TX, USA, 21–25 August 2016; pp. 1237–1242. [Google Scholar]
- Bechlioulis, C.P.; Rovithakis, G.A. Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance. IEEE Trans. Autom. Control 2008, 53, 2090–2099. [Google Scholar] [CrossRef]
- Ilchmann, A.; Ryan, E.P. High-gain control without identification: A survey. GAMM-Mitteilungen 2008, 31, 115–125. [Google Scholar] [CrossRef]
- Hopfe, N.; Ilchmann, A.; Ryan, E.P. Funnel Control With Saturation: Nonlinear SISO Systems. IEEE Trans. Autom. Control 2010, 55, 2177–2182. [Google Scholar] [CrossRef]
- Liberzon, D.; Trenn, S. The bang-bang funnel controller for uncertain nonlinear systems with arbitrary relative degree. IEEE Trans. Autom. Control 2013, 58, 3126–3141. [Google Scholar] [CrossRef]
- Li, S.; Xiang, Z. Adaptive prescribed performance control for switched nonlinear systems with input saturation. Int. J. Syst. Sci. 2018, 49, 113–123. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, J.; Li, J.; Liu, B. Improved prescribed performance control for nonaffine pure-feedback systems with input saturation. Int. J. Robust Nonlinear Control 2019, 29, 1769–1788. [Google Scholar] [CrossRef]
- Ji, R.; Li, D.; Ma, J.; Ge, S.S. Saturation-tolerant prescribed control of MIMO systems with unknown control directions. IEEE Trans. Fuzzy Syst. 2022, 30, 5116–5127. [Google Scholar] [CrossRef]
- Ji, R.; Li, D.; Ge, S.S. Saturation-tolerant prescribed control for nonlinear time-delay systems. IEEE Trans. Fuzzy Syst. 2022, 31, 2495–2508. [Google Scholar] [CrossRef]
- Yong, K.; Chen, M.; Shi, Y.; Wu, Q. Flexible performance-based robust control for a class of nonlinear systems with input saturation. Automatica 2020, 122, 109268. [Google Scholar] [CrossRef]
- Mishra, P.K.; Jagtap, P. Approximation-free prescribed performance control with prescribed input constraints. IEEE Control Syst. Lett. 2023, 7, 1261–1266. [Google Scholar] [CrossRef]
- Trakas, P.S.; Bechlioulis, C.P. Robust adaptive prescribed performance control for unknown nonlinear systems with input amplitude and rate constraints. IEEE Control Syst. Lett. 2023, 7, 1801–1806. [Google Scholar] [CrossRef]
- Trakas, P.S.; Bechlioulis, C.P. Adaptive Performance Control for Input Constrained MIMO Nonlinear Systems. IEEE Trans. Syst. Man, Cybern. Syst. 2024, 54, 7733–7745. [Google Scholar] [CrossRef]
- Fotiadis, F.; Rovithakis, G.A. Input-constrained prescribed performance control for high-order mimo uncertain nonlinear systems via reference modification. IEEE Trans. Autom. Control 2023, 69, 3301–3308. [Google Scholar] [CrossRef]
- Bikas, L.N.; Rovithakis, G.A. Prescribed performance under input saturation for uncertain strict-feedback systems: A switching control approach. Automatica 2024, 165, 111663. [Google Scholar] [CrossRef]
- Gkesoulis, A.K.; Georgakis, P.A.; Karras, G.C.; Bechlioulis, C.P. Prescribed Performance Control for Uncertain Euler-Lagrange Systems with Constrained Inputs via Virtual-Only Reference Modification. Eur. Control Conf. 2025. submitted. [Google Scholar]
- BlueROV2—Affordable and Capable Underwater ROV. Available online: https://bluerobotics.com/store/rov/bluerov2/ (accessed on 25 January 2025).
- Fernández, J.; Tóth, B.; Cánovas, L.; Pelegrín, B. A practical algorithm for decomposing polygonal domains into convex polygons by diagonals. TOP Off. J. Span. Soc. Stat. Oper. Res. 2008, 16, 367–387. [Google Scholar] [CrossRef]
- GitHub—Shapely/Shapely. Available online: https://github.com/shapely/shapely (accessed on 25 January 2025).
- GitHub—Sseemayer/Py2D. Available online: https://github.com/sseemayer/Py2D (accessed on 25 January 2025).
- Helsgaun, K. Solving the Equality Generalized Traveling Salesman Problem Using the Lin–Kernighan–Helsgaun Algorithm. Math. Program. Comput. 2015, 7, 269–287. [Google Scholar] [CrossRef]
- GLKH (Keld Helsgaun). Available online: http://webhotel4.ruc.dk/~keld/research/GLKH/ (accessed on 25 January 2025).
- GitHub—Patrickelectric/Bluerov_ros_playground. Available online: https://github.com/patrickelectric/bluerov_ros_playground (accessed on 25 January 2025).
- GitHub—Freefloating-Gazebo/Freefloating_gazebo. Available online: https://github.com/freefloating-gazebo/freefloating_gazebo (accessed on 25 January 2025).
- Autonomous Sea Floor Coverage with Constrained Input AUVs: Integrated Path Planning and Control. Available online: https://www.youtube.com/watch?v=2HFjW-Ka2J8 (accessed on 25 January 2025).
- Vidal, E.; Palomeras, N.; Carreras, M. Online 3D underwater exploration and coverage. In Proceedings of the 2018 IEEE/OES Autonomous Underwater Vehicle Workshop (AUV), Porto, Portugal, 6–9 November 2018; pp. 1–5. [Google Scholar]
- Apuroop, K.G.; Le, A.V.; Elara, M.R.; Sheu, B.J. Reinforcement learning-based complete area coverage path planning for a modified hTrihex robot. Sensors 2021, 21, 1067. [Google Scholar] [CrossRef] [PubMed]
Decomposition Approach | Minimum Turns | Minimum Length | Line-Sweep Connection | Obstacle Avoidance Connecting Line-Sweeps | Cell Connection |
---|---|---|---|---|---|
Boustrophedon [14] | No | No | Back and Forth Sweeps | No | Cell Adjacency Graph |
Line-Sweep-based [17] | Yes | No | Back and Forth Sweeps | No | Dynamic Programming |
Iterated [19] | Yes | Yes | GTSP with Dubins’ paths | No | Redundant |
Proposed | Yes | Yes | GTSP with A* | Yes | Redundant |
Approach | Reference | Methodology | Prescribed Performance Under Saturation |
---|---|---|---|
Virtual Performance Constraint Control | [29] | PPC augmented with virtual performance constraints | Relaxed specifications |
Adaptive PPC that modifies prescribed performance to account for saturation | [30] | PPC with adaptive performance constraints | Relaxed specifications |
Adaptive Performance Control | [31] | PPC with adaptive performance constraints | Relaxed specifications |
Reference Modification | [32] | PPC with modified reference trajectory | Modified tracking trajectory |
Switching Control Approach | [33] | Switching controller when the input becomes saturated | Relaxed specifications |
Virtual Reference Modification | [34] | PPC with modified velocity reference trajectory | Prescribed output performance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gkesoulis, A.K.; Georgakis, P.; Karras, G.C.; Bechlioulis, C.P. Autonomous Sea Floor Coverage with Constrained Input Autonomous Underwater Vehicles: Integrated Path Planning and Control. Sensors 2025, 25, 1023. https://doi.org/10.3390/s25041023
Gkesoulis AK, Georgakis P, Karras GC, Bechlioulis CP. Autonomous Sea Floor Coverage with Constrained Input Autonomous Underwater Vehicles: Integrated Path Planning and Control. Sensors. 2025; 25(4):1023. https://doi.org/10.3390/s25041023
Chicago/Turabian StyleGkesoulis, Athanasios K., Panagiotis Georgakis, George C. Karras, and Charalampos P. Bechlioulis. 2025. "Autonomous Sea Floor Coverage with Constrained Input Autonomous Underwater Vehicles: Integrated Path Planning and Control" Sensors 25, no. 4: 1023. https://doi.org/10.3390/s25041023
APA StyleGkesoulis, A. K., Georgakis, P., Karras, G. C., & Bechlioulis, C. P. (2025). Autonomous Sea Floor Coverage with Constrained Input Autonomous Underwater Vehicles: Integrated Path Planning and Control. Sensors, 25(4), 1023. https://doi.org/10.3390/s25041023