Impact Localization System of CFRP Structure Based on EFPI Sensors
Abstract
:1. Introduction
2. Impact Localization Algorithm
2.1. Endpoint Detection Methods
2.1.1. Short Time Energy Method
2.1.2. Spectral Entropy Method
2.1.3. Energy–Entropy Ratio Method
2.2. CNN-BIGRU-Attention Model
2.2.1. Convolutional Neural Network
2.2.2. Bidirectional Gated Recurrent Unit (BIGRU)
2.2.3. Attention Mechanism
2.2.4. Sand Cat Swarm Optimization
3. Experiment
3.1. F-P Cavity Interference Principle
3.2. Experimental Setup
4. Feature Extraction
4.1. Data Preprocessing
4.2. Sensitivity Analysis
5. Impact Localization
5.1. Establishment of Localization Model
- The normalized dataset undergoes format conversion to form a three-dimensional matrix;
- The convolution layer extracts local features of the input sequence data through multi-layer convolution operations;
- The pooling layer reduces dimensionality and compresses the data to lower computational complexity;
- BIGRU captures long-term dependencies in time series by processing bidirectional sequence information;
- The concatenation layer combines the outputs of the convolutional neural network and the Bidirectional Gated Recurrent Unit (BIGRU);
- The attention mechanism module assigns different weights to each position by calculating the similarity between positions;
- Finally, after processing by the fully connected (FC) layer and an activation function, the output is passed to the regression layer. This regression layer maps the final output of the neural network to the range required by the regression task, generating the predicted localization coordinates.
- Set initial parameters: initial population size is set to 20, and maximum evolutionary generation is set to 20. The parameters to be optimized include learning rate, number of neurons in BIGRU, attention mechanism key value, and convolution kernel size. The initial learning rate is set to 0.005, and the upper and lower bounds are 0.01 and 0.001, respectively. The initial number of neurons in BIGRU is set to 35, and the upper and lower bounds are 50 and 10, respectively. The initial attention mechanism key value is set to 30, and the upper and lower bounds are 50 and 2, respectively. Initial convolution kernel size is set to 3, and the upper and lower bounds are 10 and 2, respectively.
- Calculate the fitness of each individual in the population;
- Record the current best individual, select the individual with higher fitness for evolution, and generate the next generation;
- Renew the population by replacing poorly performing individuals with newly generated ones, ensuring gradual convergence to the optimal solution;
- Iterate steps 2–4 until the termination condition is met.
- Retrieve the best parameters and output the optimal solution.
5.2. Analysis of Localization Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Collinson, M.; Swait, T.; Bower, M.; Nuhiji, B.; Hayes, S. Development and implementation of direct electric cure of plain weave CFRP composites for aerospace. Compos. Part A Appl. Sci. Manuf. 2023, 172, 107615. [Google Scholar] [CrossRef]
- Ding, G.; Hou, S. CFRP drive shaft damage identification and localization based on FBG sensing network and GWO-BP neural networks. Opt. Fiber Technol. 2023, 82, 103631. [Google Scholar] [CrossRef]
- Tan, L.; Saito, O.; Yu, F.; Okabe, Y.; Kondoh, T.; Tezuka, S.; Chiba, A. Impact damage detection using chirp ultrasonic guided waves for development of health monitoring system for cfrp mobility structures. Sensors 2022, 22, 789. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.Y.; Jang, J.; Park, Y.B. Advanced structural health monitoring in carbon fiber-reinforced plastic using real-time self-sensing data and convolutional neural network architectures. Mater. Des. 2022, 224, 111348. [Google Scholar] [CrossRef]
- Ding, G.; Chang, L.; Zhou, N.; Gao, X.; Li, M. Localization of low velocity impact on CFRP laminate using normalized error outlier-based algorithm cooperating with Db3-wavelet threshold noise reduction and FBG sensors. Opt. Fiber Technol. 2023, 80, 103455. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, M.; Zhang, Y.; Wu, D.; Wang, Y.; Qing, X.; Wang, Y. A low-velocity impact localization method for composite stiffened plate based on AIC and WPT. IEEE Sens. J. 2024, 24, 10993–11002. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, F.; Liu, M.; Xiao, W. A two-step localization method using wavelet packet energy characteristics for low-velocity im-pacts on composite plate structures. Mech. Syst. Signal Process. 2023, 188, 110061. [Google Scholar] [CrossRef]
- Shenoy, S.; Sharma, R.S. Impact Damage Estimation and Localization in Composite Sandwich Plates Using Deep Learning. In Proceedings of the 2023 IEEE 5th International Conference on Cybernetics, Cognition and Machine Learning Applications (ICCCMLA), Hamburg, Germany, 7–8 October 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 14–20. [Google Scholar]
- Li, S.; Peng, G.; Yuan, H.; Wang, J.; Cheng, F.; Li, H. Robust data-driven structural impact localization with multi-sensor real-time monitoring. IEEE Sens. J. 2023, 23, 1644–1654. [Google Scholar]
- Zhang, H.; Tian, K.; Rui, X.; Xu, L.; Qi, L.; Feng, Y.; Wang, W. Impact localization in anisotropic composites with time difference matrix matching and edge accuracy optimization. IEEE Trans. Instrum. Meas. 2023, 72, 1–13. [Google Scholar] [CrossRef]
- Jang, B.W.; Kim, C.G. Acoustic emission source localization in composite stiffened plate using triangulation method with signal magnitudes and arrival times. Adv. Compos. Mater. 2021, 30, 149–163. [Google Scholar] [CrossRef]
- Huang, J.; Zeng, J.; Bai, Y.; Cheng, Z.; Feng, Z.; Qi, L.; Liang, D. Layout optimization of fiber Bragg grating strain sensor network based on modified artificial fish swarm algorithm. Opt. Fiber Technol. 2021, 65, 102583. [Google Scholar] [CrossRef]
- Fan, L.; Le, K.; Guo, C.; Sun, C.; Chen, G. Magnet-assisted hybrid EFPI/FBG sensor for internal corrosion monitoring of steel pipelines. Opt. Fiber Technol. 2022, 73, 103064. [Google Scholar] [CrossRef]
- Liu, Y.; Jing, Z.; Liu, Q.; Li, A.; Lee, A.; Cheung, Y.; Zhang, Y.; Peng, W. All-silica fiber-optic temperature-depth-salinity sensor based on cascaded EFPIs and FBG for deep sea exploration. Opt. Express 2021, 29, 23953–23966. [Google Scholar] [CrossRef]
- Qiu, H.; Yao, Y.; Dong, Y.; Tian, J. Fiber-optic immunosensor based on a Fabry–Perot interferometer for single-molecule detection of biomarkers. Biosens. Bioelectron. 2024, 255, 116265. [Google Scholar] [CrossRef]
- Li, X.; Guan, C.; Qin, H.; Huang, J.; Chu, W.; Chai, S.; Lv, P.; Li, S.; Tong, Y. Three-dimensional sound source localization system based on fiber optic sensor array with an adaptive algorithm. Opt. Commun. 2024, 559, 130383. [Google Scholar] [CrossRef]
- Wang, J.; Ai, F.; Sun, Q.; Liu, T.; Li, H.; Yan, Z.; Liu, D. Diaphragm-based optical fiber sensor array for multipoint acoustic detection. Opt. Express 2018, 26, 25293–25304. [Google Scholar] [CrossRef]
- Liu, Q.; Jing, Z.; Liu, Y.; Li, A.; Xia, Z.; Peng, W. Multiplexing fiber-optic Fabry–Perot acoustic sensors using self-calibrating wavelength shifting interferometry. Opt. Express 2019, 27, 38191–38203. [Google Scholar] [CrossRef]
- Zhang, S.; Wan, S.; Wang, Y.; Zhang, B.; Zhang, Z.; Zhong, H.; Shi, J.; Sun, J.; He, X.; Wu, Q. 2D sound source localization technology based on diaphragm EFPI fiber microphone array. Opt. Commun. 2022, 519, 128435. [Google Scholar] [CrossRef]
- Zaw, T.H.; War, N. The combination of spectral entropy, zero crossing rate, short time energy and linear prediction error for voice activity detection. In Proceedings of the 2017 20th International Conference of Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 22–24 December 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–5. [Google Scholar]
- Zhang, T.; Shao, Y.; Wu, Y.; Geng, Y.; Fan, L. An overview of speech endpoint detection algorithms. Appl. Acoust. 2019, 160, 107133. [Google Scholar] [CrossRef]
- Xiuquan, L.; Zhen, W.; Yeyin, J.; Jing, C.; Zhenfei, L. Acoustic modulation signal recognition based on endpoint detection. Sci. Rep. 2024, 14, 19198. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.Q.; Vu, T.B.; Shafiabady, N.; Nguyen, T.T.; Nguyen, P.T. Real-time structural health monitoring of bridges using convolutional neural net-work-based loss factor analysis for enhanced energy dissipation detection. Structures 2024, 70, 107733. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8, 53. [Google Scholar] [CrossRef]
- Stanković, L.; Mandic, D. Convolutional neural networks demystified: A matched filtering perspective-based tutorial. IEEE Trans. Syst. Man Cybern. Syst. 2023, 53, 3614–3628. [Google Scholar] [CrossRef]
- Jie, H.J.; Wanda, P. RunPool: A dynamic pooling layer for convolution neural network. Int. J. Comput. Intell. Syst. 2020, 13, 66–76. [Google Scholar] [CrossRef]
- Mahjoub, S.; Chrifi-Alaoui, L.; Marhic, B.; Delahoche, L. Predicting energy consumption using LSTM, multi-layer GRU and drop-GRU neural networks. Sensors 2022, 22, 4062. [Google Scholar] [CrossRef]
- Yang, S.; Yu, X.; Zhou, Y. Lstm and gru neural network performance comparison study: Taking yelp review dataset as an ex-ample. In Proceedings of the 2020 International Workshop on Electronic Communication and Artificial Intelligence (IWECAI), Shanghai, China, 12–14 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 98–101. [Google Scholar]
- Wang, S.; Shi, J.; Yang, W.; Yin, Q. High and low frequency wind power prediction based on Transformer and BiGRU-Attention. Energy 2024, 288, 129753. [Google Scholar] [CrossRef]
- Lin, X.; Quan, Z.; Wang, Z.-J.; Huang, H.; Zeng, X. A novel molecular representation with BiGRU neural networks for learning atom. Briefings Bioinform. 2019, 21, 2099–2111. [Google Scholar] [CrossRef] [PubMed]
- Bao, K.; Bi, J.; Ma, R.; Sun, Y.; Zhang, W.; Wang, Y. A spatial-reduction attention-based BiGRU network for water level prediction. Water 2023, 15, 1306. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, H.; Kim, C. Semantic and instance segmentation in coastal urban spatial perception: A multi-task learning framework with an attention mechanism. Sustainability 2024, 16, 833. [Google Scholar] [CrossRef]
- Hassanin, M.; Anwar, S.; Radwan, I.; Khan, F.S.; Mian, A. Visual attention methods in deep learning: An in-depth survey. Inf. Fusion 2024, 108, 102417. [Google Scholar] [CrossRef]
- Wang, Y.; Pu, J.; Miao, D.; Zhang, L.; Zhang, L.; Du, X. SCGRFuse: An infrared and visible image fusion network based on spatial/channel attention mechanism and gradient aggregation residual dense blocks. Eng. Appl. Artif. Intell. 2024, 132, 107898. [Google Scholar] [CrossRef]
- Xu, H.W.; Qin, W.; Sun, Y.N.; Lv, Y.L.; Zhang, J. Attention mechanism-based deep learning for heat load prediction in blast furnace ironmaking process. J. Intell. Manuf. 2024, 35, 1207–1220. [Google Scholar] [CrossRef]
- Zhu, M.; Yu, X.; Tan, H.; Yuan, J.; Chen, K.; Xie, S.; Han, Y.; Long, W. High-precision monitoring and prediction of mining area surface subsidence using SBAS-InSAR and CNN-BiGRU-attention model. Sci. Rep. 2024, 14, 28968. [Google Scholar] [CrossRef]
- Niu, D.; Yu, M.; Sun, L.; Gao, T.; Wang, K. Short-term multi-energy load forecasting for integrated energy systems based on CNN-BiGRU op-timized by attention mechanism. Appl. Energy 2022, 313, 118801. [Google Scholar] [CrossRef]
- Adegboye, O.R.; Feda, A.K.; Ojekemi, O.R.; Agyekum, E.B.; Khan, B.; Kamel, S. DGS-SCSO: Enhancing sand cat swarm optimization with dynamic pinhole imaging and golden sine algorithm for improved numerical optimization performance. Sci. Rep. 2024, 14, 1491. [Google Scholar] [CrossRef]
- Seyyedabbasi, A. Binary sand cat swarm optimization algorithm for wrapper feature selection on biological data. Biomimetics 2023, 8, 310. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, H.; Ratschbacher, L.; Gallego, J.; Saavedra, C.; Faßbender, A.; von Haaren, A.; Alt, W.; Hofferberth, S.; Köhl, M.; Linden, S.; et al. Achievements and perspectives of optical fiber Fabry–Perot cavities. Appl. Phys. B Laser Opt. 2022, 128, 29. [Google Scholar] [CrossRef]
- Zhao, G.; Hu, H.; Li, S.; Liu, L.; Li, K. Localization of impact on composite plates based on integrated wavelet transform and hybrid minimization algorithm. Compos. Struct. 2017, 176, 234–243. [Google Scholar] [CrossRef]
- Yu, J.; Liu, J.; Peng, Z.; Gan, L.; Wan, S. Localization of impact on CFRP structure based on fiber Bragg gratings and CNN-LSTM-Attention. Opt. Fiber Technol. 2024, 87, 103943. [Google Scholar] [CrossRef]
Impact | Impact Coordinate (mm) | CNN Algorithm | CNN-GRU Algorithm | CNN-BIGRU Algorithm | CNN-BIGRU-Attention Algorithm | ||||
---|---|---|---|---|---|---|---|---|---|
Predict Coordinates (mm) | Error (mm) | Predict Coordinates (mm) | Error (mm) | Predict Coordinates (mm) | Error (mm) | Predict Coordinates (mm) | Error (mm) | ||
1 | (175, 150) | (157.106, 141.247) | 19.920 | (163.726, 159.847) | 14.968 | (185.262, 142.160) | 12.914 | (182.861, 152.650) | 8.296 |
2 | (50, 200) | (38.865, 190.362) | 14.727 | (57.655, 193.975) | 9.741 | (45.123, 206.653) | 8.249 | (52.680, 205.027) | 5.696 |
3 | (175, 325) | (159.364, 332.655) | 17.410 | (185.153, 321.375) | 10.781 | (183.257, 329.561) | 9.433 | (168.109, 324.683) | 6.899 |
4 | (250,50) | (258.265, 41.756) | 11.674 | (243.764, 42.925) | 9.431 | (245.514, 60.133) | 11.081 | (255.553, 56.919) | 8.871 |
5 | (250,125) | (258.462, 110.036) | 17.191 | (240.236, 136.217) | 14.871 | (242.995, 116.674) | 10.881 | (248.995, 135.334) | 10.383 |
6 | (75,100) | (64.888, 91.546) | 13.180 | (81.236, 109.133) | 11.059 | (70.053, 108.264) | 9.631 | (76.103, 93.481) | 6.611 |
7 | (300,175) | (313.763, 187.137) | 18.350 | (293.237, 160.783) | 15.744 | (303.265, 164.797) | 10.713 | (297.923, 183.815) | 9.057 |
8 | (50,300) | (54.160, 285.846) | 14.752 | (39.237, 286.522) | 17.249 | (61.236, 287.543) | 16.776 | (55.365, 307.191) | 8.972 |
9 | (75,350) | (63.196, 344.456) | 13.041 | (71.736, 341.729) | 8.891 | (82.154, 341.133) | 11.393 | (77.321, 354.439) | 5.009 |
10 | (225, 250) | (213.654, 261.861) | 16.414 | (220.237, 235.165) | 15.581 | (214.824, 242.237) | 12.800 | (234.860, 243.484) | 11.819 |
11 | (125,50) | (135.985, 57.841) | 13.497 | (131.137, 40.137) | 11.532 | (120.232, 41.279) | 9.940 | (121.593, 56.255) | 7.122 |
12 | (325,75) | (333.824, 57.924) | 19.221 | (330.863, 87.116) | 13.460 | (317.265, 83.198) | 11.271 | (319.220, 69.517) | 7.966 |
13 | (100, 175) | (110.541, 163.388) | 15.683 | (93.133, 184.896) | 12.045 | (105.270, 185.091) | 11.385 | (93.431, 171.093) | 7.643 |
14 | (150, 225) | (138.256, 216.463) | 14.519 | (159.165, 233.467) | 12.478 | (156.880, 214.053) | 12.930 | (145.224, 231.053) | 7.710 |
15 | (300, 300) | (310.563, 287.538) | 16.336 | (309.169, 307.790) | 12.031 | (292.685, 293.132) | 10.034 | (293.622, 305.496) | 8.389 |
Max. error | 19.920 | 17.249 | 16.776 | 11.819 | |||||
Min. error | 11.674 | 8.891 | 8.249 | 5.001 | |||||
Avg. error | 15.728 | 12.656 | 11.295 | 8.030 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Peng, Z.; Gan, L.; Liu, J.; Bai, Y.; Wan, S. Impact Localization System of CFRP Structure Based on EFPI Sensors. Sensors 2025, 25, 1091. https://doi.org/10.3390/s25041091
Yu J, Peng Z, Gan L, Liu J, Bai Y, Wan S. Impact Localization System of CFRP Structure Based on EFPI Sensors. Sensors. 2025; 25(4):1091. https://doi.org/10.3390/s25041091
Chicago/Turabian StyleYu, Junsong, Zipeng Peng, Linghui Gan, Jun Liu, Yufang Bai, and Shengpeng Wan. 2025. "Impact Localization System of CFRP Structure Based on EFPI Sensors" Sensors 25, no. 4: 1091. https://doi.org/10.3390/s25041091
APA StyleYu, J., Peng, Z., Gan, L., Liu, J., Bai, Y., & Wan, S. (2025). Impact Localization System of CFRP Structure Based on EFPI Sensors. Sensors, 25(4), 1091. https://doi.org/10.3390/s25041091