Acute Effects of Low vs. High Inertia During Flywheel Deadlifts with Equal Force Impulse on Vertical Jump Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Research Design
2.3. Flywheel Deadlifts
2.4. Equalization of Force Impulse in the HIGH and LOW Conditions
2.5. General and Specific Warm-Up
2.6. Main Trials
2.7. Countermovement Jump and Drop Jump Performance
2.8. Rating of Perceived Exertion (RPE)
2.9. Statistical Analysis
3. Results
3.1. Characteristics of the Flywheel Deadlifts
3.2. Time Course of RSI in the Main Conditions
3.3. Time Course of CMJ Performance in the Main Conditions
3.4. Time Course of RPE in the Main Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martinez-Hernandez, D. Flywheel Eccentric Training: How to Effectively Generate Eccentric Overload. Strength Cond. J. 2024, 46, 234–250. [Google Scholar] [CrossRef]
- Tesch, P.A.; Fernandez-Gonzalo, R.; Lundberg, T.R. Clinical applications of iso-inertial, eccentric-overload (YoYoTM) resistance exercise. Front. Physiol. 2017, 8, 241. [Google Scholar] [CrossRef] [PubMed]
- Vicens-Bordas, J.; Esteve, E.; Fort-Vanmeerhaeghe, A.; Bandholm, T.; Thorborg, K. Is inertial flywheel resistance training superior to gravity-dependent resistance training in improving muscle strength? A systematic review with meta-analyses. J. Sci. Med. Sport 2018, 21, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Berg, H.E.; Tesch, P.A. A gravity-independent ergometer to be used for resistance training in space. Aviat. Sp. Environ. Med. 1994, 65, 752–756. [Google Scholar]
- Beato, M.; Raya-González, J.; Hernandez-Davo, J.L.; Maroto-Izquierdo, S. Editorial: The science of flywheel training: Exercise physiology and practical applications. Front. Physiol. 2023, 14, 1241529. [Google Scholar] [CrossRef]
- Muñoz-López, A.; De Souza Fonseca, F.; Ramírez-Campillo, R.; Gantois, P.; Javier Nuñez, F.; Nakamura, F.Y. The use of real-time monitoring during flywheel resistance training programmes: How can we measure eccentric overload? A systematic review and meta-analysis. Biol. Sport 2021, 38, 639–652. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Wagle, J.P.; Douglas, J.; Taber, C.B.; Harden, M.; Haff, G.G.; Stone, M.H. Implementing Eccentric Resistance Training—Part 1: A Brief Review of Existing Methods. J. Funct. Morphol. Kinesiol. 2019, 4, 38. [Google Scholar] [CrossRef]
- Gonzalo-Skok, O.; Sánchez-Sabaté, J.; Tous-Fajardo, J.; Mendez-Villanueva, A.; Bishop, C.; Piedrafita, E. Effects of Direction-Specific Training Interventions on Physical Performance and Inter-Limb Asymmetries. Int. J. Environ. Res. Public Health 2022, 19, 1029. [Google Scholar] [CrossRef]
- Gonzalo-Skok, O.; Tous-Fajardo, J.; Valero-Campo, C.; Berzosa, C.; Bataller, A.V.; Arjol-Serrano, J.L.; Moras, G.; Mendez-Villanueva, A. Eccentric-Overload Training in Team-Sport Functional Performance: Constant Bilateral Vertical Versus Variable Unilateral Multidirectional Movements. Int. J. Sports Physiol. Perform. 2017, 12, 951–958. [Google Scholar] [CrossRef]
- Beato, M.; McErlain-Naylor, S.A.; Halperin, I.; Iacono, A. Dello Current evidence and practical applications of flywheel eccentric overload exercises as postactivation potentiation protocols: A brief review. Int. J. Sports Physiol. Perform. 2020, 15, 154–161. [Google Scholar] [CrossRef]
- Tsoukos, A.; Brown, L.E.; Terzis, G.; Veligekas, P.; Bogdanis, G.C. Potentiation of Bench Press Throw Performance Using a Heavy Load and Velocity-Based Repetition Control. J. Strength Cond. Res. 2021, 35, S72–S79. [Google Scholar] [CrossRef] [PubMed]
- Tsoukos, A.; Brown, L.E.; Veligekas, P.; Terzis, G.; Bogdanis, G.C. Postactivation potentiation of bench press throw performance using velocity-based conditioning protocols with low and moderate loads. J. Hum. Kinet. 2019, 68, 81–98. [Google Scholar] [CrossRef] [PubMed]
- Prieske, O.; Behrens, M.; Chaabene, H.; Granacher, U.; Maffiuletti, N.A. Time to Differentiate Postactivation “Potentiation” from “Performance Enhancement” in the Strength and Conditioning Community. Sport. Med. 2020, 50, 1559–1565. [Google Scholar] [CrossRef] [PubMed]
- Boullosa, D. Post-activation performance enhancement strategies in sport: A brief review for practitioners. Hum. Mov. 2021, 22, 101–109. [Google Scholar] [CrossRef]
- Blazevich, A.J.; Babault, N. Post-activation Potentiation Versus Post-activation Performance Enhancement in Humans: Historical Perspective, Underlying Mechanisms, and Current Issues. Front. Physiol. 2019, 10, 1359. [Google Scholar] [CrossRef]
- Biel, P.; Ewertowska, P.; Stastny, P.; Krzysztofik, M. Effects of Complex Training on Jumping and Change of Direction Performance, and Post-Activation Performance Enhancement Response in Basketball Players. Sports 2023, 11, 181. [Google Scholar] [CrossRef]
- Carter, J.; Greenwood, M. Complex training reexamined: Review and recommendations to improve strength and power. Strength Cond. J. 2014, 36, 11–19. [Google Scholar] [CrossRef]
- Tillin, N.A.; Bishop, D. Factors modulating post-activation potentiation and its effect on performance of subsequent explosive activities. Sport. Med. 2009, 39, 147–166. [Google Scholar] [CrossRef]
- Gourgoulis, V.; Aggeloussis, N.; Kasimatis, P.; Mavromatis, G.; Garas, A. Effect of a Submaximal Half-Squats Warm-up. J. Strength Cond. Res. 2003, 17, 342–344. [Google Scholar]
- Ruben, R.M.; Molinari, M.A.; Bibbee, C.A.; Childress, M.A.; Harman, M.S.; Reed, K.P.; Haff, G.G. The acute effects of an ascending squat protocol on performance during horizontal plyometric jumps. J. Strength Cond. Res. 2010, 24, 358–369. [Google Scholar] [CrossRef]
- Chiu, L.Z.F.; Fry, A.C.; Weiss, L.W.; Schilling, B.K.; Brown, L.E.; Smith, S.L. Postactivation potentiation response in athletic and recreationally trained individuals. J. Strength Cond. Res. 2003, 17, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Gullich, A.; Schmidtbleicher, D. MVC-induced short-term potentiation of explosive force. N. Stud. Athl. 1996, 11, 67–81. [Google Scholar]
- Terzis, G.; Spengos, K.; Karampatsos, G.; Manta, P.; Georgiadis, G. Acute effect of drop jumping on throwing performance. J. Strength Cond. Res. 2009, 23, 2592–2597. [Google Scholar] [CrossRef] [PubMed]
- Tsoukos, A.; Bogdanis, G.C.; Terzis, G.; Veligekas, P. Acute Improvement of Vertical Jump Performance After Isometric Squats Depends on Knee Angle and Vertical Jumping Ability. J. Strength Cond. Res. 2016, 30, 2250–2257. [Google Scholar] [CrossRef]
- Bogdanis, G.C.; Tsoukos, A.; Veligekas, P.; Tsolakis, C.; Terzis, G. Effects of muscle action type with equal impulse of conditioning activity on postactivation potentiation. J. Strength Cond. Res. 2014, 28, 2521–2528. [Google Scholar] [CrossRef]
- Bogdanis, G.C.; Tsoukos, A.; Veligekas, P. Improvement of long-jump performance during competition using a plyometric exercise. Int. J. Sports Physiol. Perform. 2017, 12, 235–240. [Google Scholar] [CrossRef]
- Tsoukos, A.; Wilk, M.; Krzysztofik, M.; Zajac, A.; Bogdanis, G.C. Acute Effects of Fast vs. Slow Bench Press Repetitions with Equal Time Under Tension on Velocity, sEMG Activity, and Applied Force in the Bench Press Throw. J. Funct. Morphol. Kinesiol. 2024, 10, 4. [Google Scholar] [CrossRef]
- Kilduff, L.P.; Bevan, H.R.; Kingsley, M.I.C.; Owen, N.J.; Bennett, M.A.; Bunce, P.J.; Hore, A.M.; Maw, J.R.; Cunningham, D.J. Postactivation potentiation in professional rugby players: Optimal recovery. J. Strength Cond. Res. 2007, 21, 1134–1138. [Google Scholar] [CrossRef]
- Crewther, B.T.; Kilduff, L.P.; Cook, C.J.; Middleton, M.K.; Bunce, P.J.; Yang, G.-Z. The acute potentiating effects of back squats on athlete performance. J. Strength Cond. Res. 2011, 25, 3319–3325. [Google Scholar] [CrossRef]
- Spudić, D.; Smajla, D.; Šarabon, N. Validity and reliability of force–velocity outcome parameters in flywheel squats. J. Biomech. 2020, 107, 109824. [Google Scholar] [CrossRef]
- Spudić, D.; Smajla, D.; Burnard, M.D.; Šarabon, N. Muscle activation sequence in flywheel squats. Int. J. Environ. Res. Public Health 2021, 18, 3168. [Google Scholar] [CrossRef] [PubMed]
- Spudić, D.; Cvitkovič, R.; Šarabon, N. Assessment and evaluation of force–velocity variables in flywheel squats: Validity and reliability of force plates, a linear encoder sensor, and a rotary encoder sensor. Appl. Sci. 2021, 11, 10541. [Google Scholar] [CrossRef]
- Muñoz-López, A.; Pozzo, M.; Floria, P. Real-time mechanical responses to overload and fatigue using a flywheel training device. J. Biomech. 2021, 121, 110429. [Google Scholar] [CrossRef] [PubMed]
- Sabido, R.; Hernández-Davó, J.L.; Pereyra-Gerber, G.T. Influence of different inertial loads on basic training variables during the flywheel squat exercise. Int. J. Sports Physiol. Perform. 2018, 13, 482–489. [Google Scholar] [CrossRef]
- Muñoz-López, A.; Nakamura, F.Y.; Beato, M. Eccentric overload differences between loads and training variables on flywheel training. Biol. Sport 2023, 40, 1151–1158. [Google Scholar] [CrossRef]
- Beato, M.; de Keijzer, K.L.; Leskauskas, Z.; Allen, W.J.; Dello Iacono, A.; McErlain-Naylor, S.A. Effect of postactivation potentiation after medium vs. high inertia eccentric overload exercise on standing long jump, countermovement jump, and change of direction performance. J. Strength Cond. Res. 2021, 35, 2616–2621. [Google Scholar] [CrossRef]
- Fu, K.; Chen, L.; Poon, E.T.C.; Wang, R.; Li, Q.; Liu, H.; Ho, I.M.K. Post-activation performance enhancement of flywheel training on lower limb explosive power performance. Front. Physiol. 2023, 14, 1217045. [Google Scholar] [CrossRef]
- McErlain Naylor, S.A.; Beato, M. Post Flywheel Squat Potentiation of Vertical and Horizontal Ground Reaction Force Parameters during Jumps and Changes of Direction. Sports 2021, 9, 5. [Google Scholar] [CrossRef]
- Shi, J.; Yan, B.; Yu, M.; Wang, Z.; Wang, Y.; Liu, H.; Zhang, W.; Girard, O. Heavier loads in flywheel exercise induce greater post-activation performance enhancement in countermovement jumps compared to heavy Smith machine squats in males. Biol. Sport 2024, 41, 231–240. [Google Scholar] [CrossRef]
- Marques, M.C.; Liberal, S.M.; Costa, A.M.; Van den Tillaar, R.; Sánchez-Medina, L.; Martins, J.C.; Marinho, D.A. Effect of two different training programs with same workload on throwing velocity by experienced water polo players. Percept. Mot. Skills 2012, 115, 895–902. [Google Scholar] [CrossRef]
- Ettema, G.; Glosen, T.; Van Den Tillaar, R. Effect of specific resistance training on overarm throwing performance. Int. J. Sports Physiol. Perform. 2008, 3, 164–175. [Google Scholar] [CrossRef] [PubMed]
- Beato, M.; de Keijzer, K.L.; Fleming, A.; Coates, A.; La Spina, O.; Coratella, G.; McErlain-Naylor, S.A. Post flywheel squat vs. flywheel deadlift potentiation of lower limb isokinetic peak torques in male athletes. Sport. Biomech. 2023, 22, 1514–1527. [Google Scholar] [CrossRef] [PubMed]
- Tsoukos, A.; Wilk, M.; Krzysztofik, M.; Zajac, A.; Bogdanis, G.C. The Impact of Range of Motion on Applied Force Characteristics and Electromyographic Activity during Repeated Sets of Bench Press Exercise. J. Hum. Kinet. 2024, 91, 189–204. [Google Scholar] [CrossRef]
- Tsoukos, A.; Veligekas, P.; Brown, L.E.; Terzis, G.; Bogdanis, G.C. Delayed Effects of a Low-Volume, Power-Type Resistance Exercise Session on Explosive Performance. J. Strength Cond. Res. 2018, 32, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Rago, V.; Brito, J.; Figueiredo, P.; Carvalho, T.; Fernandes, T.; Fonseca, P.; Rebelo, A. Countermovement jump analysis using different portable devices: Implications for field testing. Sports 2018, 6, 91. [Google Scholar] [CrossRef]
- Magrum, E.D.; Wagle, J.P.; Deweese, B.H.; Sato, K.; Stone, M.H. The use of an optical measurement system to monitor sports performance. Sports 2018, 6, 15. [Google Scholar] [CrossRef]
- Zhao, H.; Seo, D.; Okada, J. Validity of using perceived exertion to assess muscle fatigue during back squat exercise. BMC Sports Sci. Med. Rehabil. 2023, 15, 14. [Google Scholar] [CrossRef]
- Dos Santos, W.D.N.; Vieira, C.A.; Bottaro, M.; Nunes, V.A.; Ramirez-Campillo, R.; Steele, J.; Fisher, J.P.; Gentil, P. Resistance Training Performed to Failure or Not to Failure Results in Similar Total Volume, but With Different Fatigue and Discomfort Levels. J. Strength Cond. Res. 2021, 35, 1372–1379. [Google Scholar] [CrossRef]
- Prieske, O.; Maffiuletti, N.A.; Granacher, U. Postactivation Potentiation of the Plantar Flexors Does Not Directly Translate to Jump Performance in Female Elite Young Soccer Players. Front. Physiol. 2018, 9, 276. [Google Scholar] [CrossRef]
High | Low | |
---|---|---|
Number of Repetitions | 5 * | 9.8 ± 0.4 |
Total Impulse (N∙s) | 20,182 ± 2275 | 20,076 ± 2526 |
Time Under Tension (s) | 12.5 ± 1.5 * | 13.7 ± 1.7 |
Mean Force (N) | 1663 ± 357 * | 1491 ± 318 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsoukos, A.; Tsoukala, M.; Papadimitriou, D.M.; Terzis, G.; Bogdanis, G.C. Acute Effects of Low vs. High Inertia During Flywheel Deadlifts with Equal Force Impulse on Vertical Jump Performance. Sensors 2025, 25, 1125. https://doi.org/10.3390/s25041125
Tsoukos A, Tsoukala M, Papadimitriou DM, Terzis G, Bogdanis GC. Acute Effects of Low vs. High Inertia During Flywheel Deadlifts with Equal Force Impulse on Vertical Jump Performance. Sensors. 2025; 25(4):1125. https://doi.org/10.3390/s25041125
Chicago/Turabian StyleTsoukos, Athanasios, Margarita Tsoukala, Dimitra Mirto Papadimitriou, Gerasimos Terzis, and Gregory C. Bogdanis. 2025. "Acute Effects of Low vs. High Inertia During Flywheel Deadlifts with Equal Force Impulse on Vertical Jump Performance" Sensors 25, no. 4: 1125. https://doi.org/10.3390/s25041125
APA StyleTsoukos, A., Tsoukala, M., Papadimitriou, D. M., Terzis, G., & Bogdanis, G. C. (2025). Acute Effects of Low vs. High Inertia During Flywheel Deadlifts with Equal Force Impulse on Vertical Jump Performance. Sensors, 25(4), 1125. https://doi.org/10.3390/s25041125