AI-Assisted Passive Magnetic Distance/Position Sensor
Abstract
:1. Introduction
2. Methods
2.1. Magnetic Dipoles and Measurement System
2.2. Customized BP Neural Network
3. Experimental Results
3.1. Dataset
3.2. 1D Distance Measurement Based on BPNN
3.3. Comparison of Distance Measurement Accuracy Between the BPNN and the Magnetic Dipole-Based Algorithm
3.4. 2D Position Measurement on BPNNs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Su, S.; Yang, W.; Dai, H.; Xia, X.; Lin, M.; Sun, B.; Hu, C. Investigation of the Relationship Between Tracking Accuracy and Tracking Distance of a Novel Magnetic Tracking System. Sens. J. IEEE 2017, 17, 4928–4937. [Google Scholar] [CrossRef] [PubMed]
- Alimi, R.; Fisher, E.; Nahir, K. In situ underwater localization of magnetic sensors using natural computing algorithms. Sensors 2023, 23, 1797. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Zhang, C.; Dai, H.; Hu, C.; Xia, X. A novel wireless 5-D electromagnetic tracking system based on nine-channel sinusoidal signals. IEEE/ASME Trans. Mechatron. 2020, 26, 246–254. [Google Scholar] [CrossRef]
- Dong, S.; Wang, H. A Robust Tri-Electromagnet-Based 6-DoF Pose Tracking System Using an Error-State Kalman Filter. Sensors 2024, 24, 5956. [Google Scholar] [CrossRef] [PubMed]
- Antonelli, K.; Ko, J.; Ku, S. Resistive Displacement Sensor. In Measurement, Instrumentation, and Sensors Handbook: Two-Volume Set; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Chung, D. A critical review of piezoresistivity and its application in electrical-resistance-based strain sensing. J. Mater. Sci. 2020, 55, 15367–15396. [Google Scholar] [CrossRef] [PubMed]
- Konolige, K.; Augenbraun, J.; Donaldson, N.; Fiebig, C.; Shah, P. A low-cost laser distance sensor. In Proceedings of the 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008; pp. 3002–3008. [Google Scholar] [CrossRef]
- Wild, G.; Hinckley, S. Acousto-ultrasonic optical fiber sensors: Overview and state-of-the-art. IEEE Sens. J. 2008, 8, 1184–1193. [Google Scholar] [CrossRef]
- Sattler, T.; Maddern, W.; Toft, C.; Torii, A.; Hammarstrand, L.; Stenborg, E.; Safari, D.; Okutomi, M.; Pollefeys, M.; Sivic, J.; et al. Benchmarking 6dof outdoor visual localization in changing conditions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8601–8610. [Google Scholar] [CrossRef]
- Franz, A.M.; Haidegger, T.; Birkfellner, W.; Cleary, K.; Peters, T.M.; Maier-Hein, L. Electromagnetic tracking in medicine—A review of technology, validation, and applications. IEEE Trans. Med. Imaging 2014, 33, 1702–1725. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, A.i. Effectiveness of artificial neural networks for solving inverse problems in magnetic field-based localization. Sensors 2022, 22, 2240. [Google Scholar] [CrossRef] [PubMed]
- Keller, H.; Juloski, A.; Kawano, H.; Bechtold, M.; Kimura, A.; Takizawa, H.; Kuth, R. Method for navigation and control of a magnetically guided capsule endoscope in the human stomach. In Proceedings of the 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy, 24–27 June 2012; pp. 859–865. [Google Scholar] [CrossRef]
- Balevičius, S.; Piatrou, P.; Vertelis, V.; Stankevič, V.; Keršulis, S.; Dobilas, J.; Dilys, J.; Žurauskienė, N. Magnetic proximity sensor based on colossal magnetoresistance effect. Sens. Actuators A Phys. 2024, 375, 115518. [Google Scholar] [CrossRef]
- Tsai, H.Y.; Chiou, M.C.; Yu, B.F. Development of Noncontact Microdistance-measurement Devices Based on Giant Magnetoresistance Sensors. Sens. Mater. 2024, 36, 2337–2349. [Google Scholar] [CrossRef]
- Nara, T.; Suzuki, S.; Ando, S. A closed-form formula for magnetic dipole localization by measurement of its magnetic field and spatial gradients. IEEE Trans. Magn. 2006, 42, 3291–3293. [Google Scholar] [CrossRef]
- Schlageter, V.; Besse, P.A.; Popovic, R.; Kucera, P. Tracking system with five degrees of freedom using a 2D-array of Hall sensors and a permanent magnet. Sens. Actuators A Phys. 2001, 92, 37–42. [Google Scholar] [CrossRef]
- Lv, B.; Chen, Y.; Dai, H.; Su, S.; Lin, M. PKBPNN-based tracking range extending approach for TMR magnetic tracking system. IEEE Access 2019, 7, 63123–63132. [Google Scholar] [CrossRef]
- Qin, Y.; Lv, B.; Dai, H.; Han, J. An hFFNN-LM Based Real-Time and High Precision Magnet Localization Method. IEEE Trans. Instrum. Meas. 2022, 71, 2509009. [Google Scholar] [CrossRef]
- Fu, Y.; Guo, Y. Guideline on initial point finding and search bounds setting for biomedical magnetic localization. IEEE Sens. J. 2022, 22, 16492–16504. [Google Scholar] [CrossRef]
- Su, S.; Yuan, S.; Xu, M.; Gao, H.; Yang, X.; Ren, H. AMagPoseNet: Real-Time Six-DoF Magnet Pose Estimation by Dual-Domain Few-Shot Learning From Prior Model. IEEE Trans. Ind. Inform. 2023, 19, 9722–9732. [Google Scholar] [CrossRef]
- Hu, C.; Meng, M.H.; Mandal, M.; Wang, X. 3-axis magnetic sensor array system for tracking magnet’s position and orientation. In Proceedings of the 2006 6th World Congress on Intelligent Control and Automation, Dalian, China, 21–23 June 2006; Volume 2, pp. 5304–5308. [Google Scholar] [CrossRef]
- Hu, C. Localization and Orientation System for Robotic Wireless Capsule Endoscope. Ph.D. Thesis, University of Alberta, Edmonton, AB, Canda, 2006. [Google Scholar]
- Song, S.; Hu, C.; Li, M.; Yang, W.; Meng, M.Q.H. Real time algorithm for magnet’s localization in capsule endoscope. In Proceedings of the 2009 IEEE International Conference on Automation and Logistics, Shenyang, China, 5–7 August 2009; pp. 2030–2035. [Google Scholar] [CrossRef]
- Polyak, B.T. Newton’s method and its use in optimization. Eur. J. Oper. Res. 2007, 181, 1086–1096. [Google Scholar] [CrossRef]
- Wedderburn, R.W. Quasi-likelihood functions, generalized linear models, and the Gauss—Newton method. Biometrika 1974, 61, 439–447. [Google Scholar] [CrossRef]
- Hager, W.W.; Zhang, H. A survey of nonlinear conjugate gradient methods. Pac. J. Optim. 2006, 2, 35–58. [Google Scholar]
- Kanzow, C.; Yamashita, N.; Fukushima, M. Levenberg-Marquardt methods with strong local convergence properties for solving nonlinear equations with convex constraints. J. Comput. Appl. Math. 2004, 172, 375–397. [Google Scholar] [CrossRef]
- Guo, P.; Dai, H.; Yang, Q.; Huang, Q.; Yao, H. An improved magnetic tracking approach based on ResNet-LM fusion algorithm. IEEE Trans. Instrum. Meas. 2022, 71, 2520510. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Li, J.; Cheng, J.h.; Shi, J.y.; Huang, F. Brief introduction of back propagation (BP) neural network algorithm and its improvement. In Advances in Computer Science and Information Engineering, Proceedings of the 2012 2nd International Conference on Computer Science and Information Engineering (CSIE2012), Zhengzhou, China, 19–20 May 2012; Springer: Berlin/Heidelberg, Germany, 2012; Volume 2, pp. 553–558. [Google Scholar]
- Ranganathan, A. The levenberg-marquardt algorithm. Tutoral LM Algorithm 2004, 11, 101–110. [Google Scholar]
- Sapna, S.; Tamilarasi, A.; Kumar, M.P. Backpropagation learning algorithm based on Levenberg Marquardt Algorithm. Comp. Sci. Inf. Technol. CS IT 2012, 2, 393–398. [Google Scholar]
Measurement Errors (μT) | Range of Localization Error (mm) | (mm) | (mm) |
---|---|---|---|
0 | −0.0268~0.0362 | 0.0091 | 0.0114 |
−0.1~0.1 | −0.0421~0.0449 | 0.0108 | 0.0135 |
−0.2~0.2 | −0.1359~0.0829 | 0.0174 | 0.0236 |
−0.3~0.3 | −0.1437~0.0952 | 0.0184 | 0.0243 |
−0.4~0.4 | −0.1360~0.1068 | 0.0203 | 0.0271 |
−0.5~0.5 | −0.2063~0.1448 | 0.0245 | 0.0342 |
−1~1 | −0.3366~0.2726 | 0.0471 | 0.0664 |
Measurement Errors (μT) | Range of Localization Error (mm) | (mm) | (mm) |
---|---|---|---|
0 | −0.0107~0.0093 | 0.0022 | 0.0028 |
−0.1~0.1 | −0.0194~0.0244 | 0.0033 | 0.0049 |
−0.2~0.2 | −0.0349~0.0413 | 0.0057 | 0.0085 |
−0.3~0.3 | −0.0501~0.0655 | 0.0061 | 0.0099 |
−0.4~0.4 | −0.0579~0.0709 | 0.0077 | 0.0126 |
−0.5~0.5 | −0.0722~0.0868 | 0.0085 | 0.0146 |
−1~1 | −0.1639~0.1661 | 0.0146 | 0.0264 |
The Number of Training Data Points | Range of Localization Error (mm) | (mm) | (mm) |
---|---|---|---|
6601 | −0.0268~0.0362 | 0.0091 | 0.0114 |
3301 | −0.0439~0.0421 | 0.0122 | 0.0153 |
2201 | −0.0498~0.0474 | 0.0431 | 0.0572 |
1651 | −1.2141~0.4595 | 0.1383 | 0.1917 |
826 | −20.3987~3.1187 | 1.3233 | 1.7708 |
Measurement Errors (μT) | Range of Localization Error (mm) | (mm) | (mm) |
---|---|---|---|
0 | −0.6168~1.1312 | 0.0414 | 0.0811 |
−0.1~0.1 | −0.8633~1.1539 | 0.0526 | 0.1026 |
−0.2~0.2 | −1.0743~1.5910 | 0.0608 | 0.1159 |
−0.3~0.3 | −2.3165~2.2873 | 0.0643 | 0.1256 |
−0.4~0.4 | −1.7075~4.1441 | 0.0832 | 0.1566 |
−0.5~0.5 | −1.8325~3.3648 | 0.0835 | 0.1663 |
−1~1 | −5.3168~3.4234 | 0.1119 | 0.2143 |
Measurement Errors (μT) | Range of Localization Error (mm) | (mm) | (mm) |
---|---|---|---|
0 | −0.6001~0.5133 | 0.0257 | 0.0364 |
−0.1~0.1 | −0.8623~0.7415 | 0.0338 | 0.0513 |
−0.2~0.2 | −0.9995~1.7519 | 0.0367 | 0.0604 |
−0.3~0.3 | −0.8928~0.8799 | 0.0541 | 0.0822 |
−0.4~0.4 | −2.3141~2.4506 | 0.0676 | 0.1221 |
−0.5~0.5 | −2.9282~3.3441 | 0.0727 | 0.1396 |
−1~1 | −4.7766~4.4347 | 0.0901 | 0.2275 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, C.; Qian, Z.; Qi, Q.; Wang, R.; Li, X.; Bai, R. AI-Assisted Passive Magnetic Distance/Position Sensor. Sensors 2025, 25, 1132. https://doi.org/10.3390/s25041132
Qiu C, Qian Z, Qi Q, Wang R, Li X, Bai R. AI-Assisted Passive Magnetic Distance/Position Sensor. Sensors. 2025; 25(4):1132. https://doi.org/10.3390/s25041132
Chicago/Turabian StyleQiu, Chaoyi, Zhenghong Qian, Qiao Qi, Ruigang Wang, Xiumei Li, and Ru Bai. 2025. "AI-Assisted Passive Magnetic Distance/Position Sensor" Sensors 25, no. 4: 1132. https://doi.org/10.3390/s25041132
APA StyleQiu, C., Qian, Z., Qi, Q., Wang, R., Li, X., & Bai, R. (2025). AI-Assisted Passive Magnetic Distance/Position Sensor. Sensors, 25(4), 1132. https://doi.org/10.3390/s25041132