Decoupling of Mechanical and Thermal Signals in OFDR Measurements with Integrated Fibres Based on Fibre Core Doping
Abstract
:1. Introduction
2. Materials and Methods
2.1. Improved Spectral Shift Model
2.2. Two-Fibre Setup for Thermal–Mechanical Decoupling
2.3. Introduction to Optical Frequency Domain Reflectometry (OFDR)
2.4. Measurement Fibres Used for Setup
2.5. Setup for Signal Decoupling
3. Results
3.1. Fibre Parameters
3.2. Characterization of Decoupling Method
4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hassani, S.; Dackermann, U. A Systematic Review of Advanced Sensor Technologies for Non-Destructive Testing and Structural Health Monitoring. Sensors 2023, 23, 2204. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Jiang, J.; Liu, K.; Wang, S.; Zhang, X.; Hu, H.; Ding, Z.; Guo, H.; Li, Y.; Zhang, W. Review of Fiber Mechanical and Thermal Multi-Parameter Measurement Technologies and Instrumentation. J. Light. Technol. 2021, 39, 3724–3739. [Google Scholar] [CrossRef]
- Di, H.; Xin, Y.; Jian, J. Review of optical fiber sensors for deformation measurement. Optik 2018, 168, 703–713. [Google Scholar] [CrossRef]
- Chao, C.T.C.; Chen, S.H.; Huang, H.J.; Kooh, M.R.R.; Lim, C.M.; Thotagamuge, R.; Mahadi, A.H.; Chau, Y.F.C. Improving Temperature-Sensing Performance of Photonic Crystal Fiber via External Metal-Coated Trapezoidal-Shaped Surface. Crystals 2023, 13, 813. [Google Scholar] [CrossRef]
- Kapron, F.P.; Maurer, D.K.R. Radiation losses in glass optical waveguides. Appl. Phys. Lett. 1970, 17, 423–425. [Google Scholar] [CrossRef]
- Johny, J.; Amos, S.; Prabhu, R. Optical Fibre-Based Sensors for Oil and Gas Applications. Sensors 2021, 21, 6047. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lu, B.; Wang, Y.; Liu, X.; Bai, Q.; Jin, B. Distributed optical fiber vibration sensor for the identification of pipeline leakage using relevant vector machine. In Proceedings of the Optics Frontiers Online 2020: Distributed Optical Fiber Sensing Technology and Applications, Virtual Event, 28–29 August 2020; Yan, J., Ed.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2021; Volume 11607, p. 116070J. [Google Scholar] [CrossRef]
- Yan, X.Y.; Wang, X.F.; Ding, G.P.; Feng, L.; Wang, Y.J. Fatigue Life Measuring System Using Fiber Optic Sensors for CFRP Pantograph Upper Arm. IEEE Sens. J. 2023, 23, 17380–17390. [Google Scholar] [CrossRef]
- Souza, G.; Tarpani, J. Using OBR for pressure monitoring and BVID detection in type IV composite overwrapped pressure vessels. J. Compos. Mater. 2021, 55, 423–436. [Google Scholar] [CrossRef]
- Han, G.; Yan, J.; Guo, Z.; Greenwood, D.; Marco, J.; Yu, Y. A review on various optical fibre sensing methods for batteries. Renew. Sustain. Energy Rev. 2021, 150, 111514. [Google Scholar] [CrossRef]
- Mills, J.A.; Hamilton, A.W.; Gillespie, D.I.; Andonovic, I.; Michie, C.; Burnham, K.; Tachtatzis, C. Identifying Defects in Aerospace Composite Sandwich Panels Using High-Definition Distributed Optical Fibre Sensors. Sensors 2020, 20, 6746. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, I.; Ibrahim, S.; Haddad, E.; Abad, S.; Hurni, A.; Cheng, L.K. Fiber Optic Sensing in Spacecraft Engineering: An Historical Perspective From the European Space Agency. Front. Phys. 2021, 9, 719441. [Google Scholar] [CrossRef]
- Rouhet, J.; Graindorge, P.; Laloux, B.; Girault, M.; Martin, P.; Lefevre, H.C.; Desforges, F.X. Applications of fiber optic sensors to cryogenic spacecraft engines. In Proceedings of the Laser Diode and LED Applications III, San Jose, CA, USA, 8–14 February 1997; Linden, K.J., Ed.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 1997; Volume 3000, pp. 29–36. [Google Scholar] [CrossRef]
- Habisreuther, T.; Ecke, W.; Latka, I.; Schröder, K.; Willsch, R. Fiber optic Bragg grating sensors at cryogenic temperatures. In Proceedings of the Fourth European Workshop on Optical Fibre Sensors, Porto, Portugal, 8–10 September 2010; Santos, J.L., Culshaw, B., López-Higuera, J.M., MacPherson, W.N., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2010; Volume 7653, p. 76530V. [Google Scholar] [CrossRef]
- Yang, T.; Wang, Y.; Wang, X. High-precision calibration for strain and temperature sensitivities of Rayleigh-scattering-based DOFS at cryogenic temperatures. Cryogenics 2022, 124, 103481. [Google Scholar] [CrossRef]
- Li, J.; Neumann, H.; Ramalingam, R. Design, fabrication, and testing of fiber Bragg grating sensors for cryogenic long-range displacement measurement. Cryogenics 2015, 68, 36–43. [Google Scholar] [CrossRef]
- Sahota, J.K.; Gupta, N.; Dhawan, D. Fiber Bragg grating sensors for monitoring of physical parameters: A comprehensive review. Opt. Eng. 2020, 59, 060901. [Google Scholar] [CrossRef]
- Kreger, S.T.; Rahim, N.A.A.; Garg, N.; Klute, S.M.; Metrey, D.R.; Beaty, N.; Jeans, J.W.; Gamber, R. Optical frequency domain reflectometry: Principles and applications in fiber optic sensing. In Proceedings of the Fiber Optic Sensors and Applications XIII, Baltimore, MD, USA, 17–21 April 2016; SPIE Proceedings. Udd, E., Pickrell, G., Du, H.H., Eds.; SPIE: Bellingham, WA, USA, 2016; p. 98520T. [Google Scholar] [CrossRef]
- Motil, A.; Bergman, A.; Tur, M. [INVITED] State of the art of Brillouin fiber-optic distributed sensing. Opt. Laser Technol. 2016, 78, 81–103. [Google Scholar] [CrossRef]
- Lu, P.; Lalam, N.; Badar, M.; Liu, B.; Chorpening, B.T.; Buric, M.P.; Ohodnicki, P.R. Distributed optical fiber sensing: Review and perspective. Appl. Phys. Rev. 2019, 6, 041302. [Google Scholar] [CrossRef]
- Ding, Z.; Wang, C.; Liu, K.; Jiang, J.; Yang, D.; Pan, G.; Pu, Z.; Liu, T. Distributed Optical Fiber Sensors Based on Optical Frequency Domain Reflectometry: A review. Sensors 2018, 18, 1072. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Han, Y.; Cao, Z.; Xu, X.; Zhang, J.; Xiao, F. Applications of optical fiber sensor in pavement Engineering: A review. Constr. Build. Mater. 2023, 400, 132713. [Google Scholar] [CrossRef]
- Blanc, W.; Schenato, L.; Molardi, C.; Palmieri, L.; Galtarossa, A.; Tosi, D. Distributed fiber optics strain sensors: From long to short distance. C. R. Géosci. 2022, 354, 161–183. [Google Scholar] [CrossRef]
- Pedraza, A.; del Río, D.; Bautista-Juzgado, V.; Fernández-López, A.; Sanz-Andrés, Á. Study of the Feasibility of Decoupling Temperature and Strain from a Φ-PA-OFDR over an SMF Using Neural Networks. Sensors 2023, 23, 5515. [Google Scholar] [CrossRef]
- SolifosAG. Uninterrupted Monitoring of Large Infrastructure for Increased Safety and Targeted Preventative Maintenance. 2024. Available online: https://solifos.com/en/sensing/structural-health-monitoring/ (accessed on 2 February 2024).
- Hopf, B.; Fischer, B.; Bosselmann, T.; Koch, A.W.; Roths, J. Strain-Independent Temperature Measurements with Surface-Glued Polarization-Maintaining Fiber Bragg Grating Sensor Elements. Sensors 2019, 19, 144. [Google Scholar] [CrossRef] [PubMed]
- Kouhrangiha, F.; Kahrizi, M.; Khorasani, K. Structural health monitoring: Modeling of simultaneous effects of strain, temperature, and vibration on the structure using a single apodized π-Phase shifted FBG sensor. Results Opt. 2022, 9, 100323. [Google Scholar] [CrossRef]
- Ruggiero, E.J.; Xia, H.; Roy, B.; Zhao, Y. Decoupled temperature and strain measurements using fiber Bragg grating sensors. In Proceedings of the Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications II, San Diego, CA, USA, 10–14 August 2008; Yin, S., Guo, R., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2008; Volume 7056, p. 70561Y. [Google Scholar] [CrossRef]
- Gorshkov, B.G.; Taranov, M.A. Simultaneous optical fibre strain and temperature measurements in a hybrid distributed sensor based on Rayleigh and Raman scattering. Quantum Electron. 2018, 48, 184. [Google Scholar] [CrossRef]
- Soto, M.A.; Bolognini, G.; Pasquale, F.D. Performance improvement in Brillouin-based simultaneous strain and temperature sensors employing pulse coding in coherent detection schemes. In Proceedings of the Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, San Diego, CA, USA, 22–26 March 2009; Optica Publishing Group: Washington, DC, USA, 2009; p. OThU4. [Google Scholar] [CrossRef]
- Ding, Z.; Yang, D.; Du, Y.; Liu, K.; Zhou, Y.; Zhang, R.; Xu, Z.; Jiang, J.; Liu, T. Distributed Strain and Temperature Discrimination Using Two Types of Fiber in OFDR. IEEE Photonics J. 2016, 8, 1–8. [Google Scholar] [CrossRef]
- Girmen, C.; Dittmar, C.; Siedenburg, T.; Gastens, M.; Wlochal, M.; König, N.; Schröder, K.U.; Schael, S.; Schmitt, R.H. Young’s modulus independent determination of fibre-parameters for Rayleigh-based optical frequency domain reflectometry from cryogenic temperatures up to 353K. Sensors 2023, 23, 4607. [Google Scholar] [CrossRef] [PubMed]
- Luna Technologies. Optical Backscatter Reflectometer 4600 User Guide; Luna Technologies: Roanoke, VA, USA, 2013. [Google Scholar]
- Dwyer, M.J.O.; Ye, C.C.; James, S.W.; Tatam, R.P. Thermal dependence of the strain response of optical fibre Bragg gratings. Meas. Sci. Technol. 2004, 15, 1607. [Google Scholar] [CrossRef]
- Ghosh, G. Model for the thermo-optic coefficients of some standard optical glasses. J. Non-Cryst. Solids 1995, 189, 191–196. [Google Scholar] [CrossRef]
- Tsuchiya, K.; Wang, X.; Fujita, S.; Ichinose, A.; Yamada, K.; Terashima, A.; Kikuchi, A. Superconducting properties of commercial REBCO-coated conductors with artificial pinning centers. Supercond. Sci. Technol. 2021, 34, 105005. [Google Scholar] [CrossRef]
- Li, B.; Cui, J.; Zhang, X.; Dang, H.; Sun, X.; Jiang, D.; Feng, K. A Signal Processing Algorithm Proposed for OFDR Distributed Sensing System to Enhance Its Performance. J. Phys. Conf. Ser. 2019, 1237, 022169. [Google Scholar] [CrossRef]
- Heinze, S.; Echtermeyer, A.T. A Running Reference Analysis Method to Greatly Improve Optical Backscatter Reflectometry Strain Data from the Inside of Hardening and Shrinking Materials. Appl. Sci. 2018, 8, 1137. [Google Scholar] [CrossRef]
- Schael, S.; Atanasyan, A.; Berdugo, J.; Bretz, T.; Czupalla, M.; Dachwald, B.; von Doetinchem, P.; Duranti, M.; Gast, H.; Karpinski, W.; et al. AMS-100: The next generation magnetic spectrometer in space—An international science platform for physics and astrophysics at Lagrange point 2. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2019, 944, 162561. [Google Scholar] [CrossRef] [PubMed]
- Schael, S. Ams-100—The Next Generation Magnetic Spectrometer in Space. Detector Seminar, CERN. 2022. Available online: https://indico.cern.ch/event/1210735/ (accessed on 16 December 2024).
Fibre Name | Core Doping | Core/Cladding/Coating Ø [m] | Coating Material |
---|---|---|---|
SM1500(9/125)P | Germanium | 9/125/157 | Polyimide |
PS1250/1500 | Boron | 9/125/145 | Acrylate |
Fibre | (T) | |
---|---|---|
Germanium | ||
Boron |
Germanium 77–290 K | Germanium 233–353 K | Boron 77–290 K | Boron 233–353 K | |
---|---|---|---|---|
A[K−1] | ||||
B[K−2] | ||||
C[K−3] | - | - | ||
D[K−4] | - | - | - | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dittmar, C.; Girmen, C.; Gastens, M.; König, N.; Siedenburg, T.; Wlochal, M.; Schmitt, R.H.; Schael, S. Decoupling of Mechanical and Thermal Signals in OFDR Measurements with Integrated Fibres Based on Fibre Core Doping. Sensors 2025, 25, 1187. https://doi.org/10.3390/s25041187
Dittmar C, Girmen C, Gastens M, König N, Siedenburg T, Wlochal M, Schmitt RH, Schael S. Decoupling of Mechanical and Thermal Signals in OFDR Measurements with Integrated Fibres Based on Fibre Core Doping. Sensors. 2025; 25(4):1187. https://doi.org/10.3390/s25041187
Chicago/Turabian StyleDittmar, Clemens, Caroline Girmen, Markus Gastens, Niels König, Thorsten Siedenburg, Michael Wlochal, Robert H. Schmitt, and Stefan Schael. 2025. "Decoupling of Mechanical and Thermal Signals in OFDR Measurements with Integrated Fibres Based on Fibre Core Doping" Sensors 25, no. 4: 1187. https://doi.org/10.3390/s25041187
APA StyleDittmar, C., Girmen, C., Gastens, M., König, N., Siedenburg, T., Wlochal, M., Schmitt, R. H., & Schael, S. (2025). Decoupling of Mechanical and Thermal Signals in OFDR Measurements with Integrated Fibres Based on Fibre Core Doping. Sensors, 25(4), 1187. https://doi.org/10.3390/s25041187