Validity and Reliability of the Posturographic Outcomes of a Portable Balance Board
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Experimental Protocol
- M1—standing with eyes open;
- M2—standing with eyes closed;
- M3—standing on a balance pad with eyes open;
- M4—standing on a balance pad with eyes closed.
2.3. Instrumentation
2.4. Data Processing
2.5. Missing Data
2.6. Data Analysis
3. Results
3.1. Between-Device Comparison
3.2. Repeated-Measurement Reliability
3.3. Validation for Stroke Patients
3.4. Repeated-Measurement Reliability for Stroke Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huurnink, A.; Fransz, D.P.; Kingma, I.; Van Dieën, J.H. Comparison of a Laboratory Grade Force Platform with a Nintendo Wii Balance Board on Measurement of Postural Control in Single-Leg Stance Balance Tasks. J. Biomech. 2013, 46, 1392–1395. [Google Scholar] [CrossRef]
- Hubbard, B.; Pothier, D.; Hughes, C.; Rutka, J. A Portable, Low-Cost System for Posturography: A Platform for Longitudinal Balance Telemetry. J. Otolaryngol. Head Neck Surg. 2012, 41 (Suppl. S1), S31–S35. [Google Scholar]
- Castelli, L.; Stocchi, L.; Patrignani, M.; Sellitto, G.; Giuliani, M.; Prosperini, L. We-Measure: Toward a Low-Cost Portable Posturography for Patients with Multiple Sclerosis Using the Commercial Wii Balance Board. J. Neurol. Sci. 2015, 359, 440–444. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.A.; Bryant, A.L.; Pua, Y.; McCrory, P.; Bennell, K.; Hunt, M. Validity and Reliability of the Nintendo Wii Balance Board for Assessment of Standing Balance. Gait Posture 2010, 31, 307–310. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.A.; Mentiplay, B.F.; Pua, Y.-H.; Bower, K.J. Reliability and Validity of the Wii Balance Board for Assessment of Standing Balance: A Systematic Review. Gait Posture 2018, 61, 40–54. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.-D.; Chang, W.-Y.; Lee, C.-L.; Feng, C.-Y. Validity and Reliability of Wii Fit Balance Board for the Assessment of Balance of Healthy Young Adults and the Elderly. J. Phys. Ther. Sci. 2013, 25, 1251–1253. [Google Scholar] [CrossRef] [PubMed]
- Bower, K.J.; McGinley, J.L.; Miller, K.J.; Clark, R.A. Instrumented Static and Dynamic Balance Assessment After Stroke Using Wii Balance Boards: Reliability and Association with Clinical Tests. PLoS ONE 2014, 9, e115282. [Google Scholar] [CrossRef]
- Scaglioni-Solano, P.; Aragón-Vargas, L.F. Validity and Reliability of the Nintendo Wii Balance Board to Assess Standing Balance and Sensory Integration in Highly Functional Older Adults. Int. J. Rehabil. Res. 2014, 37, 138–143. [Google Scholar] [CrossRef]
- Jeter, P.E.; Wang, J.; Gu, J.; Barry, M.P.; Roach, C.; Corson, M.; Yang, L.; Dagnelie, G. Intra-Session Test-Retest Reliability of Magnitude and Structure of Center of Pressure from the Nintendo Wii Balance BoardTM for a Visually Impaired and Normally Sighted Population. Gait Posture 2015, 41, 482–487. [Google Scholar] [CrossRef]
- Pin, T.W.; Butler, P.B. The Effect of Interactive Computer Play on Balance and Functional Abilities in Children with Moderate Cerebral Palsy: A Pilot Randomized Study. Clin. Rehabil. 2019, 33, 704–710. [Google Scholar] [CrossRef] [PubMed]
- Maranesi, E.; Di Donna, V.; Pelliccioni, G.; Cameriere, V.; Casoni, E.; Baldoni, R.; Benadduci, M.; Rinaldi, N.; Fantechi, L.; Giammarchi, C.; et al. Acceptability and Preliminary Results of Technology-Assisted Balance Training in Parkinson’s Disease. Int. J. Environ. Res. Public Health 2022, 19, 2655. [Google Scholar] [CrossRef]
- Bevilacqua, R.; Maranesi, E.; Di Rosa, M.; Luzi, R.; Casoni, E.; Rinaldi, N.; Baldoni, R.; Lattanzio, F.; Di Donna, V.; Pelliccioni, G.; et al. Rehabilitation of Older People with Parkinson’s Disease: An Innovative Protocol for RCT Study to Evaluate the Potential of Robotic-Based Technologies. BMC Neurol. 2020, 20, 186. [Google Scholar] [CrossRef]
- Maranesi, E.; Casoni, E.; Baldoni, R.; Barboni, I.; Rinaldi, N.; Tramontana, B.; Amabili, G.; Benadduci, M.; Barbarossa, F.; Luzi, R.; et al. The Effect of Non-Immersive Virtual Reality Exergames versus Traditional Physiotherapy in Parkinson’s Disease Older Patients: Preliminary Results from a Randomized-Controlled Trial. Int. J. Environ. Res. Public Health 2022, 19, 14818. [Google Scholar] [CrossRef] [PubMed]
- Ostrowska, P.M.; Hansdorfer-Korzon, R.; Studnicki, R.; Spychała, D. Use of the Posturography Platform as a Tool for Quantitative Assessment of Imbalance and Postural Control in Post-Stroke Patients in Chronic Phase. Pol. J. Physiother. 2023, 23, 142–163. [Google Scholar] [CrossRef]
- Maranesi, E.; Riccardi, G.R.; Lattanzio, F.; Di Rosa, M.; Luzi, R.; Casoni, E.; Rinaldi, N.; Baldoni, R.; Di Donna, V.; Bevilacqua, R. Randomised Controlled Trial Assessing the Effect of a Technology-Assisted Gait and Balance Training on Mobility in Older People After Hip Fracture: Study Protocol. BMJ Open 2020, 10, e035508. [Google Scholar] [CrossRef]
- Meier, P.; Mayer-Suess, L.; Kiechl, S.; Pachmann, U.; Greimann, R.; Kofler, M.; Brenneis, C.; Grams, A.; Steiger, R.; Seebacher, B. Recovery of Balance and Walking in People with Ataxia after Acute Cerebral Stroke: Study Protocol for a Prospective, Monocentric, Single-Blinded, Randomized Controlled Trial. Front. Stroke 2024, 3, 1388891. [Google Scholar] [CrossRef]
- Berg, K. Measuring Balance in the Elderly: Preliminary Development of an Instrument. Physiother. Can. 1989, 41, 304–311. [Google Scholar] [CrossRef]
- Schubert, P.; Kirchner, M. Ellipse Area Calculations and Their Applicability in Posturography. Gait Posture 2014, 39, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Blum, L.; Korner-Bitensky, N. Usefulness of the Berg Balance Scale in Stroke Rehabilitation: A Systematic Review. Phys. Ther. 2008, 88, 559–566. [Google Scholar] [CrossRef]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Reinhardt, L.; Heilmann, F.; Teicher, M.; Lauenroth, A.; Delank, K.-S.; Schwesig, R.; Wollny, R.; Kurz, E. Comparison of Posturographic Outcomes between Two Different Devices. J. Biomech. 2019, 86, 218–224. [Google Scholar] [CrossRef]
- Goble, D.J.; Khan, E.; Baweja, H.S.; O’Connor, S.M. A Point of Application Study to Determine the Accuracy, Precision and Reliability of a Low-Cost Balance Plate for Center of Pressure Measurement. J. Biomech. 2018, 71, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Shafizadeh, M.; Parvinpour, S.; Balali, M.; Shabani, M. Effects of Age and Task Difficulty on Postural Sway, Variability and Complexity. Adapt. Behav. 2021, 29, 617–625. [Google Scholar] [CrossRef]
- Brouwer, R.; Kal, E.; Van Der Kamp, J.; Houdijk, H. Validation of the Stabilometer Balance Test: Bridging the Gap between Clinical and Research Based Balance Control Assessments for Stroke Patients. Gait Posture 2019, 67, 77–84. [Google Scholar] [CrossRef] [PubMed]
Young (n = 15) | Elderly (>60a; n = 15) | |
---|---|---|
Age (years) | 30.13 (±4.22) | 68.93 (±7.61) |
Height (m) | 1.73 (±0.09) | 1.69 (±0.73) |
Weight (kg) | 65.68 (±8.97) | 68.73 (±12.74) |
Gender | m = 7 (23.3%); f = 8 (26.7%) | m = 8 (26.7%); f = 7 (23.3%) |
Past diseases | Yes = 4 (13.3%) | Yes = 11 (36.7%) |
No = 11 (36.7%) | No = 4 (13.3%) | |
Berg Balance Scale (BBS) | 56 (0.0) | 56 (0.5) |
Young | Elderly (>60a) | |
---|---|---|
M1 X | 0.98 (0.01; 0.94–1.00) | 0.98 (0.02; 0.92–1.00) |
Y | 0.99 (0.00; 0.99–1.00) | 0.99 (0.01; 0.97–1.00) |
M2 X | 0.97 (0.02; 0.91–1.00) | 0.97 (0.02; 0.92–1.00) |
Y | 0.99 (0.00; 0.99–1.00) | 0.99 (0.01; 0.97–1.00) |
M3 X | 0.99 (0.00; 0.98–1.00) | 0.99 (0.00; 0.97–1.00) |
Y | 1.00 (0.00; 0.99–1.00) | 0.98 (0.01; 0.94–1.00) |
M4 X | 0.99 (0.00; 0.98–1.00) | 0.99 (0.01; 0.97–1.00) |
Y | 0.99 (0.01; 0.98–1.00) | 0.98 (0.02; 0.91–1.00) |
Young | Elderly (>60a) | |
---|---|---|
Path length M1 | 0.63 (0.35–0.84) | 0.86 (0.71–0.95) |
M2 | 0.64 (0.36–0.84) | 0.94 (0.86–0.98) |
M3 | 0.52 (0.22–0.78) | 0.84 (0.67–0.94) |
M4 | 0.43 (0.13–0.72) | 0.81 (0.60–0.93) |
Ellipse M1 | 0.47 (0.17–0.75) | 0.50 (0.19–0.77) |
M2 | 0.62 (0.34–0.84) | 0.87 (0.71–0.95) |
M3 | 0.51 (0.13–0.77) | 0.73 (0.50–0.89) |
M4 | 0.43 (0.34–0.84) | 0.26 (0.05–0.62) |
Young | Elderly (>60a) | |
---|---|---|
Path length M1 | 0.73 (0.49–0.89) | 0.92 (0.83–0.97) |
M2 | 0.72 (0.47–0.88) | 0.97 (0.92–0.99) |
M3 | 0.62 (0.32–0.84) | 0.88 (0.73–0.96) |
M4 | 0.52 (0.22–0.78) | 0.84 (0.66–0.94) |
Ellipse M1 | 0.50 (0.20–0.77) | 0.51 (0.21–0.78) |
M2 | 0.65 (0.38–0.85) | 0.88 (0.73–0.95) |
M3 | 0.50 (0.17–0.78) | 0.78 (0.56–0.91) |
M4 | 0.43 (0.10–0.73) | 0.62 (0.31–0.85) |
Single Measures (ICC 3,1) | Average Measures (ICC 3,k) | |
---|---|---|
Path length M1 | 0.73 (0.44–0.87) | 0.85 (0.61–0.93) |
M2 | 0.83 (0.66–0.91) | 0.91 (0.79–0.95) |
M3 | 0.81 (0.67–0.90) | 0.90 (0.80–0.95) |
M4 | 0.72 (0.51–0.85) | 0.84 (0.67–0.92) |
Ellipse M1 | 0.86 (0.75–0.92) | 0.93 (0.86–0.96) |
M2 | 0.89 (0.81–0.94) | 0.94 (0.89–0.97) |
M3 | 0.45 (0.17–0.67) | 0.62 (0.28–0.80) |
M4 | 0.58 (0.30–0.77) | 0.74 (0.46–0.87) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meier, P.; Calisti, M.; Werner, I.; Debertin, D.; Mayer-Suess, L.; Knoflach, M.; Federolf, P. Validity and Reliability of the Posturographic Outcomes of a Portable Balance Board. Sensors 2025, 25, 1309. https://doi.org/10.3390/s25051309
Meier P, Calisti M, Werner I, Debertin D, Mayer-Suess L, Knoflach M, Federolf P. Validity and Reliability of the Posturographic Outcomes of a Portable Balance Board. Sensors. 2025; 25(5):1309. https://doi.org/10.3390/s25051309
Chicago/Turabian StyleMeier, Patricia, Maité Calisti, Inge Werner, Daniel Debertin, Lukas Mayer-Suess, Michael Knoflach, and Peter Federolf. 2025. "Validity and Reliability of the Posturographic Outcomes of a Portable Balance Board" Sensors 25, no. 5: 1309. https://doi.org/10.3390/s25051309
APA StyleMeier, P., Calisti, M., Werner, I., Debertin, D., Mayer-Suess, L., Knoflach, M., & Federolf, P. (2025). Validity and Reliability of the Posturographic Outcomes of a Portable Balance Board. Sensors, 25(5), 1309. https://doi.org/10.3390/s25051309