Novel Robotic Balloon-Based Device for Wrist-Extension Therapy of Hemiparesis Stroke Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Balonikotron Device
2.2. Function and Interface of the Balonikotron Device
- Device configuration (Figure 9). The device is switched on with a button. The paretic hand is placed in the larger, balloon-based unit (the “follower”), while the healthy hand is placed in the smaller, flat unit (the “leader”). The patient lifts the healthy hand to set the range of motion for wrist extension, which the device records using a button-based interface. These settings are then translated for the affected hand. Exercises can be performed in either a sitting or lying position. (Note that at the time of this study, the force-estimation safety feature, described in the previous section, was not yet utilized.)
- Application setup. The tablet application is activated and connects to the device via Bluetooth. A cat avatar delivers voice prompts—such as “Please extend the hand”, “Hand up”, or “Now down”—based on 10 s intervals and the user’s current hand position.
- Timed exercise and rest. After 10 min of continuous training, the application switches to a 5 min rest period, represented by a “sleeping” cat on-screen.
- Repetition. These exercise-and-rest cycles are repeated three times to complete the session.
2.3. Study Design
3. Results
4. Discussion
4.1. Single-Patient Use
4.2. Portable
4.3. Wide Availability
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FMA-UE | The Fugl-Meyer Assessment for Upper Extremity |
mRS | Modified Rankin Scale |
MMSE | The Mini-Mental State Examination |
MOCA | The Montreal Cognitive Assessment |
ROM | Range of Motion |
BI | Barthel Index |
PSAD | Portable Spasticity Assessment Device |
EG | Experimental Group |
CG | Control Group |
References
- Trompetto, C.; Catalano, M.G.; Farina, A.; Grioli, G.; Mori, L.; Ciullo, A.; Pittaluga, M.; Rossero, M.; Puce, L.; Bicchi, A. A soft supernumerary hand for rehabilitation in sub-acute stroke: A pilot study. Sci. Rep. 2022, 12, 21504. [Google Scholar] [CrossRef] [PubMed]
- Yurkewich, A.; Hebert, D.; Wang, R.H.; Mihailidis, A. Hand extension robot orthosis (HERO) glove: Development and testing with stroke survivors with severe hand impairment. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 916–926. [Google Scholar] [CrossRef]
- Li, F.; Jiang, L.; Zhang, Y.; Huang, D.; Wei, X.; Jiang, Y.; Yao, D.; Xu, P.; Li, H. The time-varying networks of the wrist extension in post-stroke hemiplegic patients. Cogn. Neurodynamics 2022, 16, 757–766. [Google Scholar] [CrossRef]
- Berardi, A.; Tofani, M.; Valente, D. Cross-cultural adaptation and validation in the Italian population of the wolf motor function test in patients with stroke. Funct. Neurol. 2018, 33, 229–253. [Google Scholar] [PubMed]
- Barry, A.J.; Kamper, D.G.; Stoykov, M.E.; Triandafilou, K.; Roth, E. Characteristics of the severely impaired hand in survivors of stroke with chronic impairments. Top. Stroke Rehabil. 2022, 29, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Cao, C.; Gong, L.; Zhang, Y. Health related quality of life in stroke patients and risk factors associated with patients for return to work. Medicine 2019, 98, e15130. [Google Scholar] [CrossRef] [PubMed]
- Dhamoon, M.; Moon, Y.; Paik, M.; Boden-Albala, B.; Rundek, T.; Sacco, R.; Elkind, M. Quality of life declines after first ischemic stroke: The Northern Manhattan Study. Neurology 2010, 75, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Angerhöfer, C.; Colucci, A.; Vermehren, M.; Hömberg, V.; Soekadar, S.R. Post-stroke rehabilitation of severe upper limb paresis in Germany–toward long-term treatment with brain-computer interfaces. Front. Neurol. 2021, 12, 772199. [Google Scholar] [CrossRef] [PubMed]
- Campos, T.F.; de Melo, L.P.; Dantas, A.A.T.S.G.; de Oliveira, D.C.; Oliveira, R.A.N.d.S.; Cordovil, R.; Silveira Fernandes, A.B.G. Functional activities habits in chronic stroke patients: A perspective based on ICF framework. NeuroRehabilitation 2019, 45, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Fischer, H.C.; Stubblefield, K.; Kline, T.; Luo, X.; Kenyon, R.V.; Kamper, D.G. Hand rehabilitation following stroke: A pilot study of assisted finger extension training in a virtual environment. Top. Stroke Rehabil. 2007, 14, 1–12. [Google Scholar] [CrossRef]
- Bindawas, S.M.; Mawajdeh, H.M.; Vennu, V.S.; Alhaidary, H.M. Functional recovery differences after stroke rehabilitation in patients with uni-or bilateral hemiparesis. Neurosci. J. 2017, 22, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Anastasiev, A.; Kadone, H.; Marushima, A.; Watanabe, H.; Zaboronok, A.; Watanabe, S.; Matsumura, A.; Suzuki, K.; Matsumaru, Y.; Ishikawa, E. Supervised Myoelectrical Hand Gesture Recognition in Post-Acute Stroke Patients with Upper Limb Paresis on Affected and Non-Affected Sides. Sensors 2022, 22, 8733. [Google Scholar] [CrossRef] [PubMed]
- Winstein, C.J.; Rose, D.K.; Tan, S.M.; Lewthwaite, R.; Chui, H.C.; Azen, S.P. A randomized controlled comparison of upper-extremity rehabilitation strategies in acute stroke: A pilot study of immediate and long-term outcomes. Arch. Phys. Med. Rehabil. 2004, 85, 620–628. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, I.J.; Carey, L.M.; Budd, T.W.; Levi, C.; McElduff, P.; Hudson, S.; Bateman, G.; Parsons, M.W. A Randomized Controlled Trial of the Effect of Early Upper-Limb Training on Stroke Recovery and Brain Activation. Neurorehabilit. Neural Repair 2015, 29, 703–713. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.L.; Tong, R.K.; Ho, N.S.; Xue, J.J.; Rong, W.; Li, L.S. Wrist Rehabilitation Assisted by an Electromyography-Driven Neuromuscular Electrical Stimulation Robot After Stroke. Neurorehabilit. Neural Repair 2015, 29, 767–776. [Google Scholar] [CrossRef] [PubMed]
- Song, R.; Tong, K.-y.; Hu, X.; Zhou, W. Myoelectrically controlled wrist robot for stroke rehabilitation. J. Neuroeng. Rehabil. 2013, 10, 52. [Google Scholar] [CrossRef]
- Guo, Z.; Zhou, S.; Ji, K.; Zhuang, Y.; Song, J.; Nam, C.; Hu, X.; Zheng, Y. Corticomuscular integrated representation of voluntary motor effort in robotic control for wrist-hand rehabilitation after stroke. J. Neural Eng. 2022, 19, 026004. [Google Scholar] [CrossRef]
- Hu, X.L.; Tong, K.Y.; Li, R.; Xue, J.J.; Ho, S.K.; Chen, P. The effects of electromechanical wrist robot assistive system with neuromuscular electrical stimulation for stroke rehabilitation. J. Electromyogr. Kinesiol. 2012, 22, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Ledwell, N.M.; Boyd, L.A.; Zehr, E.P. Unilateral wrist extension training after stroke improves strength and neural plasticity in both arms. Exp. Brain Res. 2018, 236, 2009–2021. [Google Scholar] [CrossRef] [PubMed]
- Thieme, H.; Morkisch, N.; Mehrholz, J.; Pohl, M.; Behrens, J.; Borgetto, B.; Dohle, C. Mirror therapy for improving motor function after stroke. Cochrane Database Syst. Rev. 2018, CD008449. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xing, Y.; Li, C.; Hua, Y.; Hu, J.; Wang, Y.; Ya, R.; Meng, Q.; Bai, Y. Mirror therapy for unilateral neglect after stroke: A systematic review. Eur. J. Neurol. 2022, 29, 358–371. [Google Scholar] [CrossRef]
- Lee, M.M.; Cho, H.Y.; Song, C.H. The mirror therapy program enhances upper-limb motor recovery and motor function in acute stroke patients. Am. J. Phys. Med. Rehabil. 2012, 91, 689–696, quiz 697–700. [Google Scholar] [CrossRef]
- Ramachandran, V.S.; Rogers-Ramachandran, D. Synaesthesia in phantom limbs induced with mirrors. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1996, 263, 377–386. [Google Scholar]
- Pérez-Cruzado, D.; Merchán-Baeza, J.A.; González-Sánchez, M.; Cuesta-Vargas, A.I. Systematic review of mirror therapy compared with conventional rehabilitation in upper extremity function in stroke survivors. Aust. Occup. Ther. J. 2017, 64, 91–112. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.-B.; Lee, H.-J.; Yoo, J.; Yun, H.-J.; Hwang, H.-J. Efficacy of mirror therapy containing functional tasks in poststroke patients. Ann. Rehabil. Med. 2016, 40, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Cantero-Tellez, R.; Naughton, N.; Algar, L.; Valdes, K. Outcome measurement of hand function following mirror therapy for stroke rehabilitation: A systematic review. J. Hand Ther. 2019, 32, 277–291.e271. [Google Scholar] [CrossRef] [PubMed]
- Dohle, C.; Pullen, J.; Nakaten, A.; Kust, J.; Rietz, C.; Karbe, H. Mirror therapy promotes recovery from severe hemiparesis: A randomized controlled trial. Neurorehabilit. Neural Repair 2009, 23, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, D.B.; Sterba, A.; Khatter, H.; Pandian, J.D. Mirror Therapy in Stroke Rehabilitation: Current Perspectives. Ther. Clin. Risk Manag. 2020, 16, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Pu, S.-W.; Chang, J.-Y. Robotic hand system design for mirror therapy rehabilitation after stroke. Microsyst. Technol. 2020, 26, 111–119. [Google Scholar] [CrossRef]
- Demofonti, A.; Carpino, G.; Zollo, L.; Johnson, M.J. Affordable robotics for upper limb stroke rehabilitation in developing countries: A systematic review. IEEE Trans. Med. Robot. Bionics 2021, 3, 11–20. [Google Scholar] [CrossRef]
- Chien, W.T.; Chong, Y.Y.; Tse, M.K.; Chien, C.W.; Cheng, H.Y. Robot-assisted therapy for upper-limb rehabilitation in subacute stroke patients: A systematic review and meta-analysis. Brain Behav. 2020, 10, e01742. [Google Scholar] [CrossRef]
- Ntsiea, M.V. Current stroke rehabilitation services and physiotherapy research in South Africa. S Afr. J. Physiother. 2019, 75, 475. [Google Scholar] [CrossRef] [PubMed]
- Baniqued, P.D.E.; Stanyer, E.C.; Awais, M.; Alazmani, A.; Jackson, A.E.; Mon-Williams, M.A.; Mushtaq, F.; Holt, R.J. Brain-computer interface robotics for hand rehabilitation after stroke: A systematic review. J. Neuroeng. Rehabil. 2021, 18, 15. [Google Scholar] [CrossRef] [PubMed]
- Jaillard, A.; Naegele, B.; Trabucco-Miguel, S.; LeBas, J.F.; Hommel, M. Hidden dysfunctioning in subacute stroke. Stroke 2009, 40, 2473–2479. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, G.C.; Roy, D.; Kontos, N.; Beach, S.R. Post-stroke depression: A 2020 updated review. Gen. Hosp. Psychiatry 2020, 66, 70–80. [Google Scholar] [CrossRef]
- Lee, S.A.; Cha, H.G. The effect of motor imagery and mirror therapy on upper extremity function according to the level of cognition in stroke patients. Int. J. Rehabil. Res. 2019, 42, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Veerbeek, J.M.; Langbroek-Amersfoort, A.C.; Van Wegen, E.E.; Meskers, C.G.; Kwakkel, G. Effects of robot-assisted therapy for the upper limb after stroke: A systematic review and meta-analysis. Neurorehabilit. Neural Repair 2017, 31, 107–121. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, H.B.; Blakey, G.L. New design of dynamic orthoses for neurological conditions. NeuroRehabilitation 2011, 28, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Andriske, L.; Verikios, D.; Hitch, D. Patient and therapist experiences of the SaeboFlex: A pilot study. Occup. Ther. Int. 2017, 2017, 5462078. [Google Scholar] [CrossRef]
- Rozevink, S.G.; van der Sluis, C.K.; Garzo, A.; Keller, T.; Hijmans, J.M. HoMEcare aRm rehabiLItatioN (MERLIN): Telerehabilitation using an unactuated device based on serious games improves the upper limb function in chronic stroke. J. NeuroEngineering Rehabil. 2021, 18, 1–12. [Google Scholar] [CrossRef]
- Choi, H.; Kang, B.B.; Jung, B.-K.; Cho, K.-J. Exo-wrist: A soft tendon-driven wrist-wearable robot with active anchor for dart-throwing motion in hemiplegic patients. IEEE Robot. Autom. Lett. 2019, 4, 4499–4506. [Google Scholar] [CrossRef]
- Chu, C.-Y.; Patterson, R.M. Soft robotic devices for hand rehabilitation and assistance: A narrative review. J. Neuroeng. Rehabil. 2018, 15, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Igor Zubrycki, K.K. Pneumatic Device for Passive Extension of the Wrist 2021. Available online: https://ewyszukiwarka.pue.uprp.gov.pl/search/pwp-details/P.439602 (accessed on 15 December 2024).
- Duncan, P.W.; Badke, M.B. Stroke Rehabilitation: The Recovery of Motor Control; Year Book Medical Publishers, Inc.: Chicago, IL, USA, 1987. [Google Scholar]
- Cauraugh, J.; Light, K.; Kim, S.; Thigpen, M.; Behrman, A. Chronic motor dysfunction after stroke: Recovering wrist and finger extension by electromyography-triggered neuromuscular stimulation. Stroke 2000, 31, 1360–1364. [Google Scholar] [CrossRef]
- Weber, L.M.; Stein, J. The use of robots in stroke rehabilitation: A narrative review. NeuroRehabilitation 2018, 43, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Nudo, R.J.; Wise, B.M.; SiFuentes, F.; Milliken, G.W. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 1996, 272, 1791–1794. [Google Scholar] [CrossRef]
- Hoogervorst-Schilp, J.; Langelaan, M.; Spreeuwenberg, P.; de Bruijne, M.C.; Wagner, C. Excess length of stay and economic consequences of adverse events in Dutch hospital patients. BMC Health Serv. Res. 2015, 15, 531. [Google Scholar] [CrossRef]
- Singh, N.; Saini, M.; Anand, S.; Kumar, N.; Srivastava, M.V.P.; Mehndiratta, A. Robotic Exoskeleton for Wrist and Fingers Joint in Post-Stroke Neuro-Rehabilitation for Low-Resource Settings. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 2369–2377. [Google Scholar] [CrossRef] [PubMed]
- Mazzoleni, S.; Tran, V.D.; Dario, P.; Posteraro, F. Wrist Robot-assisted Rehabilitation Treatment in Subacute and Chronic Stroke Patients: From Distal to Proximal Motor Recovery. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 1889–1896. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Fu, Q.; Tyson, S.; Preston, N.; Weightman, A. A scoping review of design requirements for a home-based upper limb rehabilitation robot for stroke. Top. Stroke Rehabil. 2022, 29, 449–463. [Google Scholar] [CrossRef] [PubMed]
- Luker, J.; Lynch, E.; Bernhardsson, S.; Bennett, L.; Bernhardt, J. Stroke survivors’ experiences of physical rehabilitation: A systematic review of qualitative studies. Arch. Phys. Med. Rehabil. 2015, 96, 1698–1708.e1610. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.; Hwang, S. Virtual rehabilitation of upper extremity function and independence for stoke: A meta-analysis. J. Exerc. Rehabil. 2019, 15, 358. [Google Scholar] [CrossRef]
- Mehrholz, J.; Pohl, M.; Platz, T.; Kugler, J.; Elsner, B. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst. Rev. 2018, CD006876. [Google Scholar] [CrossRef] [PubMed]
- Boomkamp-Koppen, H.G.; Visser-Meily, J.M.; Post, M.W.; Prevo, A.J. Poststroke hand swelling and oedema: Prevalence and relationship with impairment and disability. Clin. Rehabil. 2005, 19, 552–559. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, Z. Influence of short-term aerobic exercise on cognitive control: A functional NIRS study. J. Cap. Univ. Phys. Educ. Sports 2016, 28, 356–359. [Google Scholar]
- Mahmoud, L.S.E.-D.; Abu Shady, N.A.E.-R.; Hafez, E.S. Motor imagery training with augmented cues of motor learning on cognitive functions in patients with Parkinsonism. Int. J. Ther. Rehabil. 2018, 25, 13–19. [Google Scholar] [CrossRef]
- Yao, L.; Sun, G.; Wang, J.; Hai, Y. Effects of Baduanjin imagery and exercise on cognitive function in the elderly: A functional near-infrared spectroscopy study. Front. Public Health 2022, 10, 968642. [Google Scholar] [CrossRef] [PubMed]
- Cumming, T.B.; Tyedin, K.; Churilov, L.; Morris, M.E.; Bernhardt, J. The effect of physical activity on cognitive function after stroke: A systematic review. Int. Psychogeriatr. 2012, 24, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Solana, J.; Álvarez-Pardo, S.; Moreno-Villanueva, A.; Santamaría-Peláez, M.; González-Bernal, J.J.; Vélez-Santamaría, R.; González-Santos, J. Efficacy of a Rehabilitation Program Using Mirror Therapy and Cognitive Therapeutic Exercise on Upper Limb Functionality in Patients with Acute Stroke. Healthcare 2024, 12, 569. [Google Scholar] [CrossRef]
- Pandian, J.D.; Arora, R.; Kaur, P.; Sharma, D.; Vishwambaran, D.K.; Arima, H. Mirror Therapy in Unilateral Neglect After Stroke (MUST trial) A randomized controlled trial. Neurology 2014, 83, 1012–1017. [Google Scholar] [CrossRef] [PubMed]
- Altschuler, E.L.; Wisdom, S.B.; Stone, L.; Foster, C.; Galasko, D.; Llewellyn, D.M.E.; Ramachandran, V.S. Rehabilitation of hemiparesis after stroke with a mirror. Lancet 1999, 353, 2035–2036. [Google Scholar] [CrossRef]
- Cramer, S.C. Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery. Ann. Neurol. 2008, 63, 272–287. [Google Scholar] [CrossRef] [PubMed]
- Mrachacz-Kersting, N.; Jiang, N.; Stevenson, A.J.T.; Niazi, I.K.; Kostic, V.; Pavlovic, A.; Radovanovic, S.; Djuric-Jovicic, M.; Agosta, F.; Dremstrup, K. Efficient neuroplasticity induction in chronic stroke patients by an associative brain-computer interface. J. Neurophysiol. 2016, 115, 1410–1421. [Google Scholar] [CrossRef] [PubMed]
n = 12 | Gender | Age | Time Since Stroke [months] | Side of Paresis |
---|---|---|---|---|
1 | M | 69 | <1 | R |
2 | M | 52 | <1 | R |
3 | M | 73 | 1 | R |
4 | M | 84 | 1 | R |
5 | W | 60 | <1 | R |
6 | M | 72 | 2 | L |
7 | M | 70 | 22 | L |
8 | W | 66 | 2 | R |
9 | M | 47 | 60 | L |
10 | M | 72 | 1 | L |
11 | W | 78 | 1 | L |
12 | M | 66 | 19 | L |
25% W 75% M | 67.4 ± 10.4 | 9.3 ± 17.7 | 50% L 50% R |
Experimental Group n = 6 | Control Group n = 6 | |
---|---|---|
Independent-samples t-test results for Barthel Index | ||
Mean Change | 19.17 | 6.67 |
SD | 9.17 | 5.16 |
t-statistic | 2.90 | |
p-value | 0.02 | |
Cohen’s d | 1.68 | |
Independent-samples t-test results for MMSE | ||
Mean Change | 1.17 | 0.33 |
SD | 1.17 | 0.82 |
t-statistic | 1.43 | |
p-value | 0.19 | |
Cohen’s d | 0.82 | |
Independent-samples t-test results for mRS | ||
Mean Change | −0.50 | −0.33 |
SD | 0.55 | 0.52 |
t-statistic | −0.54 | |
p-value | 0.6 | |
Cohen’s d | −0.31 | |
Independent-samples t-test results for FMA-UE | ||
Mean Change | 18.83 | 4.17 |
SD | 15.12 | 8.91 |
t-statistic | 2.05 | |
p-value | 0.07 | |
Cohen’s d | 1.18 | |
Independent-samples t-test results for MOCA | ||
Mean Change | 5.17 | 3.50 |
SD | 2.14 | 1.05 |
t-statistic | 0.72 | |
p-value | 0.13 | |
Cohen’s d | 0.99 | |
Independent-samples t-test results for ROM | ||
Mean Change | 14.50 | −5.17 |
SD | 23.94 | 20.38 |
t-statistic | 1.53 | |
p-value | 0.16 | |
Cohen’s d | 0.88 |
Clinical Scale | Mann–Whitney U | p-Value * | Cliff’s Delta δ |
---|---|---|---|
FMA-UE | 31.0 | 0.045 | 0.722 (large) |
mRS | 15.0 | 0.640 | −0.167 (small) |
MMSE | 26.5 | 0.151 | 0.472 (medium) |
MOCA | 26.5 | 0.187 | 0.472 (medium) |
BI | 34.0 | 0.009 | 0.889 (large) |
ROM | 28.5 | 0.109 | 0.583 (large) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marek, K.; Olejniczak, A.; Miller, E.; Zubrycki, I. Novel Robotic Balloon-Based Device for Wrist-Extension Therapy of Hemiparesis Stroke Patients. Sensors 2025, 25, 1360. https://doi.org/10.3390/s25051360
Marek K, Olejniczak A, Miller E, Zubrycki I. Novel Robotic Balloon-Based Device for Wrist-Extension Therapy of Hemiparesis Stroke Patients. Sensors. 2025; 25(5):1360. https://doi.org/10.3390/s25051360
Chicago/Turabian StyleMarek, Klaudia, Aleksandra Olejniczak, Elżbieta Miller, and Igor Zubrycki. 2025. "Novel Robotic Balloon-Based Device for Wrist-Extension Therapy of Hemiparesis Stroke Patients" Sensors 25, no. 5: 1360. https://doi.org/10.3390/s25051360
APA StyleMarek, K., Olejniczak, A., Miller, E., & Zubrycki, I. (2025). Novel Robotic Balloon-Based Device for Wrist-Extension Therapy of Hemiparesis Stroke Patients. Sensors, 25(5), 1360. https://doi.org/10.3390/s25051360