Comprehensive Statistical Analysis of Skiers’ Trajectories: Turning Points, Minimum Distances, and the Fundamental Diagram
Abstract
:1. Introduction
2. Data Collection and Processing
3. Turning Points
3.1. Factors Associated with Turning Points
3.2. Identifying Turning Points by Turning Angles
3.3. Analysis and Classification of Skiers’ Trajectories Curvature
3.4. Relationship Between Velocity Changes and Turning Points
3.5. Summary
4. Minimum Distance to the Other Agents
4.1. Data Collection
4.2. Minimum Distance Matrix
4.3. Minimum Distance Change over Time
4.4. Minimum Distance Attribute for Each Skier
4.5. Summary
5. Fundamental Diagrams
5.1. Calculation of Density and Flow
5.2. Velocity vs. Density
5.3. Flow vs. Density
5.4. Velocity vs. Flow
5.5. Summary
6. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reid, R.C.; Haugen, P.; Gilgien, M.; Kipp, R.W.; Smith, G.A. Alpine Ski Motion Characteristics in Slalom. Front. Sports Act. Living 2020, 2, 25. [Google Scholar] [CrossRef]
- Gilgien, M.; Spoerri, J.; Chardonnens, J.; Kroell, J.; Limpach, P.; Mueller, E. Determination of the centre of mass kinematics in alpine skiing using differential global navigation satellite systems. J. Sports Sci. 2015, 33, 960–969. [Google Scholar] [CrossRef]
- Supej, M. Differential specific mechanical energy as a quality parameter in racing alpine skiing. J. Appl. Biomech. 2008, 24, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Muller, E.; Bartlett, R.; Raschner, C.; Schwameder, H.; Benko-Bernwick, U.; Lindinger, S. Comparisons of the ski turn techniques of experienced and intermediate skiers. J. Sports Sci. 1998, 16, 545–559. [Google Scholar] [CrossRef] [PubMed]
- Sandbakk, S.B.; Supej, M.; Sandbakk, O.; Holmberg, H.C. Downhill turn techniques and associated physical characteristics in cross-country skiers. Scand. J. Med. Sci. Sports 2014, 24, 708–716. [Google Scholar] [CrossRef] [PubMed]
- Antekolovic, L.; Cigrovski, V.; Horgas, A. Some Biomechanical Characteristics of Slalom Turn During Race of Elite Alpine Skiers. In Proceedings of the 10th International Conference on Kinanthropology: Sport and Quality of Life, Brno, Czech Republic, 18–20 November 2015; pp. 456–461. [Google Scholar]
- Vaverka, F.; Vodickova, S.; Elfmark, M. Kinetic Analysis of Ski Turns Based on Measured Ground Reaction Forces. J. Appl. Biomech. 2012, 28, 41–47. [Google Scholar] [CrossRef]
- HIRANO, Y.; TADA, N. Mechanics of a Turning Snow Ski. Int. J. Mech. Sci. 1994, 36, 421–429. [Google Scholar] [CrossRef]
- Hirano, Y.; Tada, N. Numerical simulation of a turning alpine ski during recreational skiing. Med. Sci. Sports Exerc. 1996, 28, 1209–1213. [Google Scholar] [CrossRef]
- Kondo, A.; Doki, H.; Hirose, K. An attempt of a new motion measurement method for alpine ski turns using inertial sensors. Procedia Eng. 2012, 34, 421–426. [Google Scholar] [CrossRef]
- Hirose, K.; Doki, H. A proposal for the motion analysis method of skiing turn by measurement of orientation and gliding trajectory. Procedia Eng. 2011, 13, 17–22. [Google Scholar] [CrossRef]
- Thorwartl, C.; Kroell, J.; Tschepp, A.; Holzer, H.; Teufl, W.; Stoeggl, T. Validation of a Sensor-Based Dynamic Ski Deflection Measurement in the Lab and Proof-of-Concept Field Investigation. Sensors 2022, 22, 5768. [Google Scholar] [CrossRef] [PubMed]
- Ruedl, G.; Kopp, M.; Burtscher, M.; Bauer, R.; Benedetto, K. Causes and Factors Associated with Collisions on Ski Slopes. Sportverletz.-Sportschaden 2013, 27, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Matter, P.; Ziegler, W.J.; Holzach, P. Skiing accidents in the past 15 years. J. Sports Sci. 1987, 5, 319–326. [Google Scholar] [CrossRef]
- Lochner, S.J.; Kunz, S.N.; Fischer, F.T.; Grove, C. Fatal skiing accidents. Forensic expert opinion at the Institute of Forensic Medicine Munich 2004–2014. Rechtsmedizin 2015, 25, 460–465. [Google Scholar] [CrossRef]
- Ruedl, G.; Helle, K.; Tecklenburg, K.; Schranz, A.; Fink, C.; Posch, M.; Burtscher, M. Impact of Self-Reported Fatigue on ACL Injuries in Alpine Skiing: A Sex Comparison. Sportverletz.-Sportschaden 2015, 29, 226–230. [Google Scholar] [CrossRef]
- Yamazaki, J.; Gilgien, M.; Kleiven, S.; Mcintosh, A.S.; Nachbauer, W.; Mueller, E.; Bere, T.; Bahr, R.; Krosshaug, T. Analysis of a Severe Head Injury in World Cup Alpine Skiing. Med. Sci. Sports Exerc. 2015, 47, 1113–1118. [Google Scholar] [CrossRef]
- Treiber, M.; Germ, R.; Kesting, A. From drivers to athletes: Modeling and simulating cross-country skiing marathons. In Traffic and Granular Flow ’13; Springer: Cham, Switzerland, 2015; pp. 243–249. [Google Scholar] [CrossRef]
- Holleczek, T.; Troester, G. Particle-based model for skiing traffic. Phys. Rev. E 2012, 85. [Google Scholar] [CrossRef]
- Korecki, T.; Palka, D.; Was, J. Adaptation of Social Force Model for simulation of downhill skiing. J. Comput. Sci. 2016, 16, 29–42. [Google Scholar] [CrossRef]
- Fu, Z.; Li, T.; Deng, Q.; Schadschneider, A.; Luo, L.; Ma, J. Effect of turning curvature on the single-file dynamics of pedestrian flow: An experimental study. Phys. A-Stat. Mech. Its Appl. 2021, 563, 125405. [Google Scholar] [CrossRef]
- He, Y.; Jia, F.; Kun, W.; Cao, J.; Chen, S.; Wan, Y. Modeling and simulation of lane-changing and collision avoiding autonomous vehicles on superhighways. Phys. A-Stat. Mech. Its Appl. 2023, 609, 128328. [Google Scholar] [CrossRef]
- Cai, C.; Yao, X. Dynamic analysis and trajectory optimization for the nonlinear ski-skier system. Control Eng. Pract. 2021, 114, 104868. [Google Scholar] [CrossRef]
- Eberle, R.; Kaps, P.; Oberguggenberger, M. A multibody simulation study of alpine ski vibrations caused by random slope roughness. J. Sound Vib. 2019, 446, 225–237. [Google Scholar] [CrossRef]
- Combinido, J.S.L.; Lim, M.T. Modeling U-turn traffic flow. Phys. A-Stat. Mech. Its Appl. 2010, 389, 3640–3647. [Google Scholar] [CrossRef]
- Li, X.; Sun, J.Q. Studies of vehicle lane-changing dynamics and its effect on traffic efficiency, safety and environmental impact. Phys. A-Stat. Mech. Its Appl. 2017, 467, 41–58. [Google Scholar] [CrossRef]
- Boltes, M.; Seyfried, A.; Steffen, B.; Schadschneider, A. Automatic Extraction of Pedestrian Trajectories from Video Recordings. In Proceedings of the Pedestrian And Evacuation Dynamics 2008, Wuppertal, Germany, 27–29 February 2008; Klingsch, W., Schadschneider, A., Schreckenberg, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 43–54. [Google Scholar] [CrossRef]
- Boltes, M.; Seyfried, A. Collecting pedestrian trajectories. Neurocomputing 2013, 100, 127–133. [Google Scholar] [CrossRef]
- Zhang, B.; Dressler, T.; Maurer, A.; Nader, M.; Schadschneider, A. Simulation of Downhill Skiing Areas. Collect. Dyn. 2024, 9, 1–7. [Google Scholar] [CrossRef]
- Delibasic, B.; Radovanovic, S.; Jovanovic, M.; Vukicevic, M.; Suknovic, M. An Investigation of Human Trajectories in Ski Resorts. Commun. Comput. Inf. Sci. 2017, 778, 130–139. [Google Scholar] [CrossRef]
- Yurtsever, E.; Takeda, K.; Miyajima, C. Traffic Trajectory History and Drive Path Generation Using GPS Data Cloud. In Proceedings of the 2015 IEEE Intelligent Vehicles Symposium (IV), Seoul, Republic of Korea, 28 June–1 July 2015; pp. 229–234. [Google Scholar]
- Holst, A.; Jonasson, A. Classification of movement patterns in skiing. Front. Artif. Intell. Appl. 2013, 257, 115–124. [Google Scholar] [CrossRef]
- Gao, N.; Jin, H.; Guo, J.; Ren, G.; Yang, C. Biodynamic Analysis of Alpine Skiing with a Skier-Ski-Snow Interaction Model. arXiv 2024, arXiv:2411.08056. [Google Scholar] [CrossRef]
- Zhang, B.; Schadschneider, A. Correcting Ski Resort Trajectories Extracted from Video. Appl. Sci. 2025, 15, 695. [Google Scholar] [CrossRef]
- Xie, C.Z.; Tang, T.Q.; Zhang, B.T.; Nicolas, A. Adult–child pairs walking down stairs: Empirical analysis and optimal-step-based modeling of a complex pedestrian flow, with an exploration of flow-improvement strategies. J. Stat. Mech. Theory Exp. 2023, 2023, 013404. [Google Scholar] [CrossRef]
- John, A.; Schadschneider, A.; Chowdhury, D.; Nishinari, K. Trafficlike Collective Movement of Ants on Trails: Absence of a Jammed Phase. Phys. Rev. Lett. 2009, 102, 108001. [Google Scholar] [CrossRef]
- Peng, Y.; Liu, D.; Wu, S.; Yang, X.; Wang, Y.; Zou, Y. Enhancing Mixed Traffic Flow with Platoon Control and Lane Management for Connected and Autonomous Vehicles. Sensors 2025, 25, 644. [Google Scholar] [CrossRef] [PubMed]
Skier ID | Contact Count | Average MD | MD Std Dev | Minimum of MD |
---|---|---|---|---|
1 | 22 | 11.27 | 6.49 | 0.95 |
2 | 22 | 6.13 | 3.18 | 0.95 |
3 | 0 | 9.30 | 3.89 | 4.23 |
4 | 4 | 6.50 | 3.12 | 1.96 |
5 | 41 | 9.01 | 6.80 | 1.35 |
6 | 63 | 4.74 | 2.22 | 1.35 |
7 | 84 | 7.07 | 6.27 | 0.71 |
8 | 58 | 4.28 | 2.90 | 0.71 |
9 | 0 | 9.82 | 4.16 | 2.86 |
10 | 0 | 6.24 | 1.83 | 3.27 |
11 | 0 | 7.11 | 3.02 | 2.30 |
12 | 180 | 3.71 | 3.44 | 0.56 |
13 | 180 | 5.33 | 4.15 | 0.56 |
14 | 42 | 6.97 | 4.12 | 1.43 |
15 | 57 | 8.90 | 6.34 | 1.07 |
16 | 34 | 3.66 | 1.43 | 1.61 |
17 | 32 | 5.15 | 2.22 | 0.25 |
18 | 51 | 3.65 | 1.25 | 0.25 |
19 | 127 | 4.14 | 3.45 | 0.06 |
20 | 173 | 2.72 | 2.27 | 0.08 |
21 | 67 | 3.70 | 2.79 | 0.06 |
22 | 44 | 5.60 | 4.04 | 0.48 |
23 | 77 | 2.98 | 1.31 | 1.17 |
24 | 53 | 3.71 | 1.79 | 0.79 |
25 | 0 | 7.29 | 2.53 | 3.58 |
26 | 0 | 8.10 | 2.23 | 2.79 |
27 | 25 | 6.52 | 2.77 | 1.47 |
28 | 25 | 4.54 | 2.60 | 1.47 |
29 | 221 | 2.02 | 1.55 | 0.35 |
30 | 221 | 2.99 | 3.72 | 0.35 |
31 | 26 | 5.06 | 2.21 | 1.41 |
32 | 69 | 6.38 | 4.19 | 0.87 |
33 | 43 | 6.72 | 3.58 | 0.87 |
34 | 30 | 7.03 | 3.82 | 1.14 |
35 | 184 | 2.52 | 1.38 | 0.49 |
36 | 163 | 2.68 | 1.45 | 0.49 |
37 | 0 | 7.99 | 3.89 | 9.68 |
38 | 0 | 8.11 | 4.45 | 3.31 |
39 | 12 | 6.84 | 3.66 | 1.53 |
40 | 35 | 4.93 | 2.12 | 0.92 |
41 | 47 | 4.18 | 2.55 | 0.92 |
42 | 0 | 6.34 | 4.11 | 3.31 |
43 | 0 | 5.10 | 2.67 | 2.67 |
44 | 65 | 4.36 | 1.65 | 0.62 |
45 | 0 | 9.43 | 5.20 | 3.58 |
46 | 0 | 6.71 | 2.08 | 3.85 |
47 | 65 | 5.76 | 3.91 | 0.62 |
48 | 9 | 6.15 | 3.06 | 1.94 |
49 | 9 | 5.52 | 1.78 | 1.94 |
50 | 273 | 2.78 | 1.82 | 0.18 |
51 | 413 | 2.32 | 2.33 | 0.18 |
52 | 0 | 7.27 | 2.44 | 3.76 |
53 | 157 | 4.20 | 4.38 | 1.06 |
54 | 127 | 3.62 | 1.84 | 0.46 |
55 | 227 | 5.07 | 4.51 | 0.46 |
56 | 0 | 7.28 | 4.22 | 2.25 |
57 | 179 | 4.12 | 4.38 | 0.76 |
58 | 14 | 3.68 | 3.99 | 1.95 |
59 | 14 | 4.03 | 1.95 | 1.95 |
60 | 0 | 7.22 | 1.58 | 5.67 |
Cluster | Contact Count | Average MD | MD Std Dev | Minimum of MD |
---|---|---|---|---|
0 | 14.40 | 7.95 | 4.07 | 2.97 |
1 | 36.58 | 4.97 | 2.58 | 1.25 |
2 | 201.79 | 3.44 | 2.91 | 0.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Schadschneider, A. Comprehensive Statistical Analysis of Skiers’ Trajectories: Turning Points, Minimum Distances, and the Fundamental Diagram. Sensors 2025, 25, 1379. https://doi.org/10.3390/s25051379
Zhang B, Schadschneider A. Comprehensive Statistical Analysis of Skiers’ Trajectories: Turning Points, Minimum Distances, and the Fundamental Diagram. Sensors. 2025; 25(5):1379. https://doi.org/10.3390/s25051379
Chicago/Turabian StyleZhang, Buchuan, and Andreas Schadschneider. 2025. "Comprehensive Statistical Analysis of Skiers’ Trajectories: Turning Points, Minimum Distances, and the Fundamental Diagram" Sensors 25, no. 5: 1379. https://doi.org/10.3390/s25051379
APA StyleZhang, B., & Schadschneider, A. (2025). Comprehensive Statistical Analysis of Skiers’ Trajectories: Turning Points, Minimum Distances, and the Fundamental Diagram. Sensors, 25(5), 1379. https://doi.org/10.3390/s25051379