Scientific Machine Learning for Guided Wave and Surface Acoustic Wave (SAW) Propagation: PgNN, PeNN, PINN, and Neural Operator
Abstract
:1. Introduction
2. Fundamentals of Elastic, Acoustic, and Guided Wave
2.1. Acoustic Wave Equation
2.2. Elastic Wave and Guided Wave Equation
3. SciML Architecture: Trends and Transition
3.1. Progression in Physics Infusion
3.1.1. Physics-Guided Neural Network (PgNN)
3.1.2. Physics-Informed Neural Network (PINN)
3.1.3. Neural Operator (NO) and Physics-Encoded Neural Network (PeNN)
3.2. Black, Gray, and White Box Concept in SciML
3.3. SciML Frameworks for Wave Propagation
3.3.1. Artificial Neural Network (ANN)
3.3.2. Physics-Guided Neural Network (PgNN)
3.3.3. Physics-Informed Neural Network (PINN)
Algorithm 1: PINN |
Require: 1: Ω: Set of boundary points of the domain 2: Ψ: Set of initial points of the domain 3: u: Actual output from the PDE equation 4: c: Constant : Loss weights 6: T: Maximum training iterations |
Ensure: 7: Trained neural network NN 8: procedure Train_PINN 9: for τ = 1 to T do 10: = NN () 11: ← 12: ← 13: ()2 14: ← − NN () where {()} Ω 15: 16: 17: 18: 19: Update NN using L trough backpropagation. 20: if L ≈ 0 then 21: Break 22: end if 23: end for 24: Output trained neural network NN 25: end procedure |
3.3.4. Neural Operator (NO)
3.3.5. Physics-Encoded Neural Network (PeNN)
4. Applications of PINN in Wave Propagation
4.1. Single Physics Problem
4.2. Multiphysics with Wave Equation
Author | K Issues Addressed | Proposed Modifications |
---|---|---|
Sana [132] |
|
|
Wu et al. [135] |
|
|
Nosrati and Emami Niri [87] |
|
|
Moseley et al. [42] |
| Finite Basis PINN (fb-PINN):
|
Alkadhr and Almekkawy [136] |
|
|
Chen et al. [138] |
| Hard Constraint Wide Body PINN (HWPINN):
|
Eshkofti and Hosseini [141] |
| Gradient Enhanced PINN (gPINN):
|
4.3. NDE and Structural Health Monitoring
4.4. Identification of Material Properties
4.5. Seismic Imaging
4.6. Medical Imaging
Area of Application | Authors | Year | Key Objectives | Type of Wave | Dimension | Type of Medium |
---|---|---|---|---|---|---|
Structural Health Monitoring | Shukla et al. [144] | 2020 | Identification and characterization of surface-breaking crack | Acoustic wave | 2D | Homogeneous Heterogeneous |
Rao et al. [146] | 2021 | Solving computational elastodynamic problem | Elastic wave | 2D | Homogeneous | |
Ghellero [145] | 2022 | Damage localization | Lamb wave | 1D, 2D, 3D | Inhomogeneous, Heterogeneous | |
Wang et al. [148] | 2023 | Damage detection | Acoustic wave | 2D | Homogeneous Inhomogeneous | |
Zargar, and Yuan [86] | 2024 | Damage diagnosis and impact location study of an aluminum plate | Lamb wave | 2D | Homogeneous | |
Li et al. [149] | 2024 | Reconstructing incomplete ultrasonic wavefield | Acoustic wave | 2D | Homogeneous | |
Chen et al. [150] | 2025 | Solving inverse problem to estimate elastic modulus of hull ribs | Elastic wave | 1D | Inhomogeneous | |
Identification of Material Properties | Shukla et al. [156] | 2021 | Quantification of the microstructural properties of polycrystalline nickel | Elastic wave | 2D | Isotropic |
Lee and Popovics [157] | 2022 | Characterization of in-place material properties | Elastic wave | 1D | Inhomogeneous | |
Rathod and Ramuhalli [158] | 2022 | Estimation of the material properties | Standing waves | 1D | Homogeneous Inhomogeneous | |
Wu et al. [159] | 2023 | Identification of unknown material parameters | Elastic wave | 1D | Homogeneous | |
K Yokota et al. [160] | 2024 | Identification of loss parameter | Acoustic wave | 1D | Inhomogeneous | |
Seismic Imaging | Xu et al. [163] | 2019 | Velocity inversion | Acoustic Wave | 2D | Not mentioned |
Karimpouli et al. [164] | 2020 | Velocity inversion | Elastic Wave | 1D | Isotropic, Homogeneous | |
Kumar et al. [165] | 2020 | Subsurface velocity profile prediction | Seismic Wave | 2D | Not mentioned | |
Waheed et al. [166] | 2020 | Travel time computation | Acoustic qP Wave | 2D | Anisotropic | |
Song and Alkhalifah [169] | 2021 | Wavefield reconstruction | Acoustic Wave | 2D 3D | Isotropic, Homogeneous | |
Huang et al. [170] | 2021 | Solving scattered wavefield | Acoustic Wave | 2D | Not mentioned | |
Behesht et al. [171] | 2022 | Seismic Inversion | Acoustic Wave | 2D | Heterogeneous | |
Song et al. [172] | 2022 | Illumination of subsurface | Acoustic | 3D | Anisotropic | |
Smith et al. [167] | 2022 | Probabilistic earthquake hypocenter inversion | P—wave and S-wave | 3D | Heterogeneous | |
Chen et al. [168] | 2023 | Eikonal Tomography | Rayleigh Wave | 2D | Not mentioned | |
Zhang et al. [173] | 2023 | Seismic Inversion | Acoustic wave | 2D | Heterogeneous | |
Ding et al. [174] | 2023 | Modeling Seismic wave | SH wave | 1D 2D | Homogeneous | |
Sethi et al. [129] | 2023 | Modeling Acoustic Wavefield | Acoustic wave | 2D | Heterogeneous | |
Ren et al. [175] | 2024 | Seismic wave modeling | Elastic wave | 2D | Homogeneous Heterogeneous | |
Medical Imaging | Liu and Almekkawy [176] | 2021 | Reconstruction of tissue properties | Acoustic wave | 2D | Heterogeneous |
Jin et al. [177] | 2022 | Studying incompressible transversely isotropic tissues | Elastic wave | 3D | Transversely Isotropic | |
Wang et al. [178] | 2023 | Simulating ultrasound wave propagating through skull | Acoustic | 2D | Homogeneous Inhomogeneous | |
Yin et al. [179] | 2023 | Measuring elastic properties of soft material | Elastic | 2D | Heterogeneous |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, R.; Hua, K. A numerical method for solving uncertain wave equation. Chaos Solitons Fractals 2023, 175, 113976. [Google Scholar] [CrossRef]
- Raghavan, A. Guided-Wave Structural Health Monitoring. Ph.D. Thesis, The University of Michigan, Ann Arbor, MI, USA, 2007. [Google Scholar]
- Drinkwater, B.W.; Wilcox, P.D. Ultrasonic arrays for non-destructive evaluation: A review. NDT E Int. 2006, 39, 525–541. [Google Scholar] [CrossRef]
- Angus, D. The one-way wave equation: A full-waveform tool for modeling seismic body wave phenomena. Surv. Geophys. 2014, 35, 359–393. [Google Scholar] [CrossRef]
- Williamson, P.R.; Pratt, R.G. A critical review of acoustic wave modeling procedures in 2.5 dimensions. Geophysics 1995, 60, 591–595. [Google Scholar] [CrossRef]
- Ammari, H.; Garnier, J.; Kang, H.; Nguyen, L.H.; Seppecher, L. Multi-Wave Medical Imaging: Mathematical Modelling & Imaging Reconstruction; World Scientific: Singapore, 2017. [Google Scholar]
- Zank, G.; Matthaeus, W. The equations of nearly incompressible fluids. I. Hydrodynamics, turbulence, and waves. Phys. Fluids A Fluid Dyn. 1991, 3, 69–82. [Google Scholar] [CrossRef]
- Twersky, V. Electromagnetic waves. Phys. Today 1960, 13, 30–36. [Google Scholar] [CrossRef]
- Willberg, C.; Duczek, S.; Vivar-Perez, J.M.; Ahmad, Z.A. Simulation methods for guided wave-based structural health monitoring: A review. Appl. Mech. Rev. 2015, 67, 010803. [Google Scholar] [CrossRef]
- Sun, Z.; Rocha, B.; Wu, K.-T.; Mrad, N. A methodological review of piezoelectric based acoustic wave generation and detection techniques for structural health monitoring. Int. J. Aerosp. Eng. 2013, 2013, 928627. [Google Scholar] [CrossRef]
- Mitra, M.; Gopalakrishnan, S. Guided wave based structural health monitoring: A review. Smart Mater. Struct. 2016, 25, 053001. [Google Scholar] [CrossRef]
- Kawiecki, G. Piezogenerated elastic waves for structural health monitoring. In Smart Structures: Requirements and Potential Applications in Mechanical and Civil Engineering; Springer: Berlin/Heidelberg, Germany, 1999; pp. 133–142. [Google Scholar]
- Mal, A.; Ricci, F.; Banerjee, S.; Shih, F. A conceptual structural health monitoring system based on vibration and wave propagation. Struct. Health Monit. 2005, 4, 283–293. [Google Scholar] [CrossRef]
- Antman, S.S. The equations for large vibrations of strings. Am. Math. Mon. 1980, 87, 359–370. [Google Scholar] [CrossRef]
- Guo, Y.; Cao, X.; Liu, B.; Gao, M. Solving partial differential equations using deep learning and physical constraints. Appl. Sci. 2020, 10, 5917. [Google Scholar] [CrossRef]
- Lamoureux, M.P. The mathematics of PDEs and the wave equation. In Proceedings of the Seismic Imaging Summer School, Calgary, AB, Canada, 7–11 August 2006. [Google Scholar]
- Guinot, V. Wave Propagation in Fluids: Models and Numerical Techniques; John Wiley & Sons: New York, NY, USA, 2012. [Google Scholar]
- Ha, S.; Chang, F.-K. Optimizing a spectral element for modeling PZT-induced Lamb wave propagation in thin plates. Smart Mater. Struct. 2009, 19, 015015. [Google Scholar] [CrossRef]
- Ge, L.; Wang, X.; Wang, F. Accurate modeling of PZT-induced Lamb wave propagation in structures by using a novel spectral finite element method. Smart Mater. Struct. 2014, 23, 095018. [Google Scholar] [CrossRef]
- Zou, F.; Aliabadi, M. On modelling three-dimensional piezoelectric smart structures with boundary spectral element method. Smart Mater. Struct. 2017, 26, 055015. [Google Scholar] [CrossRef]
- Moser, F.; Jacobs, L.J.; Qu, J. Modeling elastic wave propagation in waveguides with the finite element method. Ndt E Int. 1999, 32, 225–234. [Google Scholar] [CrossRef]
- Balasubramanyam, R.; Quinney, D.; Challis, R.; Todd, C. A finite-difference simulation of ultrasonic Lamb waves in metal sheets with experimental verification. J. Phys. D Appl. Phys. 1996, 29, 147. [Google Scholar] [CrossRef]
- Cho, Y.; Rose, J.L. A boundary element solution for a mode conversion study on the edge reflection of Lamb waves. J. Acoust. Soc. Am. 1996, 99, 2097–2109. [Google Scholar] [CrossRef]
- Yim, H.; Sohn, Y. Numerical simulation and visualization of elastic waves using mass-spring lattice model. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2000, 47, 549–558. [Google Scholar]
- Bergamini, A.; Biondini, F. Finite strip modeling for optimal design of prestressed folded plate structures. Eng. Struct. 2004, 26, 1043–1054. [Google Scholar] [CrossRef]
- Diehl, P.; Schweitzer, M.A. Simulation of wave propagation and impact damage in brittle materials using peridynamics. Recent Trends Comput. Eng. CE2014 2015, 105, 251–265. [Google Scholar]
- Rahman, F.M.M.; Banerjee, S. Peri-elastodynamic: Peridynamic simulation method for guided waves in materials. Mech. Syst. Signal Process. 2024, 219, 111560. [Google Scholar] [CrossRef]
- Nishawala, V.V.; Ostoja-Starzewski, M.; Leamy, M.J.; Demmie, P.N. Simulation of elastic wave propagation using cellular automata and peridynamics, and comparison with experiments. Wave Motion 2016, 60, 73–83. [Google Scholar] [CrossRef]
- Kluska, P.; Staszewski, W.; Leamy, M.; Uhl, T. Cellular automata for Lamb wave propagation modelling in smart structures. Smart Mater. Struct. 2013, 22, 085022. [Google Scholar] [CrossRef]
- Leckey, C.A.; Rogge, M.D.; Miller, C.A.; Hinders, M.K. Multiple-mode Lamb wave scattering simulations using 3D elastodynamic finite integration technique. Ultrasonics 2012, 52, 193–207. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.P.; Sarraf, E.; Tsai, M.H. The Curse of Dimensionality. Anesthesiology 2018, 129, 614–615. [Google Scholar] [CrossRef] [PubMed]
- Asmussen, S.; Glynn, P.; Pitman, J. Discretization error in simulation of one-dimensional reflecting Brownian motion. Ann. Appl. Probab. 1995, 5, 875–896. [Google Scholar] [CrossRef]
- Biondini, G.; Trogdon, T. Gibbs phenomenon for dispersive PDEs. arXiv 2015, arXiv:1411.6142. [Google Scholar] [CrossRef]
- Bernardi, C.; Maday, Y. Spectral Methods. Handb. Numer. Anal. 1997, 5, 209–485. [Google Scholar]
- Shizgal, B.D.; Jung, J.-H. Towards the resolution of the Gibbs phenomena. J. Comput. Appl. Math. 2003, 161, 41–65. [Google Scholar] [CrossRef]
- Banerjee, S.; Leckey, C.A. Computational Nondestructive Evaluation Handbook: Ultrasound Modeling Techniques; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Banerjee, S.; Kundu, T.; Alnuaimi, N.A. DPSM technique for ultrasonic field modelling near fluid–solid interface. Ultrasonics 2007, 46, 235–250. [Google Scholar] [CrossRef] [PubMed]
- Rahani, E.K.; Kundu, T. Gaussian-DPSM (G-DPSM) and Element Source Method (ESM) modifications to DPSM for ultrasonic field modeling. Ultrasonics 2011, 51, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Paćko, P.; Bielak, T.; Spencer, A.; Staszewski, W.; Uhl, T.; Worden, K. Lamb wave propagation modelling and simulation using parallel processing architecture and graphical cards. Smart Mater. Struct. 2012, 21, 075001. [Google Scholar] [CrossRef]
- Kijanka, P.; Radecki, R.; Packo, P.; Staszewski, W.; Uhl, T. GPU-based local interaction simulation approach for simplified temperature effect modelling in Lamb wave propagation used for damage detection. Smart Mater. Struct. 2013, 22, 035014. [Google Scholar] [CrossRef]
- Shen, Y.; Cesnik, C.E. Local interaction simulation approach for efficient modeling of linear and nonlinear ultrasonic guided wave active sensing of complex structures. J. Nondestruct. Eval. Diagn. Progn. Eng. Syst. 2018, 1, 011008. [Google Scholar] [CrossRef]
- Moseley, B.; Markham, A.; Nissen-Meyer, T. Finite Basis Physics-Informed Neural Networks (FBPINNs): A scalable domain decomposition approach for solving differential equations. Adv. Comput. Math. 2023, 49, 62. [Google Scholar] [CrossRef]
- Haywood-Alexander, M.; Dervilis, N.; Worden, K.; Cross, E.J.; Mills, R.S.; Rogers, T.J. Structured machine learning tools for modelling characteristics of guided waves. Mech. Syst. Signal Process. 2021, 156, 107628. [Google Scholar] [CrossRef]
- Monaco, E.; Rautela, M.; Gopalakrishnan, S.; Ricci, F. Machine learning algorithms for delaminations detection on composites panels by wave propagation signals analysis: Review, experiences and results. Prog. Aerosp. Sci. 2024, 146, 100994. [Google Scholar] [CrossRef]
- Xiong, F.; Ba, J.; Gei, D.; Carcione, J.M. Data-driven design of wave-propagation models for shale-oil reservoirs based on machine learning. J. Geophys. Res. Solid Earth 2021, 126, e2021JB022665. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, H.; Tian, T.; Deng, D.; Hu, M.; Ma, J.; Gao, D.; Zhang, J.; Ma, S.; Yang, L. A review on guided-ultrasonic-wave-based structural health monitoring: From fundamental theory to machine learning techniques. Ultrasonics 2023, 133, 107014. [Google Scholar] [CrossRef]
- Baker, N.; Alexander, F.; Bremer, T.; Hagberg, A.; Kevrekidis, Y.; Najm, H.; Parashar, M.; Patra, A.; Sethian, J.; Wild, S. Workshop Report on Basic Research Needs for Scientific Machine Learning: Core Technologies for Artificial Intelligence; USDOE Office of Science (SC): Washington, DC, USA, 2019.
- Wagstaff, K.; Cardie, C.; Rogers, S.; Schrödl, S. Constrained k-means clustering with background knowledge. In Proceedings of the ICML, Williamstown, MA, USA, 28 June 28–1 July 2001; pp. 577–584. [Google Scholar]
- Rezaei, S.; Harandi, A.; Moeineddin, A.; Xu, B.-X.; Reese, S. A mixed formulation for physics-informed neural networks as a potential solver for engineering problems in heterogeneous domains: Comparison with finite element method. Comput. Methods Appl. Mech. Eng. 2022, 401, 115616. [Google Scholar] [CrossRef]
- Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic Differentiation in Pytorch. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Li, C.; Ji, D.; Zhai, C.; Cao, Z.; Ma, Y. RCNN: Recurrent Convolutional Neural Network For Solving 3D Wave Equation. IEEE Geosci. Remote Sens. Lett. 2023, 20, 8002605. [Google Scholar] [CrossRef]
- Schoder, S.; Kraxberger, F. Feasibility study on solving the Helmholtz equation in 3D with PINNs. arXiv 2024, arXiv:2403.06623. [Google Scholar]
- Wu, Y.; McMechan, G.A. Parametric convolutional neural network-domain full-waveform inversion. Geophysics 2019, 84, R881–R896. [Google Scholar] [CrossRef]
- Ahmadianfar, I.; Bozorg-Haddad, O.; Chu, X. Gradient-based optimizer: A new metaheuristic optimization algorithm. Inf. Sci. 2020, 540, 131–159. [Google Scholar] [CrossRef]
- Grossmann, T.G.; Komorowska, U.J.; Latz, J.; Schönlieb, C.-B. Can physics-informed neural networks beat the finite element method? IMA J. Appl. Math. 2024, 89, hxae011. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Meng, X.; Mao, Z.; Karniadakis, G.E. DeepXDE: A deep learning library for solving differential equations. SIAM Rev. 2021, 63, 208–228. [Google Scholar] [CrossRef]
- Cuomo, S.; Di Cola, V.S.; Giampaolo, F.; Rozza, G.; Raissi, M.; Piccialli, F. Scientific machine learning through physics–informed neural networks: Where we are and what’s next. J. Sci. Comput. 2022, 92, 88. [Google Scholar] [CrossRef]
- Kim, S.W.; Kim, I.; Lee, J.; Lee, S. Knowledge Integration into deep learning in dynamical systems: An overview and taxonomy. J. Mech. Sci. Technol. 2021, 35, 1331–1342. [Google Scholar] [CrossRef]
- Faroughi, S.A.; Pawar, N.M.; Fernandes, C.; Raissi, M.; Das, S.; Kalantari, N.K.; Kourosh Mahjour, S. Physics-guided, physics-informed, and physics-encoded neural networks and operators in scientific computing: Fluid and solid mechanics. J. Comput. Inf. Sci. Eng. 2024, 24, 040802. [Google Scholar] [CrossRef]
- Kundu, T. Ultrasonic Nondestructive Evaluation: Engineering and Biological Material Characterization; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Mal, A.K.; Yin, C.C.; Bar-Cohen, Y. Ultrasonic nondestructive evaluation of cracked composite laminates. Compos. Eng. 1991, 1, 85–101. [Google Scholar] [CrossRef]
- Thiyagalingam, J.; Shankar, M.; Fox, G.; Hey, T. Scientific machine learning benchmarks. Nat. Rev. Phys. 2022, 4, 413–420. [Google Scholar] [CrossRef]
- Bergen, K.J.; Johnson, P.A.; de Hoop, M.V.; Beroza, G.C. Machine learning for data-driven discovery in solid Earth geoscience. Science 2019, 363, eaau0323. [Google Scholar] [CrossRef] [PubMed]
- Adeli, H. Artificial intelligence in structural engineering. Eng. Anal. 1986, 3, 154–160. [Google Scholar] [CrossRef]
- Dixon, J.R. Artificial intelligence and design: A mechanical engineering view. In Proceedings of the Fifth AAAI National Conference on Artificial Intelligence, Philadelphia, PA, USA, 11–15 August 1986; pp. 872–877. [Google Scholar]
- Arora, J.S.; Baenziger, G. Uses of artificial intelligence in design optimization. Comput. Methods Appl. Mech. Eng. 1986, 54, 303–323. [Google Scholar] [CrossRef]
- Sriram, D.; Adey, R. Applications of Artificial Intelligence in Engineering Problems; Springer: Berlin/Heidelberg, Germany, 1986. [Google Scholar]
- Hogley, J.R.; Korncoff, A.R. Artificial Intelligence in Engineering: A Revolutionary Change. In Applications of Artificial Intelligence in Engineering Problems: Proceedings of the 1st International Conference, Southampton University, Southampton, UK, 15–18 April 1986; Springer: Berlin/Heidelberg, Germany. [Google Scholar]
- Shukla, A.K.; Janmaijaya, M.; Abraham, A.; Muhuri, P.K. Engineering applications of artificial intelligence: A bibliometric analysis of 30 years (1988–2018). Eng. Appl. Artif. Intell. 2019, 85, 517–532. [Google Scholar] [CrossRef]
- Andersen, K.; Cook, G.E.; Karsai, G.; Ramaswamy, K. Artificial neural networks applied to arc welding process modeling and control. IEEE Trans. Ind. Appl. 1990, 26, 824–830. [Google Scholar] [CrossRef]
- Huang, Z.; Yin, X.; Liu, Y. Physics-guided deep neural network for structural damage identification. Ocean. Eng. 2022, 260, 112073. [Google Scholar] [CrossRef]
- Wang, B.; Wang, J. Application of artificial intelligence in computational fluid dynamics. Ind. Eng. Chem. Res. 2021, 60, 2772–2790. [Google Scholar] [CrossRef]
- Faroughi, S.A.; Pawar, N.; Fernandes, C.; Raissi, M.; Das, S.; Kalantari, N.K.; Mahjour, S.K. Physics-guided, physics-informed, and physics-encoded neural networks in scientific computing. arXiv 2022, arXiv:2211.07377. [Google Scholar]
- Azimi, S.M.; Britz, D.; Engstler, M.; Fritz, M.; Mücklich, F. Advanced steel microstructural classification by deep learning methods. Sci. Rep. 2018, 8, 2128. [Google Scholar] [CrossRef]
- Choudhury, A. The role of machine learning algorithms in materials science: A state of art review on industry 4.0. Arch. Comput. Methods Eng. 2021, 28, 3361–3381. [Google Scholar] [CrossRef]
- DeCost, B.L.; Holm, E.A. A computer vision approach for automated analysis and classification of microstructural image data. Comput. Mater. Sci. 2015, 110, 126–133. [Google Scholar] [CrossRef]
- Kesireddy, A.; McCaslin, S. Application of image processing techniques to the identification of phases in steel metallographic specimens. In New Trends in Networking, Computing, E-learning, Systems Sciences, and Engineering; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Das, S.K.; Kumari, S. A multi-input multi-output neural network model to characterize mechanical properties of strip rolled high strength low alloy (HSLA) steel. In Proceedings of the MS’10 Prague Proceedings of the International Conference on Modelling and Simulation 2010, Prague, Czech Republic, 22–25 June 2010. [Google Scholar]
- Weng, Y.; Zhao, Y.; Tang, G.; Liu, Z. Prediction of the mechanical properties of hot-rolled C-Mn steels by single index model. In Proceedings of the 2013 8th International Conference on Computer Science & Education, Colombo, Sri Lanka, 26–28 April 2013; IEEE: Piscataway, NJ, USA. [Google Scholar]
- Huang, W.; Martin, P.; Zhuang, H.L. Machine-learning phase prediction of high-entropy alloys. Acta Mater. 2019, 169, 225–236. [Google Scholar] [CrossRef]
- Nasir, V.; Sassani, F. A review on deep learning in machining and tool monitoring: Methods, opportunities, and challenges. Int. J. Adv. Manuf. Technol. 2021, 115, 2683–2709. [Google Scholar] [CrossRef]
- Karpatne, A.; Watkins, W.; Read, J.; Kumar, V. Physics-guided neural networks (pgnn): An application in lake temperature modeling. arXiv 2017, arXiv:1710.11431. [Google Scholar]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics informed deep learning (part i): Data-driven solutions of nonlinear partial differential equations. arXiv 2017, arXiv:1711.10561. [Google Scholar]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Samaniego, E.; Anitescu, C.; Goswami, S.; Nguyen-Thanh, V.M.; Guo, H.; Hamdia, K.; Zhuang, X.; Rabczuk, T. An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Comput. Methods Appl. Mech. Eng. 2020, 362, 112790. [Google Scholar] [CrossRef]
- Zargar, S.A.; Yuan, F.-G. Physics-informed deep learning for scattered full wavefield reconstruction from a sparse set of sensor data for impact diagnosis in structural health monitoring. Struct. Health Monit. 2024, 23, 14759217231202547. [Google Scholar] [CrossRef]
- Nosrati, H.; Emami Niri, M. Manipulating the loss calculation to enhance the training process of physics-informed neural networks to solve the 1D wave equation. Eng. Comput. 2023, 40, 1741–1769. [Google Scholar] [CrossRef]
- Goswami, S.; Bora, A.; Yu, Y.; Karniadakis, G.E. Physics-informed deep neural operator networks. In Machine Learning in Modeling and Simulation: Methods and Applications; Springer: Berlin/Heidelberg, Germany, 2023; pp. 219–254. [Google Scholar]
- Lu, L.; Pestourie, R.; Yao, W.; Wang, Z.; Verdugo, F.; Johnson, S.G. Physics-informed neural networks with hard constraints for inverse design. SIAM J. Sci. Comput. 2021, 43, B1105–B1132. [Google Scholar] [CrossRef]
- Lu, L.; Jin, P.; Karniadakis, G.E. Deeponet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators. arXiv 2019, arXiv:1910.03193. [Google Scholar]
- Kovachki, N.; Li, Z.; Liu, B.; Azizzadenesheli, K.; Bhattacharya, K.; Stuart, A.; Anandkumar, A. Neural operator: Learning maps between function spaces with applications to pdes. J. Mach. Learn. Res. 2023, 24, 1–97. [Google Scholar]
- Kovachki, N.B.; Lanthaler, S.; Stuart, A.M. Operator learning: Algorithms and analysis. arXiv 2024, arXiv:2402.15715. [Google Scholar]
- Lu, L.; Meng, X.; Cai, S.; Mao, Z.; Goswami, S.; Zhang, Z.; Karniadakis, G.E. A comprehensive and fair comparison of two neural operators (with practical extensions) based on fair data. Comput. Methods Appl. Mech. Eng. 2022, 393, 114778. [Google Scholar] [CrossRef]
- Rao, C.; Sun, H.; Liu, Y. Hard encoding of physics for learning spatiotemporal dynamics. arXiv 2021, arXiv:2105.00557. [Google Scholar]
- Adilkhanova, I.; Ngarambe, J.; Yun, G.Y. Recent advances in black box and white-box models for urban heat island prediction: Implications of fusing the two methods. Renew. Sustain. Energy Rev. 2022, 165, 112520. [Google Scholar] [CrossRef]
- Kasianiuk, K. White box, black box and self-organization: A system-to-environment approach to leadership. Kybernetes 2016, 45, 126–140. [Google Scholar] [CrossRef]
- Khan, M.E.; Khan, F. A comparative study of white box, black box and grey box testing techniques. Int. J. Adv. Comput. Sci. Appl. 2012, 3, 12–141. [Google Scholar]
- Loyola-Gonzalez, O. Black-box vs. white-box: Understanding their advantages and weaknesses from a practical point of view. IEEE Access 2019, 7, 154096–154113. [Google Scholar] [CrossRef]
- Hearst, M.A.; Dumais, S.T.; Osuna, E.; Platt, J.; Scholkopf, B. Support vector machines. IEEE Intell. Syst. Their Appl. 1998, 13, 18–28. [Google Scholar] [CrossRef]
- Jakkula, V. Tutorial on support vector machine (svm). Sch. EECS Wash. State Univ. 2006, 37, 3. [Google Scholar]
- Cichy, R.M.; Kaiser, D. Deep neural networks as scientific models. Trends Cogn. Sci. 2019, 23, 305–317. [Google Scholar] [CrossRef] [PubMed]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Proceedings of the NIPS’14: Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014. [Google Scholar]
- Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 6999–7019. [Google Scholar] [CrossRef] [PubMed]
- Van Haaren, J.; Davis, J. Markov network structure learning: A randomized feature generation approach. In Proceedings of the AAAI Conference on Artificial Intelligence, Toronto, ON, Canada, 22–26 July 2012. [Google Scholar]
- Heckerman, D. A tutorial on learning with Bayesian networks. Learn. Graph. Models 1998, 89, 301–354. [Google Scholar]
- Stephenson, T.A. An introduction to Bayesian Network Theory and Usage. 2000. Available online: https://infoscience.epfl.ch/server/api/core/bitstreams/bec3c12d-1027-4c91-ab85-3f1065d4b0c1/content (accessed on 28 January 2025).
- Peterson, L.E. K-nearest neighbor. Scholarpedia 2009, 4, 1883. [Google Scholar] [CrossRef]
- Angelov, P.P.; Soares, E.A.; Jiang, R.; Arnold, N.I.; Atkinson, P.M. Explainable artificial intelligence: An analytical review. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2021, 11, e1424. [Google Scholar] [CrossRef]
- Quinlan, J.R. C4. 5: Programs for machine learning; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Agrawal, R.; Imieliński, T.; Swami, A. Mining association rules between sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, Washington, DC, USA, 26–28 May 1993. [Google Scholar]
- Loyola-González, O.; Monroy, R.; Rodríguez, J.; López-Cuevas, A.; Mata-Sánchez, J.I. Contrast pattern-based classification for bot detection on twitter. IEEE Access 2019, 7, 45800–45817. [Google Scholar] [CrossRef]
- Guo, W.; Sun, Z.; Vilsen, S.B.; Meng, J.; Stroe, D.I. Review of “grey box” lifetime modeling for lithium-ion battery: Combining physics and data-driven methods. J. Energy Storage 2022, 56, 105992. [Google Scholar] [CrossRef]
- Jang, J.-S. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685. [Google Scholar] [CrossRef]
- Li, Z.; Kovachki, N.; Azizzadenesheli, K.; Liu, B.; Bhattacharya, K.; Stuart, A.; Anandkumar, A. Fourier neural operator for parametric partial differential equations. arXiv 2020, arXiv:2010.08895. [Google Scholar]
- Aldirany, Z.; Cottereau, R.; Laforest, M.; Prudhomme, S. Operator approximation of the wave equation based on deep learning of Green’s function. Comput. Math. Appl. 2024, 159, 21–30. [Google Scholar] [CrossRef]
- Tripura, T.; Chakraborty, S. Wavelet neural operator: A neural operator for parametric partial differential equations. arXiv 2022, arXiv:2205.02191. [Google Scholar]
- Hertz, J. Statistical mechanics of neural computation. Int. J. Supercomput. Appl. 1988, 2, 54–62. [Google Scholar] [CrossRef]
- Rosenblatt, F. Principles of Neurodynamics. Perceptrons and the Theory of Brain Mechanisms; Cornell Aeronautical Lab Inc.: Buffalo NY, USA, 1961. [Google Scholar]
- Schmidhuber, J. Who Invented Backpropagation. More. [DL2]. 2014. Available online: https://people.idsia.ch/~juergen/who-invented-backpropagation.html (accessed on 28 January 2025).
- Brink, A.R.; Najera-Flores, D.A.; Martinez, C. The neural network collocation method for solving partial differential equations. Neural Comput. Appl. 2021, 33, 5591–5608. [Google Scholar] [CrossRef]
- Cao, W.; Li, Q.; Zhang, J.; Zhang, W. Accelerating 2D and 3D frequency-domain seismic wave modeling through interpolating frequency-domain wavefields by deep learning. Geophysics 2022, 87, T315–T328. [Google Scholar] [CrossRef]
- Moseley, B.; Nissen-Meyer, T.; Markham, A. Deep learning for fast simulation of seismic waves in complex media. Solid Earth 2020, 11, 1527–1549. [Google Scholar] [CrossRef]
- Siahkoohi, A.; Louboutin, M.; Herrmann, F.J. Neural network augmented wave-equation simulation. arXiv 2019, arXiv:1910.00925. [Google Scholar]
- Vantassel, J.P.; Kumar, K.; Cox, B.R. Using convolutional neural networks to develop starting models for near-surface 2-D full waveform inversion. Geophys. J. Int. 2022, 231, 72–90. [Google Scholar] [CrossRef]
- Yu, Y.; Li, Y.; Wu, X.; Jia, X. Enhancing one-way wave equation-based migration with deep learning. Geophysics 2023, 88, WA105–WA114. [Google Scholar] [CrossRef]
- Moseley, B.; Markham, A.; Nissen-Meyer, T. Solving the wave equation with physics-informed deep learning. arXiv 2020, arXiv:2006.11894. [Google Scholar]
- Chai, X.; Gu, Z.; Long, H.; Liu, S.; Cao, W.; Sun, X. Practical Aspects of Physics-Informed Neural Networks Applied to Solve Frequency-Domain Acoustic Wave Forward Problem. Seismol. Res. Lett. 2024, 95, 1646–1662. [Google Scholar] [CrossRef]
- Liang, R.; Liu, W.; Xu, L.; Qu, X.; Kaewunruen, S. Solving elastodynamics via physics-informed neural network frequency domain method. Int. J. Mech. Sci. 2023, 258, 108575. [Google Scholar] [CrossRef]
- Sethi, H.; Pan, D.; Dimitrov, P.; Shragge, J.; Roth, G.; Hester, K. Hard enforcement of physics-informed neural network solutions of acoustic wave propagation. Comput. Geosci. 2023, 27, 737–751. [Google Scholar] [CrossRef]
- Mattey, R.; Ghosh, S. A novel sequential method to train physics informed neural networks for Allen Cahn and Cahn Hilliard equations. Comput. Methods Appl. Mech. Eng. 2022, 390, 114474. [Google Scholar] [CrossRef]
- Alkhadhr, S.; Liu, X.; Almekkawy, M. Modeling of the forward wave propagation using physics-informed neural networks. In Proceedings of the 2021 IEEE International Ultrasonics Symposium (IUS), Virtual, 11–16 September 2021. [Google Scholar]
- Sana, D. Approximating the Wave Equation via Physics Informed Neural Networks: Various Forward and Inverse Problems. 2022. Available online: https://dcn.nat.fau.eu/wp-content/uploads/FAUMoD_DaniaSana-InternReport_PINN.pdf (accessed on 28 January 2025).
- Johnson, S.G. Notes on perfectly matched layers (PMLs). arXiv 2021, arXiv:2108.05348. [Google Scholar]
- John, F. Nonlinear Wave Equations, Formation of Singularities; American Mathematical Soc.: Providence, RI, USA, 1990; Volume 2. [Google Scholar]
- Wu, Y.; Aghamiry, H.S.; Operto, S.; Ma, J. Wave simulation in non-smooth media by PINN with quadratic neural network and PML condition. arXiv 2022, arXiv:2208.08276. [Google Scholar]
- Alkhadhr, S.; Almekkawy, M. Wave equation modeling via physics-informed neural networks: Models of soft and hard constraints for initial and boundary conditions. Sensors 2023, 23, 2792. [Google Scholar] [CrossRef] [PubMed]
- Krishnapriyan, A.; Gholami, A.; Zhe, S.; Kirby, R.; Mahoney, M.W. Characterizing possible failure modes in physics-informed neural networks. Adv. Neural Inf. Process. Syst. 2021, 34, 26548–26560. [Google Scholar]
- Chen, S.; Liu, Z.; Zhang, W.; Yang, J. A Hard-Constraint Wide-Body Physics-Informed Neural Network Model for Solving Multiple Cases in Forward Problems for Partial Differential Equations. Appl. Sci. 2023, 14, 189. [Google Scholar] [CrossRef]
- Eshkofti, K.; Hosseini, S.M. A deep learning approach based on the physics-informed neural networks for Gaussian thermal shock-induced thermoelastic wave propagation analysis in a thick hollow cylinder with energy dissipation. Waves Random Complex Media 2022, 47, 798–825. [Google Scholar] [CrossRef]
- Rahman, M.A.; George, R.J.; Elleithy, M.; Leibovici, D.; Li, Z.; Bonev, B.; White, C.; Berner, J.; Yeh, R.A.; Kossaifi, J. Pretraining codomain attention neural operators for solving multiphysics pdes. arXiv 2024, arXiv:2403.12553. [Google Scholar]
- Eshkofti, K.; Hosseini, S.M. A gradient-enhanced physics-informed neural network (gPINN) scheme for the coupled non-fickian/non-fourierian diffusion-thermoelasticity analysis: A novel gPINN structure. Eng. Appl. Artif. Intell. 2023, 126, 106908. [Google Scholar] [CrossRef]
- Fang, R.; Zhang, K.; Song, K.; Kai, Y.; Li, Y.; Zheng, B. A deep learning method for solving thermoelastic coupling problem. Z. Naturforschung A 2024, 79, 851–871. [Google Scholar] [CrossRef]
- Banerjee, S.; Ricci, F.; Monaco, E.; Mal, A. A wave propagation and vibration-based approach for damage identification in structural components. J. Sound Vib. 2009, 322, 167–183. [Google Scholar] [CrossRef]
- Shukla, K.; Di Leoni, P.C.; Blackshire, J.; Sparkman, D.; Karniadakis, G.E. Physics-informed neural network for ultrasound nondestructive quantification of surface breaking cracks. J. Nondestruct. Eval. 2020, 39, 1–20. [Google Scholar] [CrossRef]
- Ghellero, J. Physics-Informed Neural Network for Damage Localization Using Lamb Waves. 2022. Available online: https://www.politesi.polimi.it/retrieve/cd24a862-9ef4-41d5-9120-961c872274b1/2023_12_Ghellero_Tesi_01.pdf (accessed on 28 January 2025).
- Rao, C.; Sun, H.; Liu, Y. Physics-informed deep learning for computational elastodynamics without labeled data. J. Eng. Mech. 2021, 147, 04021043. [Google Scholar] [CrossRef]
- Costiner, S.; Winston, H.A.; Ghoshal, A.; Welsh, G.S.; Manes, E.N.; Urban, M.R.; Davis, M.; Bordick, N.E. Asymmetric acoustic scattering for structural health monitoring. J. Am. Helicopter Soc. 2014, 59, 1–11. [Google Scholar] [CrossRef]
- Wang, H.; Li, J.; Wang, L.; Liang, L.; Zeng, Z.; Liu, Y. On acoustic fields of complex scatters based on physics-informed neural networks. Ultrasonics 2023, 128, 106872. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, B.; Zou, Y.; Sha, G.; Cai, G. Leveraging physics-informed neural networks for wavefield analysis in laser ultrasonic testing. Nondestruct. Test. Eval. 2024, 1–23. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Zeng, Q.; Ren, X.; Li, Y. A two-step scaled physics-informed neural network for non-destructive testing of hull rib damage. Ocean. Eng. 2025, 319, 120260. [Google Scholar] [CrossRef]
- Deng, Y.; Chen, C.; Wang, Q.; Li, X.; Fan, Z.; Li, Y. Modeling a typical non-uniform deformation of materials using physics-informed deep learning: Applications to forward and inverse problems. Appl. Sci. 2023, 13, 4539. [Google Scholar] [CrossRef]
- Nanekar, P.; Shah, B. Characterization of material properties by ultrasonics. BARC Newsl. 2003, 249, 25–38. [Google Scholar]
- Chen, H.; Zhou, M.; Gan, S.; Nie, X.; Xu, B.; Mo, Y. Review of wave method-based non-destructive testing for steel-concrete composite structures: Multiscale simulation and multi-physics coupling analysis. Constr. Build. Mater. 2021, 302, 123832. [Google Scholar] [CrossRef]
- Steinhauser, M.O.; Hiermaier, S. A review of computational methods in materials science: Examples from shock-wave and polymer physics. Int. J. Mol. Sci. 2009, 10, 5135–5216. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Aizawa, T.; Kihara, J. Simultaneous determination of elastic constants and crystallographic orientation in coarse-grained nickel by acoustic spectro-microscopy. Mater. Trans. JIM 1997, 38, 536–545. [Google Scholar] [CrossRef]
- Shukla, K.; Jagtap, A.D.; Blackshire, J.L.; Sparkman, D.; Karniadakis, G.E. A physics-informed neural network for quantifying the microstructural properties of polycrystalline nickel using ultrasound data: A promising approach for solving inverse problems. IEEE Signal Process. Mag. 2021, 39, 68–77. [Google Scholar] [CrossRef]
- Lee, S.; Popovics, J. Applications of physics-informed neural networks for property characterization of complex materials. RILEM Tech. Lett. 2022, 7, 178–188. [Google Scholar] [CrossRef]
- Rathod, V.; Ramuhalli, P. Physics-informed neural networks for identification of material properties using standing waves. In Proceedings of the Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation XVI, Long Beach, CA, USA, 7–9 March 2022; SPIE: Bellingham, DC, USA. [Google Scholar]
- Wu, W.; Daneker, M.; Jolley, M.A.; Turner, K.T.; Lu, L. Effective data sampling strategies and boundary condition constraints of physics-informed neural networks for identifying material properties in solid mechanics. Appl. Math. Mech. 2023, 44, 1039–1068. [Google Scholar] [CrossRef]
- Yokota, K.; Ogura, M.; Abe, M. Identification of Physical Properties in Acoustic Tubes Using Physics-Informed Neural Networks. arXiv 2024, arXiv:2406.11119. [Google Scholar] [CrossRef]
- Bruno, P.P.G. Seismic Exploration Methods for Structural Studies and for Active Fault Characterization: A Review. Appl. Sci. 2023, 13, 9473. [Google Scholar] [CrossRef]
- Buske, S.; Lecomte, I.; Nemeth, T.; Operto, S.; Sallares, V. Imaging and inversion—Introduction. Soc. Explor. Geophys. 2009, 74, WCA1–WCA4. [Google Scholar] [CrossRef]
- Xu, Y.; Li, J.; Chen, X. Physics informed neural networks for velocity inversion. In Proceedings of the SEG International Exposition and Annual Meeting, San Antonio, TX, USA, 15–20 September 2019; SEG: Washington, DC, USA, 2019. [Google Scholar]
- Karimpouli, S.; Tahmasebi, P. Physics informed machine learning: Seismic wave equation. Geosci. Front. 2020, 11, 1993–2001. [Google Scholar] [CrossRef]
- Kumar, A.; Murali, A.; Priyadarshan, A. Subsurface velocity profiling by application of physics informed neural networks. In Proceedings of the Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, UAE, 9–12 November 2020; SPE: Washington, DC, USA, 2020. [Google Scholar]
- Waheed, U.b.; Haghighat, E.; Alkhalifah, T. Anisotropic eikonal solution using physics-informed neural networks. In Proceedings of the SEG International Exposition and Annual Meeting, Online, 11–16 October 2020; SEG: Washington, DC, USA, 2020. [Google Scholar]
- Smith, J.D.; Ross, Z.E.; Azizzadenesheli, K.; Muir, J.B. HypoSVI: Hypocentre inversion with Stein variational inference and physics informed neural networks. Geophys. J. Int. 2022, 228, 698–710. [Google Scholar] [CrossRef]
- Chen, Y.; de Ridder, S.A.; Rost, S.; Guo, Z.; Wu, X.; Chen, Y. Eikonal tomography with physics-informed neural networks: Rayleigh wave phase velocity in the northeastern margin of the Tibetan Plateau. Geophys. Res. Lett. 2022, 49, e2022GL099053. [Google Scholar] [CrossRef]
- Song, C.; Alkhalifah, T.A. Wavefield reconstruction inversion via physics-informed neural networks. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–12. [Google Scholar] [CrossRef]
- Huang, X.; Alkhalifah, T.; Song, C. A modified physics-informed neural network with positional encoding. In Proceedings of the SEG International Exposition and Annual Meeting, Online, 26 September–1 October 2021; SEG: Washington, DC, USA, 2021. [Google Scholar]
- Rasht-Behesht, M.; Huber, C.; Shukla, K.; Karniadakis, G.E. Physics-informed neural networks (PINNs) for wave propagation and full waveform inversions. J. Geophys. Res. Solid Earth 2022, 127, e2021JB023120. [Google Scholar] [CrossRef]
- Song, C.; Alkhalifah, T.; Waheed, U.B. A versatile framework to solve the Helmholtz equation using physics-informed neural networks. Geophys. J. Int. 2022, 228, 1750–1762. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, X.; Gao, J. Seismic inversion based on acoustic wave equations using physics-informed neural network. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–11. [Google Scholar] [CrossRef]
- Ding, Y.; Chen, S.; Li, X.; Wang, S.; Luan, S.; Sun, H. Self-adaptive physics-driven deep learning for seismic wave modeling in complex topography. Eng. Appl. Artif. Intell. 2023, 123, 106425. [Google Scholar] [CrossRef]
- Ren, P.; Rao, C.; Chen, S.; Wang, J.-X.; Sun, H.; Liu, Y. SeismicNet: Physics-informed neural networks for seismic wave modeling in semi-infinite domain. Comput. Phys. Commun. 2024, 295, 109010. [Google Scholar] [CrossRef]
- Liu, X.; Almekkawy, M. Ultrasound computed tomography using physical-informed neural network. In Proceedings of the 2021 IEEE International Ultrasonics Symposium (IUS), Xi’an, China, 11–16 September 2021; IEEE: New York, NY, USA, 2021. [Google Scholar]
- Jin, F.Q.; Rouze, N.C.; Knight, A.E.; Nightingale, K.R.; Palmeri, M.L. Modeling shear wave propagation in an incompressible, transversely isotropic material using physics-informed neural networks. In Proceedings of the 2022 IEEE International Ultrasonics Symposium (IUS), Venice, Italy, 10–13 October 2022; IEEE: New York, NY, USA, 2022. [Google Scholar]
- Wang, L.; Wang, H.; Liang, L.; Li, J.; Zeng, Z.; Liu, Y. Physics-informed neural networks for transcranial ultrasound wave propagation. Ultrasonics 2023, 132, 107026. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Li, G.-Y.; Zhang, Z.; Zheng, Y.; Cao, Y. SWENet: A physics-informed deep neural network (PINN) for shear wave elastography. IEEE Trans. Med. Imaging 2023, 43, 1434–1448. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehtaj, N.; Banerjee, S. Scientific Machine Learning for Guided Wave and Surface Acoustic Wave (SAW) Propagation: PgNN, PeNN, PINN, and Neural Operator. Sensors 2025, 25, 1401. https://doi.org/10.3390/s25051401
Mehtaj N, Banerjee S. Scientific Machine Learning for Guided Wave and Surface Acoustic Wave (SAW) Propagation: PgNN, PeNN, PINN, and Neural Operator. Sensors. 2025; 25(5):1401. https://doi.org/10.3390/s25051401
Chicago/Turabian StyleMehtaj, Nafisa, and Sourav Banerjee. 2025. "Scientific Machine Learning for Guided Wave and Surface Acoustic Wave (SAW) Propagation: PgNN, PeNN, PINN, and Neural Operator" Sensors 25, no. 5: 1401. https://doi.org/10.3390/s25051401
APA StyleMehtaj, N., & Banerjee, S. (2025). Scientific Machine Learning for Guided Wave and Surface Acoustic Wave (SAW) Propagation: PgNN, PeNN, PINN, and Neural Operator. Sensors, 25(5), 1401. https://doi.org/10.3390/s25051401