Advancements in Mercury-Free Electrochemical Sensors for Iron Detection: A Decade of Progress in Electrode Materials and Modifications
Abstract
:1. Introduction
2. Conventional Techniques for Iron Analysis
Techniques | Principle | Advantages | Disadvantages |
---|---|---|---|
ICP-MS [37] | Ionization of the sample in plasma, followed by mass spectrometry detection |
|
|
ICP-OES [21] | Excited atoms emit characteristic wavelengths, which are detected optically. |
|
|
MP-AES [48] | Microwave plasma excites atoms, producing emission spectra |
|
|
AAS [38] | Absorption of light by ground-state atoms in a flame or graphite furnace |
|
|
FAAS [39,40] | Flame-based atomization with light absorption measurement |
|
|
UV-Vis [41] | Iron forms colored complexes with reagents and absorbance is measured |
|
|
Colorimetric [42] | Color change based on iron complexation with chromogenic reagents |
|
|
Fluorescence [43] | Iron ions quench or enhance the fluorescence of specific fluorophores |
|
|
Chromatography (e.g., HPLC [21], IC [44], SEC [46], and CE [45]) | Separation of iron species based on interaction with the stationary phase, followed by another detection method |
|
|
Techniques | Principle | Advantages | Limitations |
---|---|---|---|
CV | Measures current response to a cyclic potential sweep |
| Limited sensitivity for trace or ultra-trace detections |
DPV | Applies small pulses with a linear potential ramp |
| Requires optimized parameters |
SWV | Combines pulses and staircase waveforms |
| Susceptible to matrix interference |
AdSV | Preconcentration by adsorption, followed by stripping |
| Requires precise preconcentration conditions |
ASV | Preconcentration followed by oxidation scan |
| Requires careful electrode conditioning |
CSV | Preconcentration followed by reduction scan |
| Requires complexing agents |
Amperometry | Measures current at a fixed potential over time |
|
|
Potentiometry (Ion-Selective Electrodes) | Measures potential without applying current |
|
|
EIS | Measures impedance response over a range of frequencies |
|
|
3. Electrochemical Techniques for Iron Analysis
3.1. Stripping Voltammetry Methods
3.2. Amperometric Methods
3.3. Potentiometric Methods
3.4. Electrochemical Impedance Spectroscopy (EIS)
4. Mercury-Free Electrode Materials Used for Iron Electrochemical Sensors
4.1. Carbon Electrodes
4.2. Gold Electrodes
4.3. Platinum Electrodes
Electrode | Iron Species | Reagent | Method | Calibration Range | LOD | References |
---|---|---|---|---|---|---|
Ruthenium oxide hexacyanoferrate/carbon fiber microelectrode | Fe(III) | None | Amperometry | 10–210 μM | 0.22 μM | [71] |
GCE | Fe(II), Fe(III) | Triethanolamine | SWV | 18–963 μM | 38 μM | [93] |
Deferoxamine/SPCE | Fe(III) | None | CV, potentiometry | 1–10 mg/L | 0.87 mg/L | [95] |
SMS-2 ionophore/SPCE | Fe(III) | None | DPV | 0.625–7.5 μM | 0.93 μM | [12] |
Nafion/Graphite SPE | Fe(III) | None | SW-AdSV | 0.05–5 μM | 15 nM | [54] |
Bare SPCE | F(III) | o-phenanthroline and ferrocyanide | DP-AdSV | 12.5–400 µg/L | 3.74 μg/L | [51] |
DFO/MPA/Gold disk electrode | Fe(III) | with (*) or without FcMeOH | CV | 0.1–10 nM 0.3–100 nM * | 0.1 nM 0.21 nM * | [30] |
SWV | 0.1–10 nM 0.1–700 nM * | 0.028 nM 0.034 nM * | ||||
EIS | 0.1–700 nM 0.1–100 nM * | N/A 0.02 nM * | ||||
ANTNA/SAM/Gold electrode | Total iron | None | DP-CSV | [63] | ||
Preconcentration time: 60 s | 90 nM–1.4 μM | 5.5 nM | ||||
Preconcentration time: 300 s | 0.9–27 nM | 0.2 nM | ||||
Gold disk electrode | Total iron, dissolved iron | 5-Br-PADAP | DP-CSV | 0.01–1 μM | 1.2 nM | [62] |
Iodine-coated PtRD | Fe(II) | Hydroxylamine | LSV | 0.4–100 ppm | 0.07 ppm (~1.2 μM) | [105] |
Graphite powder/Schiff-based ionophore/paraffine oil/PtE | Fe(III) | None | DPV | 1–19 μM | 0.05 μM | [80] |
PtE | Fe(III) | RD | CV, DPV | 15–350 μM | 3.3 μM | [76] |
PtE | Fe(II) | RC | CV, DPV | 2–300 μM | 0.16 μM | [77] |
Sn-Bi alloy wires | Fe(III) | 1-(2-piridylazo)-2-naphthol (PAN) | DP-CSV | 1–900 nM | 0.2 nM | [50] |
Bi bulk annular band electrode | Fe(III) | Triethanolamine KBrO3 | DPV | 0.018–8.5 μM | 5 nM | [106] |
4.4. Bismuth Electrodes
4.5. Nanomaterials and Composites-Modified Electrodes
4.5.1. Carbon-Based Nanomaterials
4.5.2. Metal-Based Nanomaterials
4.5.3. Silica-Based Materials
4.5.4. Conducting Polymer-Based Nanomaterials
4.5.5. Nanomaterials on Other Substrates
4.6. Potentiometric Ion-Selective Electrodes
Electrode | Iron Species | Ligand/Ionophore | Method | Calibration Range | LOD | Reference |
---|---|---|---|---|---|---|
Phosphotungstate/TCP/PVC/SPCE | Fe(III) | Phosphotungstate | Potentiometry | 0.1 μM–25 mM | 0.16 μM | [190] |
PVC/o-NPOE/NaTPB/graphite electrode | Fe(III) | L2 | Potentiometry | 0.67 μM–100 mM (polymeric membrane electrodes (PMEs) with L2) | 0.14 μM (PME with L2) | [191] |
83 nM–100 mM (graphite electrode) | 23 nM (graphite electrode) | |||||
PVC/o-NPOE/graphite electrode | Fe(II) | RC | Potentiometry | 0.1 μM–100 mM | 74 nM | [77] |
PVC/graphite electrode (PVC/DOS/NaTPB/RD) | Fe(III) | RD | Potentiometry | 0.1 μM–100 mM | 47 nM | [76] |
PVC/CFMEPI/KTCIPB/ioctyl sebacate/copper wire | Fe(III) | CFMEPI | Potentiometry | 1 μM–10 mM | 0.6 μM | [75] |
PVC/o-NPOE/IFE/NaTPB/MWCNTs/GCE | Fe(II) | IFE | Potentiometry DPV | 0.1 μM–100 mM | 25 nM | [78] |
0.99–29 μM | 61.3 nM | |||||
Ionophore/carbon/TCP | Fe(III) | Sud III azo dye | Potentiometry | 0.01 μM–10 mM | 0.01 μM | [25] |
SPCE (ionophore/plasticizer/PVC/carbon) | 0.0025 μM–10 mM | 0.0025 μM | ||||
PVC/DOS/Fe(II) phthalocyanine/KTpCIPB | Fe(III) | Fe(II) phthalocyanine | Potentiometry | 1 μM–0.1 M | 0.2 μM | [192] |
B-18C6/PVC/o-NPOE/KTpClPB | Fe(III) | B-18C6 | Potentiometry | 1 μM–100 mM | 0.8 μM | [74] |
Graphite powder/ionophore/paraffin oil/carbon paste electrode | Fe(III) | Schiff-based ionophore | Potentiometry | 0.1 μM–10 mM | 0.05 μM | [80] |
α-Fe2O3 NPs/Ferric phosphate/Ag2S/PTFE/epoxy plate electrode body | Fe(III) | None | Potentiometry | 1.2 μM–10 mM | 1 μM | [172] |
5. Pretreatment of Samples
Iron Species | Samples Tested | Pretreatment Strategies | Reference |
---|---|---|---|
Fe(III) | Certified reference riverwater | UV digestion (2 h, 150 W) | [194] |
Fe(III) | Seawater, Synthetic seawater Certified reference material (CRM) samples (i.e., CRM-mixed food diet, CRM-seawater, quality control standards) | Filtration, acid digestion, heating, dilution, pH-adjusted to 4 | [57] |
Fe(III) | Ground, tap, and bottled natural water samples | None Dilution by acetate buffer (pH 5) and the addition of 5-Br-PADAP ligand solution | [58] |
Fe(III) | Biological standard reference materials (pepperbush, human hair, mussels, and pond sediment). Non-biological samples (tap water, mineral water, and wastewater) | Acid digestion by nitric acid (1 g:5 mL), dilution, filtration, and dilution again. | [73] |
Fe(III) | Tap water, river water, wastewater, iron tablet | None | [173] |
Fe(II) | Lentil, wheat seed, and barely seed | Acid digestion by nitric acid (2M), sonication (60° C, 15 min), NaOH (0.1 M) addition, hydrazine solution (0.01 M) addition, filtration, and dilution. | [49] |
Fe(III) | River water, wastewater | Acid digestion by H2O2 (1N) and HNO3 (1N), dilution, and pH-adjusted to 3. | [79] |
Fe(III) | Lixiviated aqueous solution of polluted soil | None | [9] |
Total iron | Water samples (tap water, well water, river water, stratal water, petroleum well water, pore water, wastewater, swampy water) | Evaporation by nitric acid (110–120 °C), heating the residue (450 °C, 20–30 min), dissolving in HCl (1:1), evaporation at 100–120 °C, and dissolving the residue in HCl and water. An aliquot of the solution was finally used with HCl as a supporting electrolyte. | [193] |
Fe(III) | Drinking water (commercially bottled natural mineral water) | Water samples were acidified with HNO3 and KNO3. | [94] |
Fe(III) | (1) Ironorm capsule (2) Venofers ampoule (3) V.M. protein powder (4) Corn leaves (5) Ferrotitanium alloy | (1) Capsules: powdering and dissolving in HNO3, adjusted pH to 2, dilution. (2) Ampoule: Dilution of contents (3) Protein powder: Acid digestion by trichloroacetic acid (TCA) and dilution. (4) Corn leaves: Heating and making ash in a furnace, acid digestion by HCl, heating, filtration, and dilution. (5) Ferrotitanium alloy sample: Acid digestion by HCl, heating, filtration, adding NaF to mask Al(III) by F−, and dilution. | [30] |
Fe(III) | (1) Water samples (2) Soil samples (3) Fish tissue samples | (1) Water samples: adjusted pH to 2.5. (2) Soil samples: drying, mixing with diethylenetriaminepentaacetic acid, filtration, and adjusting pH to 2.5. (3) Fish tissue samples: acid digestion and adjusted pH to 2.5. | [183] |
Fe(III) | Polluted water samples (formation, tab/sea/river waters) | Adjusted pH to 3. | [190] |
Fe(III) | River and wastewater, soil, apples, vegetables (potato, brinjal, spinach), and medicinal plants (e.g., Adhatoda vasica (Arusa), Ocimum sanctum (Tulsi), Withania somnifera (Ashwagandha) and Cassia fistula (Amaltas)) | (1) Soil samples: acid-digestion, heating, filtration, and dilution. (2) Water samples: acid digestion, pH-adjusted to 5. (3) Apple and vegetable samples: washing, cutting, making ash (200–500 °C, 5 h), washing, heating (10 min), filtration, and dilution. (4) Medicinal plants: drying, powdering, acid-digestion, heating, HCl addition, heating, filtration, neutralizing the filtrate by NH3, and dilution. | [191] |
Fe(III) | Red wine | Dilution by KCl (0.5 M) and HCl (0.05 M) | [71] |
Total iron | Snow, tap water, synthetic seawater, natural seawater | None | [63] |
Fe(III) | Seawater | None | [60] |
Fe(II) | Synthetic water samples Ferrous sulfate tablets Iron syrup | Filtration, adjusted pH (1.5–6.5) by nitric acid or hexamine. Tablets: powdered, dissolved in nitric acid and HCl (1:3), shaken, heated, diluted, and filtered. | [77] |
Fe(III) | Synthetic water samples Venofer iron injection Iron dextran injection | Filtration, pH adjustment (1.5–6.5) by nitric acid or hexamine. | [76] |
Fe(III) | Coastal seawater Coastal river water | Filtration and storage, UV digestion (pH < 2, 30 min), then dilution | [110] |
Total dissolved iron | Coastal water River water | Filtration and storage, then, adjusted pH (pH < 2) by HCl (30%) and H2O2 (30%), followed by UV digestion by 500 W UV lamp (30 min) | [111] |
Total dissolved iron | Coastal river water and seawater | Filtration and storage, then UV-digestion (500 W, 30 min, at pH < 2) | [50] |
Total dissolved iron | (1) Sea sediment pore waters (2) Coastal river water and Coastal seawater | (1) Pore water samples: centrifuging (3000 rpm, 15 min), acidifying to pH < 2, storing at 4 °C, then dilution by HCl (10×) (2) Coastal water samples: filtration, storing at 4 °C, and dilution by HCl (10×) | [112] |
Fe(III) | (1) Tap and river waters (2) Ferimax syrup (Fe(III) hydroxide complex polymaltose) | (1) Water samples: none (2) Syrup samples: dilution (4000-fold) | [75] |
Fe(II) | Coastal seawater | Nitrogen purging, filtration, dilution, and then adding to acetate buffer (pH 4.5) | [61] |
Fe(III) | Coastal river waters | Filtered and stored at 4 °C, pH was adjusted by HNO3 and H2O2 to less than 2.0, digestion by a 500 W UV lamp, and dilution by HCl as a supporting electrolyte. | [59] |
Fe(II) Fe(III) | (1) Iron supplement tablets (2) Red wine | (1) Tablets: dissolving in water by sonication and centrifuging (4000 rpm, 20 min). (2) Red wine: dilution by HCl and KCl | [195] |
Fe(III) | Coastal waters | Filtration, storing at 4 °C, then UV digestion by UV lamp (500 W), and dilution by acetate buffer (pH 6) | [113] |
Fe(III) | Coastal river waters | Filtration, acidification, storing at 4 °C, then adding H2O2, UV digestion by 500 W UV lamp, and dilution by HCl. | [89] |
Total dissolved iron | Coastal waters | Filtration, stored at 4 °C, then adjusted pH by HNO3 and H2O2 to less than 2.0, UV digestion by a 500 W UV lamp, and dilution (10×) with HCl. | [137] |
Total iron | (1) Tap and river waters (2) Certified reference surface water | (1) Filtration, UV digestion (2 h, 400 W Hg lamp), addition of H2O2 (30%, 0.01 mL) and HCl (36%, 0.01 mL) (2) Certified reference surface water did not need pretreatment and mineralization by UV lamp. | [106] |
Fe(III) | Tap water | Mixing with HCl | [54] |
Total iron and acidified dissolved iron | Local coastal river water | (1) For total iron: acidification, filtration, UV digestion, and dilution by acetate buffer (pH 6). (2) For dissolved iron: acidification, filtration, and dilution by acetate buffer (pH 6). | [62] |
Fe(III) | Blood serum | Mixing with trichloroacetic acid (20%), heating, sonicating, centrifuging (10 min, 10,000 rpm), and adjusting pH to 7.0. | [12] |
Fe(III) | Tap water | None | [163] |
Fe(III) | Formation water, tap water, river water, cooling tower water, and wastewater | None | [25] |
Fe(III) | Local well Local tap water | Filtration, UV digestion, and pH adjustment to 1 by adding HCl. | [114] |
Fe(III) | Drinking tap water and hospital wastewater | Treating by electrocoagulation process and adding a mixture of HNO3 and H2O2. | [74] |
Fe(II) | Spinach samples | Cleaning, washing, cutting leafy parts, storing, then drying (60 °C, for 48 h), acid digestion, and adding a reducing reagent (hydroxylamine). | [105] |
Fe(III) | (1) Local tap water (2) Local well | (1) Tap water: digestion by H2O2 and UV lamp digester (20 min) and adding 0.1 M HCl. (2) Well water: dilution (10×) before adding to HCl. | [115] |
Total iron, total dissolved iron, and particulate iron | Coastal river waters | (1) For total iron: acidification by HCl (1.8 pH, 24 h) to release organic matter complexed iron and particulate iron, filtration, and storing at 4 °C, then dilution by HCl buffer with an addition of potassium bromate (oxidizing agent). (2) For total dissolved iron: Filtration, acidification by HCl, storing at 4 °C, then dilution by HCl buffer with an addition of potassium bromate (oxidizing agent). To detect particulate iron: No pretreatment (total dissolved iron value was subtracted from total iron value) | [138] |
Fe(III) | Lake water Seawater | Filtration, digestion by microwave, dilution (10×), and adding to 0.1 M HCl. | [90] |
Fe(II) | Tap water (pure and spiked form) | None | [81] |
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AAS | Atomic absorption spectroscopy |
AdSV | Adsorptive stripping voltammetry |
AMMTO | 4-Amino-6-methyl-3-methylmercapto-1,2,4-triazin-5-one |
ANTNA | ω-Thio nitrilotriacetic acid derivative (nitrilotriaceticacidderivative(N-[5-[[[[20-(acetylthio)-3,6,9-trioxaeicos-1-yl]oxo]carbonyl]amino]-1carboxypentyl] iminodiacetic acid) |
ASV | Anodic stripping voltammetry |
B-18C6 | Benzo-18-crown-6 |
BBS | Bis-bidentate Schiff |
5-Br-PADAP | 2-(5-Bromo-2-pyridylazo)-5-diethylaminophenol |
CFMEPI | 5-Chloro-3-[4-(trifluoromethoxy)phenylimino]indolin-2-one |
CSV | Cathodic stripping voltammetry |
CV | Cyclic voltammetry |
DBP | Dibutyl phthalate |
DAuNs | Dendritic Au nanostructures |
DFO | Deferrioxamine |
DPV | Differential pulse voltammetry |
EASA | Electrochemically assisted self-assembly |
EIS | Electrochemical impedance spectroscopy |
FcMeOH | Ferrocenemethanol |
HPDTP | 2-[(2-Hydroxy-1-propenyl-buta-1,3-dienylimino)methyl]-4-p-tolylazo-phenol |
IFE | (E)-3-((2-aminoethylimino)methyl)-4H-chromen-4-one |
IL-rGO | Ionic liquid-reduced graphene oxide |
ISEs | Ion-selective electrodes |
ITO | Indium tin oxide |
KTCIPB | Potassium tetrakis(p-choro) fenylborate |
KTpClPB | Potassium tetrakis(4-chlorophenyl)borate |
L2 | 5-((3-methylthiophene-2yl) methyleneamino)-1,3,4-thiadiazole-2-thiol |
LSSV | Linear sweep stripping voltammetry |
LSV | Linear sweep voltammetry |
MPA | 3-Mercaptopropionic acid |
C6 | 6-Mercaptohexanoic acid |
NaTPB | Sodium tetraphenylborate |
NCLC | N-carboxyl- L-cysteine |
nM | Nanomolar |
o-NPOE | o-Nitrophenyloctylether |
NPs | Nanoparticles |
N-CQD | Nitrogen-carbon quantum dot |
N, S-GQD/GCE | Nitrogen and sulfur co-doped graphene quantum dot |
NTA | N-(2hydroxyethyl)ethylenediamine-N, N′, N″-triacetic acid |
PEDOT-s | Poly(4-(2,3-dihydrothieno[3,4-b][1,4]dioxin-2-yl-methoxy)-1-butanesulfonic acid |
PtDE | Platinum disk electrode |
PtE | Platinum electrode |
pM | Picomolar |
PTFE | Polytetrafluoroethylene |
PVC | Polyvinyl chloride |
PAN | 1-(2-pyridylazo)-2-naphthol |
RC | Rhodamine-dimethyliminocinnamyl |
RD | Rhodamine dimer |
rGO | Reduced graphene oxide |
RSD | Relative standard deviation |
SAM | Self-assembled monolayer |
SDS | Sodium dodecyl sulfate |
SPCE | Screen-printed carbon electrode |
SPE | Screen-printed electrode |
SWCNT | Single-walled carbon nanotubes |
SWV | Square wave voltammetry |
TAC | Trichloroacetic acid |
TCP | Tricresylphosphate |
TEA | Triethanolamine |
References
- Chaturvedi, S.; Dave, P.N. Removal of Iron for Safe Drinking Water. Desalination 2012, 303, 1–11. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking-Water Quality: Volume 2, Health Criteria and Other Supporting Information; World Health Organization: Geneva, Switzerland, 1996. [Google Scholar]
- Longhini, C.M.; Sá, F.; Neto, R.R. Review and Synthesis: Iron Input, Biogeochemistry, and Ecological Approaches in Seawater. Environ. Rev. 2019, 27, 125–137. [Google Scholar] [CrossRef]
- Tagliabue, A.; Bowie, A.R.; Boyd, P.W.; Buck, K.N.; Johnson, K.S.; Saito, M.A. The Integral Role of Iron in Ocean Biogeochemistry. Nature 2017, 543, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Gledhill, M.; Buck, K. The Organic Complexation of Iron in the Marine Environment: A Review. Front. Microbiol. 2012, 3, 69. [Google Scholar] [CrossRef]
- Jiang, H.-B.; Hutchins, D.A.; Zhang, H.-R.; Feng, Y.-Y.; Zhang, R.-F.; Sun, W.-W.; Ma, W.; Bai, Y.; Wells, M.; He, D.; et al. Complexities of Regulating Climate by Promoting Marine Primary Production with Ocean Iron Fertilization. Earth-Sci. Rev. 2024, 249, 104675. [Google Scholar] [CrossRef]
- Kappler, A.; Bryce, C.; Mansor, M.; Lueder, U.; Byrne, J.M.; Swanner, E.D. An Evolving View on Biogeochemical Cycling of Iron. Nat. Rev. Microbiol. 2021, 19, 360–374. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; Chen, H.; Chai, F. The Sources and Transport of Iron in the North Pacific and Its Impact on Marine Ecosystems. Atmos. Ocean. Sci. Lett. 2019, 12, 30–34. [Google Scholar] [CrossRef]
- Anguiano, D.I.; García, M.G.; Ruíz, C.; Torres, J.; Alonso-Lemus, I.; Alvarez-Contreras, L.; Verde-Gómez, Y.; Bustos, E. Electrochemical Detection of Iron in a Lixiviant Solution of Polluted Soil Using a Modified Glassy Carbon Electrode. Int. J. Electrochem. 2012, 2012, e739408. [Google Scholar] [CrossRef]
- Rout, G.R.; Sahoo, S. Role of Iron in Plant Growth and Metabolism. Rev. Agric. Sci. 2015, 3, 1–24. [Google Scholar] [CrossRef]
- Angoro, B.; Motshakeri, M.; Hemmaway, C.; Svirskis, D.; Sharma, M. Non-Transferrin Bound Iron. Clin. Chim. Acta Int. J. Clin. Chem. 2022, 531, 157–167. [Google Scholar] [CrossRef]
- Mittal, S.K.; Rana, S.; Kaur, N.; Banks, C.E. A Voltammetric Method for Fe(III) in Blood Serum Using a Screen-Printed Electrode Modified with a Schiff Base Ionophore. Analyst 2018, 143, 2851–2861. [Google Scholar] [CrossRef]
- Michalke, B.; Willkommen, D.; Venkataramani, V. Iron Redox Speciation Analysis Using Capillary Electrophoresis Coupled to Inductively Coupled Plasma Mass Spectrometry (CE-ICP-MS). Front. Chem. 2019, 7, 136. [Google Scholar] [CrossRef] [PubMed]
- Solovyev, N.; Vinceti, M.; Grill, P.; Mandrioli, J.; Michalke, B. Redox Speciation of Iron, Manganese, and Copper in Cerebrospinal Fluid by Strong Cation Exchange Chromatography—Sector Field Inductively Coupled Plasma Mass Spectrometry. Anal. Chim. Acta 2017, 973, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Borman, C.J.; Sullivan, B.P.; Eggleston, C.M.; Colberg, P.J.S. The Use of Flow-Injection Analysis with Chemiluminescence Detection of Aqueous Ferrous Iron in Waters Containing High Concentrations of Organic Compounds. Sensors 2009, 9, 4390–4406. [Google Scholar] [CrossRef] [PubMed]
- Bowie, A.R.; Sedwick, P.N.; Worsfold, P.J. Analytical Intercomparison between Flow Injection-Chemiluminescence and Flow Injection-Spectrophotometry for the Determination of Picomolar Concentrations of Iron in Seawater. Limnol. Oceanogr. Methods 2004, 2, 42–54. [Google Scholar] [CrossRef]
- Chen, S.; Wang, Y.; Yan, J.; Wang, C.; Lu, D. Determination of Iron Species in Food Samples with Dual Direct Immersion Single-Drop Microextraction Followed by Graphite Furnace Atomic Absorption Spectrometry. J. Food Meas. Charact. 2023, 17, 3745–3752. [Google Scholar] [CrossRef]
- Hassler, C.S.; Legiret, F.-E.; Butler, E.C.V. Measurement of Iron Chemical Speciation in Seawater at 4 °C: The Use of Competitive Ligand Exchange–Adsorptive Cathodic Stripping Voltammetry. Mar. Chem. 2013, 149, 63–73. [Google Scholar] [CrossRef]
- Lu, C.; Wang, Y.; Xu, B.; Zhang, W.; Xie, Y.; Chen, Y.; Wang, L.; Wang, X. A Colorimetric and Fluorescence Dual-Signal Determination for Iron (II) and H2O2 in Food Based on Sulfur Quantum Dots. Food Chem. 2022, 366, 130613. [Google Scholar] [CrossRef]
- Lunvongsa, S.; Tsuboi, T.; Motomizu, S. Sequential Determination of Trace Amounts of Iron and Copper in Water Samples by Flow Injection Analysis with Catalytic Spectrophotometric Detection. Anal. Sci. 2006, 22, 169–172. [Google Scholar] [CrossRef]
- Orłowska, A.; Proch, J.; Niedzielski, P. A Fast and Efficient Procedure of Iron Species Determination Based on HPLC with a Short Column and Detection in High Resolution ICP OES. Molecules 2023, 28, 4539. [Google Scholar] [CrossRef]
- Wheal, M.S.; DeCourcy-Ireland, E.; Bogard, J.R.; Thilsted, S.H.; Stangoulis, J.C.R. Measurement of Haem and Total Iron in Fish, Shrimp and Prawn Using ICP-MS: Implications for Dietary Iron Intake Calculations. Food Chem. 2016, 201, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Zvěřina, O.; Vychytilová, M.; Rieger, J.; Goessler, W. Fast and Simultaneous Determination of Zinc and Iron Using HR-CS GF-AAS in Vegetables and Plant Material. Spectrochim. Acta Part B At. Spectrosc. 2023, 201, 106616. [Google Scholar] [CrossRef]
- Laglera, L.M.; Monticelli, D. Iron Detection and Speciation in Natural Waters by Electrochemical Techniques: A Critical Review. Curr. Opin. Electrochem. 2017, 3, 123–129. [Google Scholar] [CrossRef]
- Ali, T.A.; Mahmoud, W.H.; Mohamed, G.G. Construction and Characterization of Nano Iron Complex Ionophore for Electrochemical Determination of Fe(III) in Pure and Various Real Water Samples. Appl. Organomet. Chem. 2019, 33, e5206. [Google Scholar] [CrossRef]
- Huang, J.; Fan, X.; Yan, F.; Liu, J. Vertical Silica Nanochannels and O-Phenanthroline Chelator for the Detection of Trace Fe(II). ACS Appl. Nano Mater. 2024, 7, 7743–7752. [Google Scholar] [CrossRef]
- Kalhori, S.; Ahour, F.; Aurang, P. Determination of Trace Amount of Iron Cations Using Electrochemical Methods at N, S Doped GQD Modified Electrode. Sci. Rep. 2023, 13, 1557. [Google Scholar] [CrossRef]
- Ma, X.; Yu, J.; Wei, L.; Zhao, Q.; Ren, L.; Hu, Z. Electrochemical Sensor Based on N-CQDs/AgNPs/β-CD Nanomaterials: Application to Simultaneous Selective Determination of Fe(II) and Fe(III) Irons Released from Iron Supplement in Simulated Gastric Fluid. Talanta 2023, 253, 123959. [Google Scholar] [CrossRef]
- Mazzaracchio, V.; Bagheri, N.; Chiara, F.; Fiore, L.; Moscone, D.; Roggero, S.; Arduini, F. A Smart Paper-Based Electrochemical Sensor for Reliable Detection of Iron Ions in Serum. Anal. Bioanal. Chem. 2023, 415, 1149–1157. [Google Scholar] [CrossRef]
- Shervedani, R.K.; Akrami, Z. Gold-Deferrioxamine Nanometric Interface for Selective Recognition of Fe(III) Using Square Wave Voltammetry and Electrochemical Impedance Spectroscopy Methods. Biosens. Bioelectron. 2013, 39, 31–36. [Google Scholar] [CrossRef]
- Sobkowiak, M.; Gabrielsson, R.; Inganäs, O.; Milczarek, G. Amperometric Detection of Iron (III) on Electroconductive Hydrogel Based on Polypyrrole and Alkoxysulfonated Poly(3,4-Ethylenedioxythiophene) (PEDOT-s). Synth. Met. 2014, 194, 170–175. [Google Scholar] [CrossRef]
- Hu, Q. Simultaneous Separation and Quantification of Iron and Transition Species Using LC-ICP-MS. Am. J. Anal. Chem. 2011, 2, 675–682. [Google Scholar] [CrossRef]
- Pu, X.; Hu, B.; Jiang, Z.; Huang, C. Speciation of Dissolved Iron(II) and Iron(III) in Environmental Water Samples by Gallic Acid-Modified Nanometer-Sized Alumina Micro-Column Separation and ICP-MS Determination. Analyst 2005, 130, 1175–1181. [Google Scholar] [CrossRef] [PubMed]
- Lazić, D.; Blagojević, D.; Kešelj, D.; Petrović, Z.; Vasiljević, N. Determination of Iron Content in Natural Mineral Water: Comparison of Icp-Oes and Spectrophotometric Method. Contemp. Mater. 2023, 14, 48–55. [Google Scholar] [CrossRef]
- Sahraeian, T.; Sereshti, H.; Rohanifar, A. Simultaneous Determination of Bismuth, Lead, and Iron in Water Samples by Optimization of USAEME and ICP–OES via Experimental Design. J. Anal. Test. 2018, 2, 98–105. [Google Scholar] [CrossRef]
- Carvalho, R.N.C.S.; Brito, G.B.; Korn, M.G.A.; Teixeira, J.S.R.; Dias, F.d.S.; Dantasa, A.F.; Teixeira, L.S.G. Multi-Element Determination of Copper, Iron, Nickel, Manganese, Lead and Zinc in Environmental Water Samples by ICP OES after Solid Phase Extraction with a C18 Cartridge Loaded with 1-(2-Pyridylazo)-2-Naphthol. Anal. Methods 2015, 7, 8714–8719. [Google Scholar] [CrossRef]
- Michalke, B.; Willkommen, D.; Venkataramani, V. Setup of Capillary Electrophoresis-Inductively Coupled Plasma Mass Spectrometry (CE-ICP-MS) for Quantification of Iron Redox Species (Fe(II), Fe(III)). JoVE J. Vis. Exp. 2020, 159, e61055. [Google Scholar] [CrossRef]
- Uddin, A.H.; Khalid, R.S.; Alaama, M.; Abdualkader, A.M.; Kasmuri, A.; Abbas, S.A. Comparative Study of Three Digestion Methods for Elemental Analysis in Traditional Medicine Products Using Atomic Absorption Spectrometry. J. Anal. Sci. Technol. 2016, 7, 6. [Google Scholar] [CrossRef]
- Rihana-Abdallah, A.; Li, Z.; Lanigan, K.C. Using Cloud Point Extraction for Preconcentration and Determination of Iron, Lead, and Cadmium in Drinking Water by Flame Atomic Absorption Spectrometry. Anal. Lett. 2022, 55, 1296–1305. [Google Scholar] [CrossRef]
- Kasa, N.A.; Bakırdere, E.G. Determination of Iron in Licorice Samples by Slotted Quartz Tube Flame Atomic Absorption Spectrometry (FAAS) with Matrix Matching Calibration Strategy after Complexation with Schiff Base Ligand-Based Dispersive Liquid–Liquid Microextraction. Anal. Lett. 2021, 54, 1284–1294. [Google Scholar] [CrossRef]
- Xing, L.; Zheng, X.; Sun, W.; Yuan, H.; Hu, L.; Yan, Z. UV–Vis Spectral Property of a Multi-Hydroxyl Schiff-Base Derivative and Its Colorimetric Response to Some Special Metal Ions. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 203, 455–460. [Google Scholar] [CrossRef]
- Chen, L.; Tian, X.; Xia, D.; Nie, Y.; Lu, L.; Yang, C.; Zhou, Z. Novel Colorimetric Method for Simultaneous Detection and Identification of Multimetal Ions in Water: Sensitivity, Selectivity, and Recognition Mechanism. ACS Omega 2019, 4, 5915–5922. [Google Scholar] [CrossRef] [PubMed]
- Sushma; Sharma, S.; Ghosh, K.S. Applications of Functionalized Carbon-Based Quantum Dots in Fluorescence Sensing of Iron(III). J. Fluoresc. 2024. [Google Scholar] [CrossRef]
- Wen, X.; Yu, H.; Ma, Y. Separation and Indirect Ultraviolet Detection of Ferrous and Trivalent Iron Ions by Using Ionic Liquids in Ion Chromatography. J. Sep. Sci. 2019, 42, 3432–3438. [Google Scholar] [CrossRef] [PubMed]
- Gotti, R.; Fiori, J.; Liverani, L.; Spelta, F. Capillary Electrophoresis Method for Speciation of Iron(II) and Iron(III) in Pharmaceuticals by Dual Precapillary Complexation. Electrophoresis 2015, 36, 2820–2827. [Google Scholar] [CrossRef] [PubMed]
- Bermejo, P.; Peña, E.; Domínguez, R.; Bermejo, A.; Fraga, J.M.; Cocho, J.A. Speciation of Iron in Breast Milk and Infant Formulas Whey by Size Exclusion Chromatography-High Performance Liquid Chromatography and Electrothermal Atomic Absorption Spectrometry. Talanta 2000, 50, 1211–1222. [Google Scholar] [CrossRef]
- Fitzsimmons, J.N.; Conway, T.M. Novel Insights into Marine Iron Biogeochemistry from Iron Isotopes. Annu. Rev. Mar. Sci. 2023, 15, 383–406. [Google Scholar] [CrossRef]
- Stępień, M.; Bukowska, A. Influence of Ho3+ Ions for Quantitation of Iron (Fe) in 0.1 M HCl Solution Using Microwave Plasma-Atomic Emission Spectrometry (MP-AES). Metall. Foundry Eng. 2018, 44, 109. [Google Scholar] [CrossRef]
- Gholivand, M.B.; Geravandi, B.; Parvin, M.H. Anodic Stripping Voltammetric Determination of Iron(II) at a Carbon Paste Electrode Modified with Dithiodianiline (DTDA) and Gold Nanoparticles (GNP). Electroanalysis 2011, 23, 1345–1351. [Google Scholar] [CrossRef]
- Lin, M.; Pan, D.; Hu, X.; Li, F.; Han, H. A Tin–Bismuth Alloy Electrode for the Cathodic Stripping Voltammetric Determination of Iron in Coastal Waters. Anal. Methods 2015, 7, 5169–5174. [Google Scholar] [CrossRef]
- Ustabasi, G.S.; Pérez-Ràfols, C.; Serrano, N.; Díaz-Cruz, J.M. Simultaneous Determination of Iron and Copper Using Screen-Printed Carbon Electrodes by Adsorptive Stripping Voltammetry with o-Phenanthroline. Microchem. J. 2022, 179, 107597. [Google Scholar] [CrossRef]
- Pingarrón, J.M.; Labuda, J.; Barek, J.; Brett, C.M.A.; Camões, M.F.; Fojta, M.; Hibbert, D.B. Terminology of Electrochemical Methods of Analysis (IUPAC Recommendations 2019). Pure Appl. Chem. 2020, 92, 641–694. [Google Scholar] [CrossRef]
- Ariño, C.; Banks, C.E.; Bobrowski, A.; Crapnell, R.D.; Economou, A.; Królicka, A.; Pérez-Ràfols, C.; Soulis, D.; Wang, J. Electrochemical Stripping Analysis. Nat. Rev. Methods Primers 2022, 2, 62. [Google Scholar] [CrossRef]
- Papadopoulou, N.A.; Florou, A.B.; Prodromidis, M.I. Sensitive Determination of Iron Using Disposable Nafion-Coated Screen-Printed Graphite Electrodes. Anal. Lett. 2018, 51, 198–208. [Google Scholar] [CrossRef]
- Patel, M.; Bisht, N.; Prabhakar, P.; Sen, R.K.; Kumar, P.; Dwivedi, N.; Ashiq, M.; Mondal, D.P.; Srivastava, A.K.; Dhand, C. Ternary Nanocomposite-Based Smart Sensor: Reduced Graphene Oxide/Polydopamine/Alanine Nanocomposite for Simultaneous Electrochemical Detection of Cd2+, Pb2+, Fe2+, and Cu2+ Ions. Environ. Res. 2023, 221, 115317. [Google Scholar] [CrossRef]
- Silva, J.J.; Paim, L.L.; Stradiotto, N.R. Simultaneous Determination of Iron and Copper in Ethanol Fuel Using Nafion/Carbon Nanotubes Electrode. Electroanalysis 2014, 26, 1794–1800. [Google Scholar] [CrossRef]
- Segura, R.; Toral, M.I.; Arancibia, V. Determination of Iron in Water Samples by Adsorptive Stripping Voltammetry with a Bismuth Film Electrode in the Presence of 1-(2-Piridylazo)-2-Naphthol. Talanta 2008, 75, 973–977. [Google Scholar] [CrossRef]
- Ghoneim, E.M. Simultaneous Determination of Mn(II), Cu(II) and Fe(III) as 2-(5’-Bromo-2’-Pyridylazo)-5-Diethylaminophenol Complexes by Adsorptive Cathodic Stripping Voltammetry at a Carbon Paste Electrode. Talanta 2010, 82, 646–652. [Google Scholar] [CrossRef]
- Hu, X.; Pan, D.; Lin, M.; Han, H.; Li, F. Graphene Oxide-Assisted Synthesis of Bismuth Nanosheets for Catalytic Stripping Voltammetric Determination of Iron in Coastal Waters. Microchim. Acta 2016, 183, 855–861. [Google Scholar] [CrossRef]
- Liu, B.; Wang, M. Selective Determination of Iron(III) in Sea Water by Gold Nanoparticles Self-Assembled with N-Carboxyl-L-Cysteine. J. New Mater. Electrochem. Syst. 2014, 17, 001–004. [Google Scholar] [CrossRef]
- Lin, M.; Pan, D.; Zhu, Y.; Hu, X.; Han, H.; Wang, C. Dual-Nanomaterial Based Electrode for Voltammetric Stripping of Trace Fe(II) in Coastal Waters. Talanta 2016, 154, 127–133. [Google Scholar] [CrossRef]
- Zhu, Y.; Hu, X.; Pan, D.; Han, H.; Lin, M.; Lu, Y.; Wang, C.; Zhu, R. Speciation Determination of Iron and Its Spatial and Seasonal Distribution in Coastal River. Sci. Rep. 2018, 8, 2576. [Google Scholar] [CrossRef]
- Merli, D.; Ravasio, F.; Protti, S.; Pesavento, M.; Profumo, A. ω-Thio Nitrilotriacetic Chemically Modified Gold Electrode for Iron Determination in Natural Waters with Different Salinity. Talanta 2014, 130, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Jothimuthu, P.; Hsu, J.L.; Chen, R.; Inayathullah, M.; Pothineni, V.R.; Jan, A.; Gurtner, G.C.; Rajadas, J.; Nicolls, M.R. Enhanced Electrochemical Sensing with Carbon Nanotubes Modified with Bismuth and Magnetic Nanoparticles in a Lab-on-a-Chip. ChemNanoMat Chem. Nanomater. Energy Biol. More 2016, 2, 904–910. [Google Scholar] [CrossRef] [PubMed]
- Gerringa, L.J.A.; Gledhill, M.; Ardiningsih, I.; Muntjewerf, N.; Laglera, L.M. Comparing CLE-AdCSV Applications Using SA and TAC to Determine the Fe-Binding Characteristics of Model Ligands in Seawater. Biogeosciences 2021, 18, 5265–5289. [Google Scholar] [CrossRef]
- Laglera, L.M.; Battaglia, G.; van den Berg, C.M.G. Effect of Humic Substances on the Iron Speciation in Natural Waters by CLE/CSV. Mar. Chem. 2011, 127, 134–143. [Google Scholar] [CrossRef]
- Mahieu, L.; Omanović, D.; Whitby, H.; Buck, K.N.; Caprara, S.; Salaün, P. Recommendations for Best Practice for Iron Speciation by Competitive Ligand Exchange Adsorptive Cathodic Stripping Voltammetry with Salicylaldoxime. Mar. Chem. 2024, 259, 104348. [Google Scholar] [CrossRef]
- Sanvito, F.; Monticelli, D. Exploring Bufferless Iron Speciation in Seawater by Competitive Ligand Equilibration-Cathodic Stripping Voltammetry: Does pH Control Really Matter? Talanta 2021, 229, 122300. [Google Scholar] [CrossRef]
- Dokur, E.; Uruc, S.; Suerkan, S.; Gorduk, O.; Sahin, Y. Selective Amperometric Sensor for the Determination of Hydrazine at a Gold Nanoparticle Decorated Poly(Brilliant Blue) Modified Electrode. Anal. Lett. 2024, 0, 1–21. [Google Scholar] [CrossRef]
- Rust, I.M.; Goran, J.M.; Stevenson, K.J. Amperometric Detection of Aqueous Silver Ions by Inhibition of Glucose Oxidase Immobilized on Nitrogen-Doped Carbon Nanotube Electrodes. Anal. Chem. 2015, 87, 7250–7257. [Google Scholar] [CrossRef]
- Peña, R.C.; de Souza, A.P.R.; Bertotti, M. Determination of Fe(III) in Wine Samples Using a Ruthenium Oxide Hexacyanoferrate Modified Microelectrode. J. Electroanal. Chem. 2014, 731, 49–52. [Google Scholar] [CrossRef]
- Bakker, E.; Pretsch, E. Potentiometric Sensors for Trace-Level Analysis. Trends Anal. Chem. TRAC 2005, 24, 199–207. [Google Scholar] [CrossRef]
- Babakhanian, A.; Gholivand, M.B.; Mohammadi, M.; Khodadadian, M.; Shockravi, A.; Abbaszadeh, M.; Ghanbary, A. Fabrication of a Novel Iron(III)–PVC Membrane Sensor Based on a New 1,1′-(Iminobis(Methan-1-Yl-1-Ylidene))Dinaphthalen-2-Ol Synthetic Ionophore for Direct and Indirect Determination of Free Iron Species in Some Biological and Non-Biological Samples. J. Hazard. Mater. 2010, 177, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Badakhshan, S.; Ahmadzadeh, S.; Mohseni-Bandpei, A.; Aghasi, M.; Basiri, A. Potentiometric Sensor for Iron (III) Quantitative Determination: Experimental and Computational Approaches. BMC Chem. 2019, 13, 131. [Google Scholar] [CrossRef] [PubMed]
- Demir, E.; Kemer, B.; Bekircan, O.; Aboul-Enein, H.Y. A Novel Iron(III)-Selective Membrane Potentiometric Sensor Based on 5-Chloro-3-[4-(Trifluoromethoxy) Phenylimino] Indolin-2-One. Curr. Anal. Chem. 2015, 11, 29–35. [Google Scholar] [CrossRef]
- Kamal, A.; Sharma, N.; Bhalla, V.; Kumar, M.; Mahajan, R.K. Electrochemical Sensing of Iron(III) by Using Rhodamine Dimer as an Electroactive Material. Talanta 2014, 128, 422–427. [Google Scholar] [CrossRef]
- Kamal, A.; Kumar, N.; Bhalla, V.; Kumar, M.; Mahajan, R.K. Rhodamine-Dimethyliminocinnamyl Based Electrochemical Sensors for Selective Detection of Iron(II). Sens. Actuators B Chem. 2014, 190, 127–133. [Google Scholar] [CrossRef]
- Kumar, S.; Mittal, S.K.; Kaur, N.; Kaur, R. Improved Performance of Schiff Based Ionophore Modified with MWCNT for Fe(II) Sensing by Potentiometry and Voltammetry Supported with DFT Studies. RSC Adv. 2017, 7, 16474–16483. [Google Scholar] [CrossRef]
- Zamani, H.A.; Ganjali, M.R.; Faridbod, F.; Salavati-Niasari, M. Heptadentate Schiff-Base Based PVC Membrane Sensor for Fe(III) Ion Determination in Water Samples. Mater. Sci. Eng. C 2012, 32, 564–568. [Google Scholar] [CrossRef]
- Kaur, S.; Shiekh, B.A.; Kaur, D.; Kaur, I. Highly Sensitive Sensing of Fe(III) Harnessing Schiff Based Ionophore: An Electrochemical Approach Supported with Spectroscopic and DFT Studies. J. Mol. Liq. 2021, 333, 115954. [Google Scholar] [CrossRef]
- Mohamed, M.E.B.; Attia, N.F.; Elashery, S.E.A. Greener and Facile Synthesis of Hybrid Nanocomposite for Ultrasensitive Iron(II) Detection Using Carbon Sensor. Microporous Mesoporous Mater. 2021, 313, 110832. [Google Scholar] [CrossRef]
- Zdrachek, E.; Bakker, E. Potentiometric Sensing. Anal. Chem. 2019, 91, 2–26. [Google Scholar] [CrossRef]
- Suni, I.I. Impedance Methods for Electrochemical Sensors Using Nanomaterials. TrAC Trends Anal. Chem. 2008, 27, 604–611. [Google Scholar] [CrossRef]
- Navrátil, T.; Švancara, I.; Mrázová, K.; Nováková, K.; Šestáková, I.; Heyrovský, M.; Pelclová, D. Mercury and Mercury Electrodes: The Ultimate Battle for the Naked Existence (a Consideration). Sens. Electroanal. 2011, 6, 23–53. [Google Scholar]
- Pardi, H.; Fitriyah, D.; Silitonga, F.S.; Et, A. Simultaneous DPAdSV for Heavy Metals Determination in the Seawater of a Former Bauxite Mining Area. Port. Electrochim. Acta 2023, 41, 185–198. [Google Scholar] [CrossRef]
- Baig, N.; Sajid, M.; Saleh, T.A. Recent Trends in Nanomaterial-Modified Electrodes for Electroanalytical Applications. TrAC Trends Anal. Chem. 2019, 111, 47–61. [Google Scholar] [CrossRef]
- Buledi, J.A.; Amin, S.; Haider, S.I.; Bhanger, M.I.; Solangi, A.R. A Review on Detection of Heavy Metals from Aqueous Media Using Nanomaterial-Based Sensors. Environ. Sci. Pollut. Res. 2020, 28, 58994–59002. [Google Scholar] [CrossRef]
- Abbasi, M.A.; Ibupoto, Z.H.; Khan, Y.; Khan, A.; Nur, O.; Willander, M. Iron(III) Ion Sensor Based on the Seedless Grown ZnO Nanorods in 3 Dimensions Using Nickel Foam Substrate. J. Sens. 2013, 2013, e382726. [Google Scholar] [CrossRef]
- Han, H.; Pan, D.; Wang, C.; Zhu, R. Controlled Synthesis of Dendritic Gold Nanostructures by Graphene Oxide and Their Morphology-Dependent Performance for Iron Detection in Coastal Waters. RSC Adv. 2017, 7, 15833–15841. [Google Scholar] [CrossRef]
- Zhou, N.; Li, J.; Wang, S.; Zhuang, X.; Ni, S.; Luan, F.; Wu, X.; Yu, S. An Electrochemical Sensor Based on Gold and Bismuth Bimetallic Nanoparticles Decorated L-Cysteine Functionalized Graphene Oxide Nanocomposites for Sensitive Detection of Iron Ions in Water Samples. Nanomaterials 2021, 11, 2386. [Google Scholar] [CrossRef]
- Daniel, M.-C.; Astruc, D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem. Rev. 2004, 104, 293–346. [Google Scholar] [CrossRef]
- Sajid, M.; Nazal, M.K.; Mansha, M.; Alsharaa, A.; Jillani, S.M.S.; Basheer, C. Chemically Modified Electrodes for Electrochemical Detection of Dopamine in the Presence of Uric Acid and Ascorbic Acid: A Review. TrAC Trends Anal. Chem. 2016, 76, 15–29. [Google Scholar] [CrossRef]
- Souza, M.; da Conceição, E.; Brasil, S.; Siqueira Melo, R. Quantification of Iron Using Its Amine Complexes by Square Wave Voltammetry in Alkaline Solutions. Int. J. Electrochem. Sci. 2021, 16, 21102. [Google Scholar] [CrossRef]
- Lu, M.; Compton, R.G. Voltammetric Determination of Iron(III) in Water. Electroanalysis 2013, 25, 1123–1129. [Google Scholar] [CrossRef]
- Norocel, L.; Gutt, G. Development and Performance Testing of an Electrochemical Sensor for Determination of Iron Ions in Wine. Aust. J. Grape Wine Res. 2019, 25, 161–164. [Google Scholar] [CrossRef]
- Rousseva, M.; Kontoudakis, N.; Schmidtke, L.M.; Scollary, G.R.; Clark, A.C. Impact of Wine Production on the Fractionation of Copper and Iron in Chardonnay Wine: Implications for Oxygen Consumption. Food Chem. 2016, 203, 440–447. [Google Scholar] [CrossRef]
- Danilewicz, J.C. Mechanism of Autoxidation of Polyphenols and Participation of Sulfite in Wine: Key Role of Iron. Am. J. Enol. Vitic. 2011, 62, 319–328. [Google Scholar] [CrossRef]
- Viviers, M.Z.; Smith, M.E.; Wilkes, E.; Smith, P. Effects of Five Metals on the Evolution of Hydrogen Sulfide, Methanethiol, and Dimethyl Sulfide during Anaerobic Storage of Chardonnay and Shiraz Wines. J. Agric. Food Chem. 2013, 61, 12385–12396. [Google Scholar] [CrossRef]
- Wang, A.; Duncan, S.E.; Dietrich, A.M. Effect of Iron on Taste Perception and Emotional Response of Sweetened Beverage under Different Water Conditions. Food Qual. Prefer. 2016, 54, 58–66. [Google Scholar] [CrossRef]
- Legeai, S.; Vittori, O. A Cu/Nafion/Bi Electrode for on-Site Monitoring of Trace Heavy Metals in Natural Waters Using Anodic Stripping Voltammetry: An Alternative to Mercury-Based Electrodes. Anal. Chim. Acta 2006, 560, 184–190. [Google Scholar] [CrossRef]
- Al Zoubi, W.; Al Mohanna, N. Membrane Sensors Based on Schiff Bases as Chelating Ionophores—A Review. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 132, 854–870. [Google Scholar] [CrossRef]
- Djouhra, A.; Ali, O.; Ramiro, R.-R.; Emilia, M. A Selective Naked-Eye Chemosensor Derived from 2-Methoxybenzylamine and 2,3-Dihydroxybenzaldehyde—Synthesis, Spectral Characterization and Electrochemistry of Its Bis-Bidentates Schiff Bases Metal Complexes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 184, 299–307. [Google Scholar] [CrossRef]
- Fu, L.; Wang, A.; Xie, K.; Zhu, J.; Chen, F.; Wang, H.; Zhang, H.; Su, W.; Wang, Z.; Zhou, C.; et al. Electrochemical Detection of Silver Ions by Using Sulfur Quantum Dots Modified Gold Electrode. Sens. Actuators B Chem. 2020, 304, 127390. [Google Scholar] [CrossRef]
- Ritzert, N.L.; Lukus, P.A.; Scott, B.L.; Zapien, D.C. Characterization of the Iron Species Released by Ferritin Immobilized on Self-Assembled Monolayer Modified Gold Electrodes. Anal. Lett. 2020, 53, 509–521. [Google Scholar] [CrossRef]
- Amayreh, M.; Hourani, M.K. Determination of Iron in Spinach Using Linear Sweep Voltammetry at Iodine-Coated Platinum Rotating Disk Electrode. J. AOAC Int. 2019, 102, 666–668. [Google Scholar] [CrossRef]
- Węgiel, K.; Robak, J.; Baś, B. Voltammetric Determination of Iron with Catalytic System at a Bismuth Bulk Annular Band Electrode Electrochemically Activated. RSC Adv. 2017, 7, 22027–22033. [Google Scholar] [CrossRef]
- Švancara, I.; Prior, C.; Hočevar, S.B.; Wang, J. A Decade with Bismuth-Based Electrodes in Electroanalysis. Electroanalysis 2010, 22, 1405–1420. [Google Scholar] [CrossRef]
- Kaur, G.; Kaur, A.; Kaur, H. Review on Nanomaterials/Conducting Polymer Based Nanocomposites for the Development of Biosensors and Electrochemical Sensors. Polym.-Plast. Technol. Mater. 2021, 60, 504–521. [Google Scholar] [CrossRef]
- Abhishek, N.; Verma, A.; Singh, A.; Vandana; Kumar, T. Metal-Conducting Polymer Hybrid Composites: A Promising Platform for Electrochemical Sensing. Inorg. Chem. Commun. 2023, 157, 111334. [Google Scholar] [CrossRef]
- Lin, M.; Pan, D.; Hu, X.; Han, H.; Li, F. Titanium Carbide Nanoparticles/Ion-Exchange Polymer-Based Sensor for Catalytic Stripping Determination of Trace Iron in Coastal Waters. Sens. Actuators B Chem. 2015, 219, 164–170. [Google Scholar] [CrossRef]
- Lin, M.; Han, H.; Pan, D.; Zhang, H.; Su, Z. Voltammetric Determination of Total Dissolved Iron in Coastal Waters Using a Glassy Carbon Electrode Modified with Reduced Graphene Oxide, Methylene Blue and Gold Nanoparticles. Microchim. Acta Online 2015, 182, 805–813. [Google Scholar] [CrossRef]
- Li, F.; Pan, D.; Lin, M.; Han, H.; Hu, X.; Kang, Q. Electrochemical Determination of Iron in Coastal Waters Based on Ionic Liquid-Reduced Graphene Oxide Supported Gold Nanodendrites. Electrochim. Acta 2015, 176, 548–554. [Google Scholar] [CrossRef]
- Zhu, Y.; Pan, D.; Hu, X.; Han, H.; Lin, M.; Wang, C. An Electrochemical Sensor Based on Reduced Graphene Oxide/Gold Nanoparticles Modified Electrode for Determination of Iron in Coastal Waters. Sens. Actuators B Chem. 2017, 243, 1–7. [Google Scholar] [CrossRef]
- Nguyen, L.D.; Vinh Nguyen, T.S.; Huynh, T.M.; Baptist, R.; Chanh Duc Doan, T.; Dang, C.M. Voltammetric Determination of Iron(III) Using Sputtered Platinum Thin Film. Electrochim. Acta 2019, 320, 134607. [Google Scholar] [CrossRef]
- Nguyen, L.D.; Huynh, T.M.; Nguyen, T.S.V.; Le, D.N.; Baptist, R.; Doan, T.C.D.; Dang, C.M. Nafion/Platinum Modified Electrode-on-Chip for the Electrochemical Detection of Trace Iron in Natural Water. J. Electroanal. Chem. 2020, 873, 114396. [Google Scholar] [CrossRef]
- Nguyen, L.D.; Doan, T.C.D.; Huynh, T.M.; Dang, D.M.T.; Dang, C.M. Thermally Reduced Graphene/Nafion Modified Platinum Disk Electrode for Trace Level Electrochemical Detection of Iron. Microchem. J. 2021, 169, 106627. [Google Scholar] [CrossRef]
- Sadeghi, S.; Ebadi, S. Sensitive Quantification of Fe(III) in Food Samples at Screen Printed Carbon Electrode Modified with Graphene and Piroxicam by Catalytic Adsorptive Voltammetry. Electroanalysis 2020, 32, 1983–1992. [Google Scholar] [CrossRef]
- Sherigara, B.S.; Kutner, W.; D’Souza, F. Electrocatalytic Properties and Sensor Applications of Fullerenes and Carbon Nanotubes. Electroanalysis 2003, 15, 753–772. [Google Scholar] [CrossRef]
- Baig, N.; Saleh, T.A. Electrodes Modified with 3D Graphene Composites: A Review on Methods for Preparation, Properties and Sensing Applications. Microchim. Acta 2018, 185, 283. [Google Scholar] [CrossRef]
- Pan, F.; Chen, D.; Zhuang, X.; Wu, X.; Luan, F.; Zhang, S.; Wei, J.; Xia, S.; Li, X. Fabrication of Gold Nanoparticles/l-Cysteine Functionalized Graphene Oxide Nanocomposites and Application for Nitrite Detection. J. Alloys Compd. 2018, 744, 51–56. [Google Scholar] [CrossRef]
- Yu, W.; Sisi, L.; Haiyan, Y.; Jie, L. Progress in the Functional Modification of Graphene/Graphene Oxide: A Review. RSC Adv. 2020, 10, 15328–15345. [Google Scholar] [CrossRef]
- Ahmed, A.; Singh, A.; Young, S.-J.; Gupta, V.; Singh, M.; Arya, S. Synthesis Techniques and Advances in Sensing Applications of Reduced Graphene Oxide (rGO) Composites: A Review. Compos. Part Appl. Sci. Manuf. 2023, 165, 107373. [Google Scholar] [CrossRef]
- Timperman, L.; Vigeant, A.; Anouti, M. Eutectic Mixture of Protic Ionic Liquids as an Electrolyte for Activated Carbon-Based Supercapacitors. Electrochim. Acta 2015, 155, 164–173. [Google Scholar] [CrossRef]
- Yoo, S.J.; Li, L.-J.; Zeng, C.-C.; Little, R.D. Polymeric Ionic Liquid and Carbon Black Composite as a Reusable Supporting Electrolyte: Modification of the Electrode Surface. Angew. Chem. Int. Ed. 2015, 54, 3744–3747. [Google Scholar] [CrossRef] [PubMed]
- Mazzaracchio, V.; Tomei, M.R.; Cacciotti, I.; Chiodoni, A.; Novara, C.; Castellino, M.; Scordo, G.; Amine, A.; Moscone, D.; Arduini, F. Inside the Different Types of Carbon Black as Nanomodifiers for Screen-Printed Electrodes. Electrochim. Acta 2019, 317, 673–683. [Google Scholar] [CrossRef]
- Fazio, E.; Spadaro, S.; Corsaro, C.; Neri, G.; Leonardi, S.G.; Neri, F.; Lavanya, N.; Sekar, C.; Donato, N.; Neri, G. Metal-Oxide Based Nanomaterials: Synthesis, Characterization and Their Applications in Electrical and Electrochemical Sensors. Sensors 2021, 21, 2494. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Karimi, F.; FallahShojaei, A.; Tabatabaeian, K.; Arshadi, M.; Rezapour, M. Metal-Based Nanoparticles as Conductive Mediators in Electrochemical Sensors: A Mini Review. Curr. Anal. Chem. 2019, 15, 136–142. [Google Scholar] [CrossRef]
- Wang, X.; Su, J.; Zeng, D.; Liu, G.; Liu, L.; Xu, Y.; Wang, C.; Liu, X.; Wang, L.; Mi, X. Gold Nano-Flowers (Au NFs) Modified Screen-Printed Carbon Electrode Electrochemical Biosensor for Label-Free and Quantitative Detection of Glycated Hemoglobin. Talanta 2019, 201, 119–125. [Google Scholar] [CrossRef]
- Xu, S.; Dai, B.; Xu, J.; Jiang, L.; Huang, H. An Electrochemical Sensor for the Detection of Cu2+ Based on Gold Nanoflowers-Modifed Electrode and DNAzyme Functionalized Au@MIL-101 (Fe). Electroanalysis 2019, 31, 2330–2338. [Google Scholar] [CrossRef]
- Bai, W.; Huang, H.; Li, Y.; Zhang, H.; Liang, B.; Guo, R.; Du, L.; Zhang, Z. Direct Preparation of Well-Dispersed Graphene/Gold Nanorod Composites and Their Application in Electrochemical Sensors for Determination of Ractopamine. Electrochim. Acta 2014, 117, 322–328. [Google Scholar] [CrossRef]
- Marlinda, A.R.; Sagadevan, S.; Yusoff, N.; Pandikumar, A.; Huang, N.M.; Akbarzadeh, O.; Johan, M.R. Gold Nanorods-Coated Reduced Graphene Oxide as a Modified Electrode for the Electrochemical Sensory Detection of NADH. J. Alloys Compd. 2020, 847, 156552. [Google Scholar] [CrossRef]
- Wang, C.; Yu, C. Detection of Chemical Pollutants in Water Using Gold Nanoparticles as Sensors: A Review. Rev. Anal. Chem. 2013, 32, 1–14. [Google Scholar] [CrossRef]
- Depestel, L.M.; Strubbe, K. Electrodeposition of Gold from Cyanide Solutions on Different N-GaAs Crystal Faces. J. Electroanal. Chem. 2004, 572, 195–201. [Google Scholar] [CrossRef]
- Zhu, L.; Xu, L.; Tan, L.; Tan, H.; Yang, S.; Yao, S. Direct Electrochemistry of Cholesterol Oxidase Immobilized on Gold Nanoparticles-Decorated Multiwalled Carbon Nanotubes and Cholesterol Sensing. Talanta 2013, 106, 192–199. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, D.; Sheng, Q.; Zheng, J. PANI–TiC Nanocomposite Film for the Direct Electron Transfer of Hemoglobin and Its Application for Biosensing. J. Solid State Electrochem. 2014, 18, 2193–2200. [Google Scholar] [CrossRef]
- Mhadhbi, M.; Driss, M. Titanium Carbide: Synthesis, Properties and Applications. J. Brill. Eng. 2021, 2, 1–11. [Google Scholar] [CrossRef]
- Hu, X.; Pan, D.; Han, H.; Lin, M.; Zhu, Y.; Wang, C. Preparation of Bismuth-Based Microrods and Their Application in Electroanalysis. Mater. Lett. 2017, 190, 83–85. [Google Scholar] [CrossRef]
- Hu, X.; Han, H.; Wang, C.; Song, X. Fractionation Analysis of Iron in Coastal Rivers to Yantai Sishili Bay with a Bismuth Microrods-Based Electrochemical Sensor. J. Mar. Sci. Eng. 2021, 9, 1063. [Google Scholar] [CrossRef]
- Kim, D.; Resasco, J.; Yu, Y.; Asiri, A.M.; Yang, P. Synergistic Geometric and Electronic Effects for Electrochemical Reduction of Carbon Dioxide Using Gold–Copper Bimetallic Nanoparticles. Nat. Commun. 2014, 5, 4948. [Google Scholar] [CrossRef]
- Akshaya, K.B.; Vinod, T.P.; Nidhin, M.; Varghese, A.; George, L. PEDOT Decorated with PtIr Nanoclusters on Carbon Fiber Paper toward Electrocatalytic Reduction of a Hypertensive Drug Olmesartan Medoxomil. J. Electrochem. Soc. 2018, 165, B582. [Google Scholar] [CrossRef]
- Rajeev, R.; Datta, R.; Varghese, A.; Sudhakar, Y.N.; George, L. Recent Advances in Bimetallic Based Nanostructures: Synthesis and Electrochemical Sensing Applications. Microchem. J. 2021, 163, 105910. [Google Scholar] [CrossRef]
- Vallet-Regi, M.; Tamanoi, F. Chapter One—Overview of Studies Regarding Mesoporous Silica Nanomaterials and Their Biomedical Application. In The Enzymes; Tamanoi, F., Ed.; Mesoporous Silica-based Nanomaterials and Biomedical Applications, Part A; Academic Press: Cambridge, MA, USA, 2018; Volume 43, pp. 1–10. [Google Scholar]
- Teng, Z.; Zheng, G.; Dou, Y.; Li, W.; Mou, C.-Y.; Zhang, X.; Asiri, A.M.; Zhao, D. Highly Ordered Mesoporous Silica Films with Perpendicular Mesochannels by a Simple Stöber-Solution Growth Approach. Angew. Chem. Int. Ed. 2012, 51, 2173–2177. [Google Scholar] [CrossRef]
- Cheng, B.; Zhou, L.; Lu, L.; Liu, J.; Dong, X.; Xi, F.; Chen, P. Simultaneous Label-Free and Pretreatment-Free Detection of Heavy Metal Ions in Complex Samples Using Electrodes Decorated with Vertically Ordered Silica Nanochannels. Sens. Actuators B Chem. 2018, 259, 364–371. [Google Scholar] [CrossRef]
- Lu, L.; Zhou, L.; Chen, J.; Yan, F.; Liu, J.; Dong, X.; Xi, F.; Chen, P. Nanochannel-Confined Graphene Quantum Dots for Ultrasensitive Electrochemical Analysis of Complex Samples. ACS Nano 2018, 12, 12673–12681. [Google Scholar] [CrossRef] [PubMed]
- Herzog, G.; Sibottier, E.; Etienne, M.; Walcarius, A. Electrochemically Assisted Self-Assembly of Ordered and Functionalized Mesoporous Silica Films: Impact of the Electrode Geometry and Size on Film Formation and Properties. Faraday Discuss. 2013, 164, 259–273. [Google Scholar] [CrossRef]
- Fernández, I.; Sánchez, A.; Díez, P.; Martínez-Ruiz, P.; Pierro, P.D.; Porta, R.; Villalonga, R.; Pingarrón, J.M. Nanochannel-Based Electrochemical Assay for Transglutaminase Activity. Chem. Commun. 2014, 50, 13356–13358. [Google Scholar] [CrossRef]
- Li, G.; Belwal, T.; Luo, Z.; Li, Y.; Li, L.; Xu, Y.; Lin, X. Direct Detection of Pb2+ and Cd2+ in Juice and Beverage Samples Using PDMS Modified Nanochannels Electrochemical Sensors. Food Chem. 2021, 356, 129632. [Google Scholar] [CrossRef]
- Yan, F.; Luo, T.; Jin, Q.; Zhou, H.; Sailjoi, A.; Dong, G.; Liu, J.; Tang, W. Tailoring Molecular Permeability of Vertically-Ordered Mesoporous Silica-Nanochannel Films on Graphene for Selectively Enhanced Determination of Dihydroxybenzene Isomers in Environmental Water Samples. J. Hazard. Mater. 2021, 410, 124636. [Google Scholar] [CrossRef]
- Li, W.; Ding, L.; Wang, Q.; Su, B. Differential Pulse Voltammetry Detection of Dopamine and Ascorbic Acid by Permselective Silica Mesochannels Vertically Attached to the Electrode Surface. Analyst 2014, 139, 3926–3931. [Google Scholar] [CrossRef]
- Ma, K.; Zheng, Y.; An, L.; Liu, J. Ultrasensitive Immunosensor for Prostate-Specific Antigen Based on Enhanced Electrochemiluminescence by Vertically Ordered Mesoporous Silica-Nanochannel Film. Front. Chem. 2022, 10, 851178. [Google Scholar] [CrossRef]
- Ma, K.; Yang, L.; Liu, J.; Liu, J. Electrochemical Sensor Nanoarchitectonics for Sensitive Detection of Uric Acid in Human Whole Blood Based on Screen-Printed Carbon Electrode Equipped with Vertically-Ordered Mesoporous Silica-Nanochannel Film. Nanomaterials 2022, 12, 1157. [Google Scholar] [CrossRef]
- Zhu, X.; Xuan, L.; Gong, J.; Liu, J.; Wang, X.; Xi, F.; Chen, J. Three-Dimensional Macroscopic Graphene Supported Vertically-Ordered Mesoporous Silica-Nanochannel Film for Direct and Ultrasensitive Detection of Uric Acid in Serum. Talanta 2022, 238, 123027. [Google Scholar] [CrossRef]
- Wang, K.; Yang, L.; Huang, H.; Lv, N.; Liu, J.; Liu, Y. Nanochannel Array on Electrochemically Polarized Screen Printed Carbon Electrode for Rapid and Sensitive Electrochemical Determination of Clozapine in Human Whole Blood. Molecules 2022, 27, 2739. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Luo, X.; Xu, S.; Xi, F.; Zhao, T. A Flexible Electrochemiluminescence Sensor Equipped With Vertically Ordered Mesoporous Silica Nanochannel Film for Sensitive Detection of Clindamycin. Front. Chem. 2022, 10, 872582. [Google Scholar] [CrossRef] [PubMed]
- Moteshakeri, M.; Travas-Sejdic, J.; Kilmartin, P.A. Effect of Holding Time on Electrochemical Analysis of Milk Antioxidants Using PEDOT Electrodes. Int. J. Nanotechnol. 2018, 15, 729–735. [Google Scholar] [CrossRef]
- Motshakeri, M.; Travas-Sejdic, J.; Phillips, A.R.J.; Kilmartin, P.A. Rapid Electroanalysis of Uric Acid and Ascorbic Acid Using a Poly(3,4-Ethylenedioxythiophene)-Modified Sensor with Application to Milk. Electrochim. Acta 2018, 265, 184–193. [Google Scholar] [CrossRef]
- Motshakeri, M.; Phillips, A.R.J.; Kilmartin, P.A. Application of Cyclic Voltammetry to Analyse Uric Acid and Reducing Agents in Commercial Milks. Food Chem. 2019, 293, 23–31. [Google Scholar] [CrossRef]
- Motshakeri, M.; Phillips, A.R.J.; Travas-Sejdic, J.; Kilmartin, P.A. Electrochemical Study of Gold Microelectrodes Modified with PEDOT to Quantify Uric Acid in Milk Samples. Electroanalysis 2020, 32, 2101–2111. [Google Scholar] [CrossRef]
- Motshakeri, M.; Phillips, A.R.J.; Kilmartin, P.A. Electrochemical Preparation of Poly(3,4-Ethylenedioxythiophene) Layers on Gold Microelectrodes for Uric Acid-Sensing Applications. JoVE J. Vis. Exp. 2021, 173, e62707. [Google Scholar] [CrossRef]
- Gholami, M.; Rezayi, M.; Moozarm Nia, P.; Yusoff, I.; Alias, Y. A Novel Method for Fabricating Fe2+ Ion Selective Sensor Using Polypyrrole and Sodium Dodecyl Sulfate Based on Carbon Screen-Printed Electrode. Measurement 2015, 69, 115–125. [Google Scholar] [CrossRef]
- Kindra, L.R.; Eggers, C.J.; Liu, A.T.; Mendoza, K.; Mendoza, J.; Klein Myers, A.R.; Penner, R.M. Lithographically Patterned PEDOT Nanowires for the Detection of Iron(III) with Nanomolar Sensitivity. Anal. Chem. 2015, 87, 11492–11500. [Google Scholar] [CrossRef]
- Ayranci, R.; Ak, M. An Electrochemical Sensor Platform for Sensitive Detection of Iron(III) Ions Based on Pyrene-Substituted Poly(2,5-Dithienylpyrrole). J. Electrochem. Soc. 2019, 166, B291. [Google Scholar] [CrossRef]
- Tamm, J.; Hallik, A.; Alumaa, A.; Sammelselg, V. Electrochemical Properties of Polypyrrole/Sulphate Films. Electrochim. Acta 1997, 42, 2929–2934. [Google Scholar] [CrossRef]
- Nagy, G.; Gerhardt, G.A.; Oke, A.F.; Rice, M.E.; Adams, R.N.; Szentirmay, M.N.; Martin, C.R. Ion Exchange and Transport of Neurotransmitters in Nation Films on Conventional and Microelectrode Surfaces. J. Electroanal. Chem. Interfacial Electrochem. 1985, 188, 85–94. [Google Scholar] [CrossRef]
- Szentirmay, M.N.; Martin, C.R. Ion-Exchange Selectivity of Nafion Films on Electrode Surfaces. Ion-Exch. Sel. Nafion Films Electrode Surf. 1984, 56, 1898–1902. [Google Scholar] [CrossRef]
- Shao, Y.; Ying, Y.; Ping, J. Recent Advances in Solid-Contact Ion-Selective Electrodes: Functional Materials, Transduction Mechanisms, and Development Trends. Chem. Soc. Rev. 2020, 49, 4405–4465. [Google Scholar] [CrossRef]
- Lisak, G. Reliable Environmental Trace Heavy Metal Analysis with Potentiometric Ion Sensors—Reality or a Distant Dream. Environ. Pollut. 2021, 289, 117882. [Google Scholar] [CrossRef]
- Lisak, G.; Ivaska, A.; Lewenstam, A.; Bobacka, J. Multicalibrational Procedure for More Reliable Analyses of Ions at Low Analyte Concentrations. Electrochim. Acta 2014, 140, 27–32. [Google Scholar] [CrossRef]
- Han, T.; Song, T.; Gan, S.; Han, D.; Bobacka, J.; Niu, L.; Ivaska, A. Coulometric Response of H+-Selective Solid-Contact Ion-Selective Electrodes and Its Application in Flexible Sensors†. Chin. J. Chem. 2023, 41, 207–213. [Google Scholar] [CrossRef]
- Rousseau, C.R.; Bühlmann, P. Calibration-Free Potentiometric Sensing with Solid-Contact Ion-Selective Electrodes. TrAC Trends Anal. Chem. 2021, 140, 116277. [Google Scholar] [CrossRef]
- Paut, A.; Prkić, A.; Mitar, I.; Guć, L.; Marciuš, M.; Vrankić, M.; Krehula, S.; Tomaško, L. The New Ion-Selective Electrodes Developed for Ferric Cations Determination, Modified with Synthesized Al and Fe−Based Nanoparticles. Sensors 2021, 22, 297. [Google Scholar] [CrossRef]
- Motlagh, M.G.; Taher, M.A.; Ahmadi, A. PVC Membrane and Coated Graphite Potentiometric Sensors Based on 1-Phenyl-3-Pyridin-2-Yl-Thiourea for Selective Determination of Iron(III). Electrochim. Acta 2010, 55, 6724–6730. [Google Scholar] [CrossRef]
- Hu, J.; Stein, A.; Bühlmann, P. Rational Design of All-Solid-State Ion-Selective Electrodes and Reference Electrodes. TrAC Trends Anal. Chem. 2016, 76, 102–114. [Google Scholar] [CrossRef]
- Lindner, E.; Gyurcsányi, R.E. Quality Control Criteria for Solid-Contact, Solvent Polymeric Membrane Ion-Selective Electrodes. J. Solid State Electrochem. 2009, 13, 51–68. [Google Scholar] [CrossRef]
- George, J.M.; Antony, A.; Mathew, B. Metal Oxide Nanoparticles in Electrochemical Sensing and Biosensing: A Review. Mikrochim. Acta 2018, 185, 358. [Google Scholar] [CrossRef] [PubMed]
- Lenar, N.; Piech, R.; Wardak, C.; Paczosa-Bator, B. Application of Metal Oxide Nanoparticles in the Field of Potentiometric Sensors: A Review. Membranes 2023, 13, 876. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, U.; Saeed, M.; Marwani, H.M.; Al-Humaidi, J.Y.; Rehman, S.U.; Althomali, R.H.; Awual, M.R.; Rahman, M.M. Recent Progress on Potentiometric Sensor Applications Based on Nanoscale Metal Oxides: A Comprehensive Review. Crit. Rev. Anal. Chem. 2024; 1–18. [Google Scholar] [CrossRef]
- Kausar, A. Polymeric Materials Filled with Hematite Nanoparticle: Current State and Prospective Application. Polym.-Plast. Technol. Mater. 2020, 59, 323–338. [Google Scholar] [CrossRef]
- Sutter, J.; Radu, A.; Peper, S.; Bakker, E.; Pretsch, E. Solid-Contact Polymeric Membrane Electrodes with Detection Limits in the Subnanomolar Range. Anal. Chim. Acta 2004, 523, 53–59. [Google Scholar] [CrossRef]
- Tang, X.; Wang, P.-Y.; Buchter, G. Ion-Selective Electrodes for Detection of Lead(II) in Drinking Water: A Mini-Review. Environments 2018, 5, 95. [Google Scholar] [CrossRef]
- Gao, L.; Tian, Y.; Gao, W.; Xu, G. Recent Developments and Challenges in Solid-Contact Ion-Selective Electrodes. Sensors 2024, 24, 4289. [Google Scholar] [CrossRef]
- Ali, T.A.; Mohamed, G.G.; El-Dessouky, M.M.I.; Mohamed, R.T.F. Modified Carbon Paste Ion Selective Electrodes for the Determination of Iron(III) in Water, Soil and Fish Tissue Samples. Int. J. Electrochem. Sci. 2013, 8, 1469–1486. [Google Scholar] [CrossRef]
- Bühlmann, P.; Pretsch, E.; Bakker, E. Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 2. Ionophores for Potentiometric and Optical Sensors. Chem. Rev. 1998, 98, 1593–1688. [Google Scholar] [CrossRef]
- Ali, T.A.; Mohamed, G.G.; Eldessouky, H.; Adeeb, A.-E. Ion Selective Electrodes Based on Methyl 6-(Hydroxymethyl) Picolinate Ionophore for Electrochemical Determination of Fe(III) in Petroleum Water Samples. Egypt. J. Pet. 2019, 28, 233–239. [Google Scholar] [CrossRef]
- Abounassif, M.A.; Al-Omar, M.A.; Amr, A.-G.E.; Mostafa, G.A.E. PVC Membrane Sensor for Potentiometric Determination of Iron(II) in Some Pharmaceutical Formulations Based on a New Neutral Ionophore. Drug Test. Anal. 2011, 3, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.K.; Singh, A.K.; Kumawat, L.K. A Turn-on Fluorescent Chemosensor for Zn2+ Ions Based on Antipyrine Schiff Base. Sens. Actuators B Chem. 2014, 204, 507–514. [Google Scholar] [CrossRef]
- Oh, W.-K.; Jeong, Y.S.; Kim, S.; Jang, J. Fluorescent Polymer Nanoparticle for Selective Sensing of Intracellular Hydrogen Peroxide. ACS Nano 2012, 6, 8516–8524. [Google Scholar] [CrossRef]
- Bakker, E. Ion-Selective Electrodes|Overview. In Encyclopedia of Analytical Science, 3rd ed.; Worsfold, P., Poole, C., Townshend, A., Miró, M., Eds.; Academic Press: Oxford, UK, 2019; pp. 231–251. ISBN 978-0-08-101984-9. [Google Scholar]
- Ali, T.A.; Farag, A.A.; Mohamed, G.G. Potentiometric Determination of Iron in Polluted Water Samples Using New Modified Fe(III)-Screen Printed Ion Selective Electrode. J. Ind. Eng. Chem. 2014, 20, 2394–2400. [Google Scholar] [CrossRef]
- Bandi, K.R.; Singh, A.K.; Upadhyay, A. Construction and Performance Characteristics of Polymeric Membrane Electrode and Coated Graphite Electrode for the Selective Determination of Fe3+ Ion. Mater. Sci. Eng. C 2014, 36, 187–193. [Google Scholar] [CrossRef]
- Ozer, T.; Isildak, I. A New Fe(III)-Selective Membrane Electrode Based on Fe(II) Phthalocyanine. J. Electrochem. Sci. Technol. 2019, 10, 321–328. [Google Scholar] [CrossRef]
- Zakharova, E.A.; Elesova, E.E.; Noskova, G.N.; Lu, M.; Compton, R.G. Direct Voltammetric Determination of Total Iron with a Gold Microelectrode Ensemble. Electroanalysis 2012, 24, 2061–2069. [Google Scholar] [CrossRef]
- Bobrowski, A.; Nowak, K.; Zarębski, J. Application of a Bismuth Film Electrode to the Voltammetric Determination of Trace Iron Using a Fe(III)–TEA–BrO3−catalytic System. Anal. Bioanal. Chem. 2005, 382, 1691–1697. [Google Scholar] [CrossRef]
- Sundramoorthy, A.K.; Premkumar, B.S.; Gunasekaran, S. Reduced Graphene Oxide-Poly(3,4-Ethylenedioxythiophene) Polystyrenesulfonate Based Dual-Selective Sensor for Iron in Different Oxidation States. ACS Sens. 2016, 1, 151–157. [Google Scholar] [CrossRef]
- Gumpu, M.B.; Sethuraman, S.; Krishnan, U.M.; Rayappan, J.B.B. A Review on Detection of Heavy Metal Ions in Water—An Electrochemical Approach. Sens. Actuators B Chem. 2015, 213, 515–533. [Google Scholar] [CrossRef]
- Jose, J.; Prakash, P.; Jeyaprabha, B.; Abraham, R.; Mathew, R.M.; Zacharia, E.S.; Thomas, V.; Thomas, J. Principle, Design, Strategies, and Future Perspectives of Heavy Metal Ion Detection Using Carbon Nanomaterial-Based Electrochemical Sensors: A Review. J. Iran. Chem. Soc. 2023, 20, 775–791. [Google Scholar] [CrossRef]
- Rubino, A.; Queirós, R. Electrochemical Determination of Heavy Metal Ions Applying Screen-Printed Electrodes Based Sensors. A Review on Water and Environmental Samples Analysis. Talanta Open 2023, 7, 100203. [Google Scholar] [CrossRef]
- Lee, J.; Kim, S.; Shin, H. Hierarchical Porous Carbon Electrodes with Sponge-Like Edge Structures for the Sensitive Electrochemical Detection of Heavy Metals. Sensors 2021, 21, 1346. [Google Scholar] [CrossRef]
- Ganesh, P.-S.; Kim, S.-Y. Electrochemical Sensing Interfaces Based on Novel 2D-MXenes for Monitoring Environmental Hazardous Toxic Compounds: A Concise Review. J. Ind. Eng. Chem. 2022, 109, 52–67. [Google Scholar] [CrossRef]
- Ait-Touchente, Z.; Sakhraoui, H.E.E.Y.; Fourati, N.; Zerrouki, C.; Maouche, N.; Yaakoubi, N.; Touzani, R.; Chehimi, M.M. High Performance Zinc Oxide Nanorod-Doped Ion Imprinted Polypyrrole for the Selective Electrosensing of Mercury II Ions. Appl. Sci. 2020, 10, 7010. [Google Scholar] [CrossRef]
- Guo, X.; Feng, S.; Peng, Y.; Li, B.; Zhao, J.; Xu, H.; Meng, X.; Zhai, W.; Pang, H. Emerging Insights into the Application of Metal-Organic Framework (MOF)-Based Materials for Electrochemical Heavy Metal Ion Detection. Food Chem. 2025, 463, 141387. [Google Scholar] [CrossRef]
Electrode | Iron Species | Reagent | Method | Calibration Range | LOD | Reference |
---|---|---|---|---|---|---|
NCLC/AuNPs/GCE | Fe(III) | None | DP-AdSV | 0.1–1.8 nM | 0.03 nM | [60] |
Nafion-CNT/GCE | Fe(III) | HNO3, KNO3 | LSSV | 1–50 μM | 0.71 μM | [56] |
Nafion/TiCNPs/GCE | Fe(III) | H2O2 | SWV | 0.07–70 μM | 7.2 nM | [110] |
AuNPs/Methylene blue/rGO/GCE | Fe(III) | None | DPV | 0.3–100 μM | 15 nM | [111] |
Nafion/AuNDs/IL-rGO/GCE | Fe(III) | None | SWV | 0.3–100 μM | 35 nM | [112] |
PtNFs/TiCNPs-Nafion/GCE | Fe(II) | 2,2-bipyridyl | SW-ASV | 1 nM–6 μM | 0.03 nM | [61] |
AuNPs/rGO/GCE | Fe(III) | 5-Br-PADAP | DPV | 30 nM–3 μM | 3.5 nM | [113] |
DAuN/GO/GCE | Fe(III) | H2O2 | DPV | 7 nM–1 μM | 1.5 nM | [89] |
Sputtered PtNPs/silicon wafer | Fe(III) | None | SWV | 0.3–5 ppm | 90 ppb (~1.6 μM) | [114] |
Nafion/nano-grain Pt/silicon wafer | Fe(III) | None | SWV | 1–250 ppb | 0.31 ppb (~5.6 nM) | [115] |
Thermally reduced graphene-nafion/PtDE | Fe(III) | None | SWV | 1–200 ppb | 0.08 ppb (~1.4 nM) | [116] |
Piroxicam/Graphene/SPCE | Fe(III) | KBrO3 | DPV-AdSV | 1–3500 ng/mL | 0.3 ng/mL (~5.4 nM) | [117] |
Au-BiNPs/L-cysteine-GO/GCE | Fe(III) | None | SWV | 0.2–50 μM | 0.07 μM | [90] |
GR-AuNPs-PPY/carbon paste | Fe(II) | None | Potentiometry | 1–10 mM | 0.79 μM | [81] |
Alanine-polydopamine-rGO/GCE | Fe(II) | None | DP-ASV | 40–120 ppb | 50 ppb (~0.9 μM) | [55] |
N-CQD/AgNPs/β-cyclodextrin/GCE | Fe(II) Fe(III) | None | DPV | Fe(II): 0.6–10 mM Fe(III): 0.2–10 mM | Fe(II): 0.2 mM Fe(III): 0.033 mM | [28] |
Nafion/AuNPs/carbon black/paper SPE | Fe(III) | None | SWV | Up to 10 mg/L | 0.035 mg/L (0.6 μM) 0.05 mg/L for serum (~0.9 μM) | [29] |
N, S-GQD/GCE | Fe(III) Total Fe | KNO3 | Amperometry SWV | 1–100 nM 1–120 nM | 0.23 nM 1 nM | [27] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Motshakeri, M.; Angoro, B.; Phillips, A.R.J.; Svirskis, D.; Kilmartin, P.A.; Sharma, M. Advancements in Mercury-Free Electrochemical Sensors for Iron Detection: A Decade of Progress in Electrode Materials and Modifications. Sensors 2025, 25, 1474. https://doi.org/10.3390/s25051474
Motshakeri M, Angoro B, Phillips ARJ, Svirskis D, Kilmartin PA, Sharma M. Advancements in Mercury-Free Electrochemical Sensors for Iron Detection: A Decade of Progress in Electrode Materials and Modifications. Sensors. 2025; 25(5):1474. https://doi.org/10.3390/s25051474
Chicago/Turabian StyleMotshakeri, Mahsa, Barbara Angoro, Anthony R. J. Phillips, Darren Svirskis, Paul A. Kilmartin, and Manisha Sharma. 2025. "Advancements in Mercury-Free Electrochemical Sensors for Iron Detection: A Decade of Progress in Electrode Materials and Modifications" Sensors 25, no. 5: 1474. https://doi.org/10.3390/s25051474
APA StyleMotshakeri, M., Angoro, B., Phillips, A. R. J., Svirskis, D., Kilmartin, P. A., & Sharma, M. (2025). Advancements in Mercury-Free Electrochemical Sensors for Iron Detection: A Decade of Progress in Electrode Materials and Modifications. Sensors, 25(5), 1474. https://doi.org/10.3390/s25051474