Ray-Based Physical Modeling and Simulation of Multibeam Sonar for Underwater Robotics in ROS-Gazebo Framework
Abstract
:1. Introduction
- Improved distance accuracy—Ray tracing calculates precise intersection points with 3D objects, avoiding the discretization errors inherent in rasterization.
- Scalable resolution—The number of rays can be adjusted to balance between accuracy and computational cost, unlike the fixed resolution of a rasterized image.
- Enhanced directivity pattern calculations—The ray-based approach allows for more accurate applications of directivity pattern interference calculations, leading to more realistic beam behavior modeling.
2. Methods
2.1. Beam-Based Acoustic Calculation
2.2. Previous Rasterized Scene Perception
2.3. Ray-Based Scene Perception
2.4. Ray-Based Point Scattering Model
3. Real-World and Simulated Sonar Data Comparisons
3.1. Experiment Descriptions
3.2. Calibration Case
3.3. Validation Case
4. Real-Time Simulation in ROS-Gazebo Framework
4.1. Comparisons for Front Floating Objects
4.2. Comparisons for Local Search Scenario
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ROS | Robot Operating System |
GPU | Graphics Processing Unit |
FFT | Faster Fourier Transform |
LF | Low Frequency |
HF | High Frequency |
References
- Cook, D.; Vardy, A.; Lewis, R. A survey of AUV and robot simulators for multi-vehicle operations. In Proceedings of the 2014 IEEE/OES Autonomous Underwater Vehicles (AUV), Oxford, MI, USA, 6–9 October 2014; pp. 1–8. [Google Scholar]
- Manhães, M.M.M.; Scherer, S.A.; Voss, M.; Douat, L.R.; Rauschenbach, T. UUV simulator: A gazebo-based package for underwater intervention and multi-robot simulation. In Proceedings of the OCEANS 2016 MTS/IEEE Monterey, Monterey, CA, USA, 19–23 September 2016; pp. 1–8. [Google Scholar]
- Quigley, M. ROS: An open-source Robot Operating System. In Open-source software. In Proceedings of the Workshop of the International Conference on Robotics and Automation (ICRA), Kobe, Japan, 12–17 May 2009. [Google Scholar]
- Aguero, C.; Koenig, N.; Chen, I.; Boyer, H.; Peters, S.; Hsu, J.; Gerkey, B.; Paepcke, S.; Rivero, J.; Manzo, J.; et al. Inside the Virtual Robotics Challenge: Simulating Real-Time Robotic Disaster Response. Autom. Sci. Eng. IEEE Trans. 2015, 12, 494–506. [Google Scholar] [CrossRef]
- DeMarco, K.J.; West, M.E.; Howard, A.M. Acomputationally-efficient 2D imaging sonar model for underwater robotics simulations in Gazebo. In Proceedings of the OCEANS 2015—MTS/IEEE, Washington, DC, USA, 19–22 October 2015; pp. 1–7. [Google Scholar] [CrossRef]
- Sac, H.; LEBLEBİCİOĞLU, K.; BOZDAĞI AKAR, G. 2D high-frequency forward-looking sonar simulator based on continuous surfaces approach. Turk. J. Electr. Eng. Comput. Sci. 2015, 23, 2289. [Google Scholar] [CrossRef]
- Mai, N.T.; Ji, Y.; Woo, H.; Tamura, Y.; Yamashita, A.; Asama, H. Acoustic Image Simulator Based on Active Sonar Model in Underwater Environment. In Proceedings of the 2018 15th International Conference on Ubiquitous Robots (UR), Honolulu, HI, USA, 26–30 June 2018; pp. 775–780. [Google Scholar] [CrossRef]
- Bell, J.; Linnett, L. Simulation and analysis of synthetic sidescan sonar images. Iee Proc.-Radar, Sonar Navig. 1997, 144, 219–226. [Google Scholar] [CrossRef]
- Coiras, E.; Groen, J. Simulation and 3D Reconstruction of Side-Looking Sonar Images; In-Tech: Rijeka, Croatia, 2009; Volume 1. [Google Scholar]
- Gueriot, D.; Sintes, C.; Garello, R. Sonar data simulation based on tube tracing. In Proceedings of the OCEANS 2007-Europe, Aberdeen, Scotland, 18–21 June 2007; pp. 1–6. [Google Scholar]
- Guériot, D.; Sintes, C. Forward looking sonar data simulation through tube tracing. In Proceedings of the OCEANS’10 IEEE SYDNEY, Sydney, Australia, 24–27 May 2010; pp. 1–6. [Google Scholar]
- Potokar, E.; Lay, K.; Norman, K.; Benham, D.; Ashford, S.; Peirce, R.; Neilsen, T.B.; Kaess, M.; Mangelson, J.G. HoloOcean: A Full-Featured Marine Robotics Simulator for Perception and Autonomy. IEEE J. Ocean. Eng. 2024, 49, 1322–1336. [Google Scholar] [CrossRef]
- Potokar, E.; Lay, K.; Norman, K.; Benham, D.; Neilsen, T.B.; Kaess, M.; Mangelson, J.G. HoloOcean: Realistic Sonar Simulation. In Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 23–27 October 2022; pp. 8450–8456. [Google Scholar] [CrossRef]
- Sung, M.; Kim, J.; Kim, J.; Yu, S.C. Realistic sonar image simulation using generative adversarial network. IFAC-PapersOnLine 2019, 52, 291–296. [Google Scholar] [CrossRef]
- Liu, D.; Wang, Y.; Ji, Y.; Tsuchiya, H.; Yamashita, A.; Asama, H. CycleGAN-based realistic image dataset generation for forward-looking sonar. Adv. Robot. 2021, 35, 242–254. [Google Scholar] [CrossRef]
- Lee, S.; Park, B.; Kim, A. Deep learning from shallow dives: Sonar image generation and training for underwater object detection. arXiv 2018, arXiv:1810.07990. [Google Scholar]
- Sung, M.; Lee, M.; Kim, J.; Song, S.; Song, Y.w.; Yu, S.C. Convolutional-Neural-Network-based Underwater Object Detection Using Sonar Image Simulator with Randomized Degradation. In Proceedings of the OCEANS 2019 MTS/IEEE SEATTLE, Seattle, WA, USA, 27–31 October 2019; pp. 1–7. [Google Scholar] [CrossRef]
- Yu, M.; Ye, X.; Chen, A.; Wang, Z. Simulated Sonar Image Generation Method Based on Improved CycleGAN. In Proceedings of the 2023 IEEE 11th International Conference on Computer Science and Network Technology (ICCSNT), Dalian, China, 21–22 October 2023; pp. 281–285. [Google Scholar] [CrossRef]
- Denos, K.; Ravaut, M.; Fagette, A.; Lim, H.S. Deep learning applied to underwater mine warfare. In Proceedings of the OCEANS 2017—Aberdeen, Aberdeen, UK, 19–22 June 2017; pp. 1–7. [Google Scholar] [CrossRef]
- Cerqueira, R.; Trocoli, T.; Neves, G.; Joyeux, S.; Albiez, J.; Oliveira, L. A novel GPU-based sonar simulator for real-time applications. Comput. Graph. 2017, 68, 66–76. [Google Scholar] [CrossRef]
- Cerqueira, R.; Trocoli, T.; Albiez, J.; Oliveira, L. A rasterized ray-tracer pipeline for real-time, multi-device sonar simulation. Graph. Model. 2020, 111, 101086. [Google Scholar] [CrossRef]
- Choi, W.S.; Olson, D.R.; Davis, D.; Zhang, M.; Racson, A.; Bingham, B.; McCarrin, M.; Vogt, C.; Herman, J. Physics-based modelling and simulation of multibeam echosounder perception for autonomous underwater manipulation. Front. Robot. 2021, 8, 706646. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.M.; Choi, W.S.; Herman, J.; Davis, D.; Vogt, C.; McCarrin, M.; Vijay, Y.; Dutia, D.; Lew, W.; Peters, S.; et al. Dave aquatic virtual environment: Toward a general underwater robotics simulator. In Proceedings of the 2022 IEEE/OES Autonomous Underwater Vehicles Symposium (AUV), Singapore, 19–21 September 2022; pp. 1–8. [Google Scholar]
- Brown, D.; Johnson, S.; Olson, D. A point-based scattering model for the incoherent component of the scattered field. J. Acoust. Soc. Am. 2017, 141, EL210–EL215. [Google Scholar] [CrossRef] [PubMed]
- Abbott, J.G.; Thurstone, F. Acoustic speckle: Theory and experimental analysis. Ultrason. Imaging 1979, 1, 303–324. [Google Scholar] [CrossRef] [PubMed]
- Ribas, D.; Ridao, P.; Neira, J. Underwater SLAM for Structured Environments Using an Imaging Sonar; Springer: Berlin/Heidelberg, Germany, 2010; Volume 65. [Google Scholar]
- Marković. Velodyne Simulator. 2021. Available online: https://github.com/lmark1/velodyne_simulator (accessed on 19 January 2023).
- Andersson, C.; Ahrens, J. Database of Ultrasonic Transducer Radiation Characteristics. 2017. Available online: https://zenodo.org/records/1118386 (accessed on 19 January 2023).
- Urick, R.J. Principles of Underwater Sound, 3rd ed.; Peninsula Publishing: Westport, CT, USA, 2013. [Google Scholar]
- Teledyne BlueView Inc. Teledyne BlueView P900 Series Datasheet. 2021. Available online: https://www.teledynemarine.com/en-us/products/SiteAssets/BlueView/PLD20590-3%20Blueview%20M900-Mk2%20product%20leaflet.pdf (accessed on 25 February 2025).
- Rice, S.O. Mathematical analysis of random noise. Bell Syst. Tech. J. 1944, 23, 282–332. [Google Scholar] [CrossRef]
Parameter | Specification | Unit |
---|---|---|
Frequency (LF/HF) | 1.2/2.1 | MHz |
Max Range (LF/HF) | 30/10 | m |
Min Range | 0.1 | m |
Update Rate (max) | 40 | Hz |
Horizontal Aperture (LF/HF) | 130/60 | Degrees |
Vertical Aperture (LF/HF) | 20/12 | Degrees |
Number of Beams | 512 | - |
Parameter | Specification | Unit |
---|---|---|
Frequency | 900 | kHz |
Bandwidth | 2.95 | kHz |
Field-of-View | 90 | Degrees |
Range | 10 | m |
Beam width | 1 × 20 | Degrees |
Beam spacing | 0.18 | Degrees |
Number of beams | 512 | - |
Number of rays | 228 | - |
Source level | 220 | dB re Pa |
Methods | Range [m] | Number of Rays [-] | Ray Signal [s] | Summation [s] | Correction [s] | FFT [s] | Refresh Rate [Hz] |
---|---|---|---|---|---|---|---|
Raster | 10 | 11 | 0.004 | 0.04 | 0.01 | 0.004 | 2 |
Ray | 10 | 300 | 0.9 | 2.31 | 0.01 | 0.01 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, W.-S. Ray-Based Physical Modeling and Simulation of Multibeam Sonar for Underwater Robotics in ROS-Gazebo Framework. Sensors 2025, 25, 1516. https://doi.org/10.3390/s25051516
Choi W-S. Ray-Based Physical Modeling and Simulation of Multibeam Sonar for Underwater Robotics in ROS-Gazebo Framework. Sensors. 2025; 25(5):1516. https://doi.org/10.3390/s25051516
Chicago/Turabian StyleChoi, Woen-Sug. 2025. "Ray-Based Physical Modeling and Simulation of Multibeam Sonar for Underwater Robotics in ROS-Gazebo Framework" Sensors 25, no. 5: 1516. https://doi.org/10.3390/s25051516
APA StyleChoi, W.-S. (2025). Ray-Based Physical Modeling and Simulation of Multibeam Sonar for Underwater Robotics in ROS-Gazebo Framework. Sensors, 25(5), 1516. https://doi.org/10.3390/s25051516