A Sensor Employing an Array of Silicon Photomultipliers for Detection of keV Ions in Time-of-Flight Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. The FastIC ToF-MS Prototype
2.2. Characterisation of the Detector
2.2.1. Optical Characterisation of the SiPM Array
2.2.2. Characterisation of Ion Detector Performance Within a ToF-MS Experiment
3. Results
3.1. SiPM Array Single-Photon Time Resolution
3.2. ToF-System Time Resolution
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kharzheev, Y.N. Scintillation counters in modern high-energy physics experiments (Review). Phys. Part. Nuclei 2015, 46, 678–728. [Google Scholar] [CrossRef]
- Lecoq, P. Development of new scintillators for medical applications. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 2016, 809, 130–139. [Google Scholar] [CrossRef]
- Beddar, A. Plastic scintillation dosimetry and its application to radiotherapy. Radiat. Meas. 2006, 41, S124–S133. [Google Scholar] [CrossRef]
- Menichelli, M.; Ansoldi, S.; Bari, M.; Basset, M.; Battiston, R.; Blasko, S.; Coren, F.; Fiori, E.; Giannini, G.; Iugovaz, D.; et al. A scintillating fibres tracker detector for archaeological applications. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2007, 572, 262–265. [Google Scholar] [CrossRef]
- Richards, P.I.; Hays, E.E. Scintillation-Type Ion Detector. Rev. Sci. Instrum. 1950, 21, 99–100. [Google Scholar] [CrossRef]
- Dubois, F.; Knochenmuss, R.; Zenobi, R. An ion-to-photon conversion detector for mass spectrometry. Int. J. Mass Spectrom. Ion Processes 1997, 169–170, 89–98. [Google Scholar] [CrossRef]
- Li, M.H.; Tsai, S.T.; Chen, C.H.; Chen, C.W.; Lee, Y.T.; Wang, Y.S. Bipolar Ion Detector Based on Sequential Conversion Reactions. Anal. Chem. 2007, 79, 1277–1282. [Google Scholar] [CrossRef]
- Wilman, E.S.; Gardiner, S.H.; Nomerotski, A.; Turchetta, R.; Brouard, M.; Vallance, C. A new detector for mass spectrometry: Direct detection of low energy ions using a multi-pixel photon counter. Rev. Sci. Instrum. 2012, 83, 013304. [Google Scholar] [CrossRef]
- Agilent Mass Spectrometers. Available online: https://www.agilent.com (accessed on 20 March 2024).
- Thermo Scientific Orbitrap Astral Mass Spectrometer. Available online: https://www.thermofisher.com (accessed on 20 March 2024).
- Exosens Detectors for ToF Mass Spectrometers. Available online: https://www.exosens.com (accessed on 20 March 2024).
- Winter, B.; King, S.J.; Brouard, M.; Vallance, C. Improved direct detection of low-energy ions using a multipixel photon counter coupled with a novel scintillator. Int. J. Mass Spectrom. 2016, 397–398, 27–31. [Google Scholar] [CrossRef]
- Kirn, T. SciFi – A large scintillating fibre tracker for LHCb. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2017, 845, 481–485. [Google Scholar] [CrossRef]
- Kyratzis, D.; Alemanno, F.; Altomare, C.; Bernardini, P.; Cattaneo, P.; De Mitri, I.; de Palma, F.; Di Venere, L.; Di Santo, M.; Fusco, P.; et al. The Plastic Scintillator Detector of the HERD space mission. PoS 2021, ICRC2021, 054. [Google Scholar] [CrossRef]
- Xu, J.; Luo, R.; Luo, Z.; Xu, J.; Mu, Z.; Bian, H.; Chan, S.Y.; Tan, B.Y.H.; Chi, D.; An, Z.; et al. Ultrabright molecular scintillators enabled by lanthanide-assisted near-unity triplet exciton recycling. Nat. Photonics 2025, 19, 71–78. [Google Scholar] [CrossRef]
- Kaercher, R.; da Silveira, E.; Leite, C.; Schweikert, E. Simultaneous detection of secondary ions and photons produced by the impact of keV polyatomic ions. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1994, 94, 207–217. [Google Scholar] [CrossRef]
- Sullivan, P.A.; Axelsson, J.; Sundqvist, B.U.R. Light emission from impacts of energetic proteins on surfaces and a light emission detector for mass spectrometry. Rapid Commun. Mass Spectrom. 1995, 9, 377–382. [Google Scholar] [CrossRef]
- Jiménez-Rey, D.; Zurro, B.; García, G.; Baciero, A.; Rodríguez-Barquero, L.; García-Munoz, M. Ionoluminescent response of several phosphor screens to keV ions of different masses. J. Appl. Phys. 2008, 104, 064911. [Google Scholar] [CrossRef]
- Winter, B.; King, S.J.; Brouard, M.; Vallance, C. A fast microchannel plate-scintillator detector for velocity map imaging and imaging mass spectrometry. Rev. Sci. Instrum. 2014, 85, 023306. [Google Scholar] [CrossRef]
- Perego, J.; Villa, I.; Pedrini, A.; Padovani, E.C.; Crapanzano, R.; Vedda, A.; Dujardin, C.; Bezuidenhout, C.X.; Bracco, S.; Sozzani, P.E.; et al. Composite fast scintillators based on high-Z fluorescent metal–organic framework nanocrystals. Nat. Photonics 2021, 15, 393–400. [Google Scholar] [CrossRef]
- Koshimizu, M. Recent progress of organic scintillators. Jpn. J. Appl. Phys. 2022, 62, 010503. [Google Scholar] [CrossRef]
- Acerbi, F.; Ferri, A.; Gola, A.; Cazzanelli, M.; Pavesi, L.; Zorzi, N.; Piemonte, C. Characterization of Single-Photon Time Resolution: From Single SPAD to Silicon Photomultiplier. IEEE Trans. Nucl. Sci. 2014, 61, 2678–2686. [Google Scholar] [CrossRef]
- Enoch, S.; Gola, A.; Lecoq, P.; Rivetti, A. Design considerations for a new generation of SiPMs with unprecedented timing resolution. J. Instrum. 2021, 16, P02019. [Google Scholar] [CrossRef]
- Gundacker, S.; Borghi, G.; Cherry, S.R.; Gola, A.; Lee, D.; Merzi, S.; Penna, M.; Schulz, V.; Kwon, S.I. On timing-optimized SiPMs for Cherenkov detection to boost low cost time-of-flight PET. Phys. Med. Biol. 2023, 68, 165016. [Google Scholar] [CrossRef]
- Fraser, G.W.; Pearson, J.F.; Smith, G.C.; Lewis, M.; Barstow, M.A. The Gain Characteristics of Microchannel Plates for X-Ray Photon Counting. IEEE Trans. Nucl. Sci. 1983, 30, 455–460. [Google Scholar] [CrossRef]
- Westman, A.; Brinkmalm, G.; Barofsky, D. MALDI induced saturation effects in chevron microchannel plate detectors. Int. J. Mass Spectrom. Ion Processes 1997, 169–170, 79–87. [Google Scholar] [CrossRef]
- Kobayashi, H.; Hondo, T.; Toyoda, M. Evaluation of microchannel plate gain drops caused by high ion fluxes in time-of-flight mass spectrometry: A novel evaluation method using a multi-turn time-of-flight mass spectrometer. J. Mass Spectrom. 2021, 56, e4706. [Google Scholar] [CrossRef]
- Kobayashi, H.; Hondo, T.; Kanematsu, Y.; Suyama, M.; Toyoda, M. Evaluation of transient gain-drop and following recovery property on microchannel plate: Comparison between two evaluation methods. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 2023, 1053, 168355. [Google Scholar] [CrossRef]
- Mirzoyan, R.; Popova, E. SiPM for atmospheric Cherenkov telescopes. In Optical Components and Materials X; SPIE: Bellingham, WA, USA, 2013; Volume 8621, pp. 17–28. [Google Scholar]
- Kazkaz, K.; Swanberg, E. Survey of Current and Future PMT Replacement Technology; Technical Report; Lawrence Livermore National Lab. (LLNL): Livermore, CA, USA, 2018. [Google Scholar] [CrossRef]
- Lecoq, P.; Gundacker, S. SiPM applications in positron emission tomography: Toward ultimate PET time-of-flight resolution. Eur. Phys. J. Plus 2021, 136, 292. [Google Scholar] [CrossRef]
- Nemallapudi, M.; Gundacker, S.; Lecoq, P.; Auffray, E. Single photon time resolution of state of the art SiPMs. J. Instrum. 2016, 11, P10016. [Google Scholar] [CrossRef]
- Lee, S.; Choong, W.S.; Heller, R.; Cates, J.W. Timing Performance With Broadcom Metal Trench Silicon Photomultipliers. IEEE Trans. Radiat. Plasma Med. Sci. 2024, 1. [Google Scholar] [CrossRef]
- Gundacker, S.; Auffray, E.; Di Vara, N.; Frisch, B.; Hillemanns, H.; Jarron, P.; Lang, B.; Meyer, T.; Mosquera-Vazquez, S.; Vauthey, E.; et al. SiPM time resolution: From single photon to saturation. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 2013, 718, 569–572. [Google Scholar] [CrossRef]
- Bull, J.N.; Lee, J.W.; Gardiner, S.H.; Vallance, C. Account: An Introduction to Velocity-Map Imaging Mass Spectrometry (VMImMS). Eur. J. Mass Spectrom. 2014, 20, 117–129. [Google Scholar] [CrossRef]
- Vallance, C.; Brouard, M.; Lauer, A.; Slater, S.; Halford, E.; Winter, B.; King, S.J.; Lee, J.W.L.; Pooley, D.; Sedgwick, I.; et al. Fast sensors for time-of-flight imaging applications. Phys. Chem. Chem. Phys. 2013, 16, 383–395. [Google Scholar] [CrossRef]
- Clark, A.T.; Crooks, J.P.; Sedgwick, I.; Turchetta, R.; Lee, J.W.L.; John, J.J.; Wilman, E.S.; Hill, L.; Halford, E.; Slater, C.S.; et al. Multimass Velocity-Map Imaging with the Pixel Imaging Mass Spectrometry (PImMS) Sensor: An Ultra-Fast Event-Triggered Camera for Particle Imaging. J. Phys. Chem. 2012, 116, 10897–10903. [Google Scholar] [CrossRef] [PubMed]
- Orunesajo, E.; Basnayake, G.; Ranathunga, Y.; Stewart, G.; Heathcote, D.; Vallance, C.; Lee, S.K.; Li, W. All-Optical Three-Dimensional Electron Momentum Imaging. J. Phys. Chem. 2021, 125, 5220–5225. [Google Scholar] [CrossRef] [PubMed]
- Bromberger, H.; Passow, C.; Pennicard, D.; Boll, R.; Correa, J.; He, L.; Johny, M.; Papadopoulou, C.C.; Tul-Noor, A.; Wiese, J.; et al. Shot-by-shot 250 kHz 3D ion and MHz photoelectron imaging using Timepix3. J. Phys. B At. Mol. Opt. Phys. 2022, 55, 144001. [Google Scholar] [CrossRef]
- Anghinolfi, F.; Jarron, P.; Martemiyanov, A.; Usenko, E.; Wenninger, H.; Williams, M.; Zichichi, A. NINO: An ultra-fast and low-power front-end amplifier/discriminator ASIC designed for the multigap resistive plate chamber. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2004, 533, 183–187. [Google Scholar] [CrossRef]
- Sanchez, D.; Gomez, S.; Mauricio, J.; Freixas, L.; Sanuy, A.; Guixe, G.; Lopez, A.; Manera, R.; Marin, J.; Perez, J.M.; et al. HRFlexToT: A High Dynamic Range ASIC for Time-of-Flight Positron Emission Tomography. IEEE Trans. Radiat. Plasma Med. Sci. 2022, 6, 51–67. [Google Scholar] [CrossRef]
- Sacco, I.; Fischer, P.; Ritzert, M. PETA4: A multi-channel TDC/ADC ASIC for SiPM readout. J. Instrum. 2013, 8, C12013. [Google Scholar] [CrossRef]
- Ahmad, S.; Fleury, J.; Cizel, J.B.; de la Taille, C.; Seguin-Moreau, N.; Gundacker, S.; Auffray-Hillemanns, E. Petiroc2A: Characterization and Experimental Results. In Proceedings of the 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC), Sydney, NSW, Australia, 10–17 November 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Contino, G.; Catalano, O.; Sottile, G.; Sangiorgi, P.; Capalbi, M.; Osteria, G.; Scotti, V.; Miyamoto, H.; Vigorito, C.; Casolino, M.; et al. An ASIC front-end for fluorescence and Cherenkov light detection with SiPM for space and ground applications. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2020, 980, 164510. [Google Scholar] [CrossRef]
- Keizer, F.; LHCb RICH Collaboration. The FastRICH ASIC for the LHCb RICH enhancements. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2024, 1067, 169664. [Google Scholar] [CrossRef]
- Mariscal-Castilla, A.; Gomez, S.; Manera, R.; Fernandez-Tenllado, J.M.; Mauricio, J.; Kratochwil, N.; Alozy, J.; Piller, M.; Portero, S.; Sanuy, A.; et al. Toward Sub-100 ps TOF-PET Systems Employing the FastIC ASIC With Analog SiPMs. IEEE Trans. Radiat. Plasma Med. Sci. 2024. [Google Scholar] [CrossRef]
- Gómez, S.; Fernandez-Tenllado, J.M.; Alozy, J.; Campbell, M.; Manera, R.; Mauricio, J.; Mariscal, A.; Pujol, C.; Sanchez, D.; Sanmukh, A.; et al. FastIC: A Highly Configurable ASIC for Fast Timing Applications. In Proceedings of the 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 16–23 October 2021; Volume 15, pp. 1–4. [Google Scholar] [CrossRef]
- Milešević, D.; Stimson, J.; Popat, D.; Robertson, P.; Vallance, C. Photodissociation dynamics of tetrahydrofuran at 193 nm. Phys. Chem. Chem. Phys. 2023, 25, 25322–25330. [Google Scholar] [CrossRef]
- Milešević, D. Photoinduced Chemistry of Biomolecular Building Blocks and Molecules in Space. PhD Thesis, University of Oxford, Oxford, UK, 2023. [Google Scholar]
- Cotter, R.J. Time-Of-Flight Mass Spectrometry, Instrumentation and Applications in Biological Research, 1st ed.; American Chemical Society: Washington, DC, USA, 1998; Volume 26. [Google Scholar]
- Dolenec, R.; Korpar, S.; Krizan, P.; Pestotnik, R. SiPM timing at low light intensities. In Proceedings of the 2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD), Strasbourg, France, 29 October–6 November 2016; Volume 2017, pp. 1–5. [Google Scholar] [CrossRef]
- Du, J.; Schmall, J.P.; Judenhofer, M.S.; Di, K.; Yang, Y.; Cherry, S.R. A Time-Walk Correction Method for PET Detectors Based on Leading Edge Discriminators. IEEE Trans. Radiat. Plasma Med. Sci. 2017, 1, 385–390. [Google Scholar] [CrossRef]
- Kratochwil, N.; Gundacker, S.; Auffray, E. A roadmap for sole Cherenkov radiators with SiPMs in TOF-PET. Phys. Med. Biol. 2021, 66, 195001. [Google Scholar] [CrossRef]
- Lee, J.W.; Köckert, H.; Heathcote, D.; Popat, D.; Chapman, R.T.; Karras, G.; Majchrzak, P.; Springate, E.; Vallance, C. Three-dimensional covariance-map imaging of molecular structure and dynamics on the ultrafast timescale. Commun. Chem. 2020, 3, 72. [Google Scholar] [CrossRef] [PubMed]
- Roeterdink, W.G.; Janssen, M.H.M. Femtosecond velocity map imaging of dissociative ionization dynamics in CF3I. Phys. Chem. Chem. Phys. 2002, 4, 601–612. [Google Scholar] [CrossRef]
- Seifert, S.; van Dam, H.T.; Schaart, D.R. The lower bound on the timing resolution of scintillation detectors. Phys. Med. Biol. 2012, 57, 1797. [Google Scholar] [CrossRef] [PubMed]
- Schaart, D.R. Physics and technology of time-of-flight PET detectors. Phys. Med. Biol. 2021, 66, 09TR01. [Google Scholar] [CrossRef]
- Vazquez, T.; Vuppala, S.; Ayodeji, I.; Song, L.; Grimes, N.; Evans-Nguyen, T. In situ mass spectrometers for applications in space. Mass Spectrom. Rev. 2021, 40, 670–691. [Google Scholar] [CrossRef]
- Fröhlich, R.; Cubison, M.J.; Slowik, J.G.; Bukowiecki, N.; Prévôt, A.S.H.; Baltensperger, U.; Schneider, J.; Kimmel, J.R.; Gonin, M.; Rohner, U.; et al. The ToF-ACSM: A portable aerosol chemical speciation monitor with TOFMS detection. Atmos. Meas. Tech. 2013, 6, 3225–3241. [Google Scholar] [CrossRef]
- Brooks, F. Development of organic scintillators. Nucl. Instrum. Methods 1979, 162, 477–505. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mariscal-Castilla, A.; Piller, M.; Alozy, J.; Ballabriga, R.; Campbell, M.; de la Torre, O.; Gascón, D.; Gómez, S.; Heathcote, D.; Mauricio, J.; et al. A Sensor Employing an Array of Silicon Photomultipliers for Detection of keV Ions in Time-of-Flight Mass Spectrometry. Sensors 2025, 25, 1585. https://doi.org/10.3390/s25051585
Mariscal-Castilla A, Piller M, Alozy J, Ballabriga R, Campbell M, de la Torre O, Gascón D, Gómez S, Heathcote D, Mauricio J, et al. A Sensor Employing an Array of Silicon Photomultipliers for Detection of keV Ions in Time-of-Flight Mass Spectrometry. Sensors. 2025; 25(5):1585. https://doi.org/10.3390/s25051585
Chicago/Turabian StyleMariscal-Castilla, Antonio, Markus Piller, Jerome Alozy, Rafael Ballabriga, Michael Campbell, Oscar de la Torre, David Gascón, Sergio Gómez, David Heathcote, Joan Mauricio, and et al. 2025. "A Sensor Employing an Array of Silicon Photomultipliers for Detection of keV Ions in Time-of-Flight Mass Spectrometry" Sensors 25, no. 5: 1585. https://doi.org/10.3390/s25051585
APA StyleMariscal-Castilla, A., Piller, M., Alozy, J., Ballabriga, R., Campbell, M., de la Torre, O., Gascón, D., Gómez, S., Heathcote, D., Mauricio, J., Milesevic, D., Sanuy, A., Vallance, C., & Guberman, D. (2025). A Sensor Employing an Array of Silicon Photomultipliers for Detection of keV Ions in Time-of-Flight Mass Spectrometry. Sensors, 25(5), 1585. https://doi.org/10.3390/s25051585