Deep Learning-Based Medical Ultrasound Image and Video Segmentation Methods: Overview, Frontiers, and Challenges
Abstract
:1. Introduction
- To our knowledge, this is the first systematic review of deep learning-based medical ultrasound image and video segmentation methods, including common evaluation methods and datasets.
- With a survey of more than 80 papers, we provide comprehensive introductions, analyses, and detailed statistics on recent and classical publications from different perspectives (such as methods and evaluation criteria) in the related sections, tables, and figures.
- According to our survey and statistics, we reasonably put forward challenges and future trends in the Discussion and Conclusion section.
2. Description of Deep Learning Methods Based on Learning Paradigm Classification
2.1. Supervised Learning
2.1.1. Fully Convolutional Neural Networks
2.1.2. U-Net Convolutional Neural Networks
2.1.3. Recurrent Neural Networks
2.2. Unsupervised Learning
2.2.1. Generating Adversarial Networks
2.2.2. Diffusion Model
2.3. Reinforcement Learning
2.4. Deep Reinforcement Learning
2.5. Weakly Supervised Learning
Segment Anything Model
3. Deep Learning in Ultrasound Image and Video Segmentation
3.1. U-Net in Ultrasound Image and Video Segmentation
3.1.1. Overview of Works
3.1.2. Assessments
3.2. Fully Convolutional Neural Network in Ultrasound Image and Video Segmentation
3.2.1. Overview of Works
3.2.2. Assessments
3.3. Recurrent Neural Networks in Ultrasound Image and Video Segmentation
3.3.1. Overview of Works
3.3.2. Assessments
3.4. Generating Adversarial Networks and Diffusion Models in Ultrasound Image and Video Segmentation
3.4.1. Overview of Works
3.4.2. Assessments
3.5. Deep Reinforcement Learning in Ultrasound Image and Video Segmentation
3.5.1. Overview of Works
3.5.2. Assessments
3.6. Weakly Supervised Learning in Ultrasound Image and Video Segmentation
3.6.1. Overview of Works
3.6.2. Assessments
3.7. Segment Anything Model in Ultrasound Image and Video Segmentation
3.7.1. Overview of Works
3.7.2. Assessments
3.8. Datasets
4. Evaluation Metrics
4.1. Medical Image Segmentation Evaluation Methods
4.1.1. Dice Similarity Coefficient
4.1.2. Jaccard Similarity Index
4.1.3. Hausdorff Distance
4.1.4. Precision
4.1.5. Accuracy
4.1.6. Recall
4.1.7. F1-Score
5. Discussion and Conclusions
5.1. Discussion
5.2. Application
5.3. Challenges and Opportunities
5.4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SAM | Segment Anything Model |
FCN | Fully Convolutional Neural Network |
RNN | Recurrent Neural Network |
GAN | Generative Adversarial Network |
LSTM | Long Short Term Memory |
GRU | Gated Recurrent Unit |
VAEs | Variational Autoencoders |
DSC | Dice Similarity Coefficient |
JSI | Jaccard Similarity Index |
CAD | Computer-Aided Diagnosis |
HD | Hausdorff Distance |
DRL | Deep Reinforcement Learning |
WSL | Weakly Supervised Learning |
DM | Diffusion Model |
NLP | Natural Language Processing |
References
- Suganyadevi, S.; Seethalakshmi, V.; Balasamy, K. A review on deep learning in medical image analysis. Int. J. Multimed. Inf. Retr. 2022, 11, 19–38. [Google Scholar] [CrossRef] [PubMed]
- Chan, H.P.; Samala, R.K.; Hadjiiski, L.M.; Zhou, C. Deep Learning in Medical Image Analysis. In Deep Learning in Medical Image Analysis; Advances in Experimental Medicine and Biology; Lee, G., Fujita, H., Eds.; Springer International Publishing: Cham, Switzerland, 2020; Volume 1213, pp. 3–21. [Google Scholar] [CrossRef]
- Kareem, F.Q.; Abdulazeez, A.M. Ultrasound medical images classification based on deep learning algorithms: A review. Fusion Pract. Appl. 2021, 3, 29–42. [Google Scholar]
- Amjoud, A.B.; Amrouch, M. Object detection using deep learning, CNNs and vision transformers: A review. IEEE Access 2023, 11, 35479–35516. [Google Scholar] [CrossRef]
- Liu, X.; Gao, K.; Liu, B.; Pan, C.; Liang, K.; Yan, L.; Ma, J.; He, F.; Zhang, S.; Pan, S.; et al. Advances in Deep Learning-Based Medical Image Analysis. Health Data Sci. 2021, 2021, 8786793. [Google Scholar] [CrossRef]
- Wells, P.N. Ultrasound imaging. Phys. Med. Biol. 2006, 51, R83. [Google Scholar] [CrossRef]
- Almajalid, R.; Shan, J.; Du, Y.; Zhang, M. Development of a deep-learning-based method for breast ultrasound image segmentation. In Proceedings of the 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, USA, 17–20 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1103–1108. [Google Scholar]
- Huang, Q.; Luo, Y.; Zhang, Q. Breast ultrasound image segmentation: A survey. Int. J. Comput. Assist. Radiol. Surg. 2017, 12, 493–507. [Google Scholar] [CrossRef]
- Ladak, H.M.; Mao, F.; Wang, Y.; Downey, D.B.; Steinman, D.A.; Fenster, A. Prostate boundary segmentation from 2D ultrasound images. Med. Phys. 2000, 27, 1777–1788. [Google Scholar] [CrossRef]
- Yu, H.; Ding, M.; Zhang, X.; Wu, J. PCANet based nonlocal means method for speckle noise removal in ultrasound images. PLoS ONE 2018, 13, e0205390. [Google Scholar] [CrossRef]
- Liu, B.; Cheng, H.D.; Huang, J.; Tian, J.; Tang, X.; Liu, J. Probability density difference-based active contour for ultrasound image segmentation. Pattern Recognit. 2010, 43, 2028–2042. [Google Scholar] [CrossRef]
- Zhang, M.; Dong, B.; Li, Q. Deep active contour network for medical image segmentation. In Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, 4–8 October 2020; Proceedings, Part IV 23. Springer: Cham, Switzerland, 2020; pp. 321–331. [Google Scholar]
- Archip, N.; Rohling, R.; Cooperberg, P.; Tahmasebpour, H. Ultrasound image segmentation using spectral clustering. Ultrasound Med. Biol. 2005, 31, 1485–1497. [Google Scholar] [CrossRef]
- Xie, J.; Jiang, Y.; Tsui, H.-t. Segmentation of kidney from ultrasound images based on texture and shape priors. IEEE Trans. Med. Imaging 2005, 24, 45–57. [Google Scholar] [PubMed]
- Shen, D.; Zhan, Y.; Davatzikos, C. Segmentation of prostate boundaries from ultrasound images using statistical shape model. IEEE Trans. Med. Imaging 2003, 22, 539–551. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.Y.; Lei, Y.F.; Tseng, C.H.; Shih, S.R. Thyroid segmentation and volume estimation in ultrasound images. IEEE Trans. Biomed. Eng. 2010, 57, 1348–1357. [Google Scholar] [CrossRef] [PubMed]
- Sarti, A.; Corsi, C.; Mazzini, E.; Lamberti, C. Maximum likelihood segmentation of ultrasound images with Rayleigh distribution. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2005, 52, 947–960. [Google Scholar] [CrossRef]
- Brusseau, E.; De Korte, C.L.; Mastik, F.; Schaar, J.; Van Der Steen, A.F. Fully automatic luminal contour segmentation in intracoronary ultrasound imaging—A statistical approach. IEEE Trans. Med. Imaging 2004, 23, 554–566. [Google Scholar] [CrossRef]
- Ker, J.; Wang, L.; Rao, J.; Lim, T. Deep learning applications in medical image analysis. IEEE Access 2017, 6, 9375–9389. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Pan, D.; Zhang, M.; Zhang, B. A generic FCN-based approach for the road-network extraction from VHR remote sensing images–using openstreetmap as benchmarks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2662–2673. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18. Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Guo, Y.; Duan, X.; Wang, C.; Guo, H. Segmentation and recognition of breast ultrasound images based on an expanded U-Net. PLoS ONE 2021, 16, e0253202. [Google Scholar] [CrossRef]
- Diakogiannis, F.I.; Waldner, F.; Caccetta, P.; Wu, C. ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data. ISPRS J. Photogramm. Remote Sens. 2020, 162, 94–114. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, S.; Peng, Y.; Li, J. DenseUNet: Densely connected UNet for electron microscopy image segmentation. IET Image Process. 2020, 14, 2682–2689. [Google Scholar] [CrossRef]
- Li, J.; Guan, W. Patch merging refiner embedding UNet for image denoising. Inf. Sci. 2023, 641, 119123. [Google Scholar]
- Cao, C.; Cao, L.; Li, G.; Zhang, T.; Gao, X. BIRGU Net: Deformable brain magnetic resonance image registration using gyral-net map and 3D Res-Unet. Med. Biol. Eng. Comput. 2023, 61, 579–592. [Google Scholar] [PubMed]
- Zargar, S. Introduction to Sequence Learning Models: RNN, LSTM, GRU; Department of Mechanical and Aerospace Engineering, North Carolina State University: Raleigh, NC, USA, 2021. [Google Scholar]
- Basiri, M.E.; Nemati, S.; Abdar, M.; Cambria, E.; Acharya, U.R. ABCDM: An attention-based bidirectional CNN-RNN deep model for sentiment analysis. Future Gener. Comput. Syst. 2021, 115, 279–294. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; Volume 27. [Google Scholar]
- Liu, R.; Zhou, S.; Guo, Y.; Wang, Y.; Chang, C. U2F-GAN: Weakly supervised super-pixel segmentation in thyroid ultrasound images. Cogn. Comput. 2021, 13, 1099–1113. [Google Scholar] [CrossRef]
- Zhu, Z.; Lin, K.; Jain, A.K.; Zhou, J. Transfer learning in deep reinforcement learning: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 13344–13362. [Google Scholar]
- Botvinick, M.; Wang, J.X.; Dabney, W.; Miller, K.J.; Kurth-Nelson, Z. Deep reinforcement learning and its neuroscientific implications. Neuron 2020, 107, 603–616. [Google Scholar]
- Wang, H.; Liu, N.; Zhang, Y.; Feng, D.; Huang, F.; Li, D.; Zhang, Y. Deep reinforcement learning: A survey. Front. Inf. Technol. Electron. Eng. 2020, 21, 1726–1744. [Google Scholar]
- Shin, S.Y.; Lee, S.; Yun, I.D.; Kim, S.M.; Lee, K.M. Joint weakly and semi-supervised deep learning for localization and classification of masses in breast ultrasound images. IEEE Trans. Med. Imaging 2018, 38, 762–774. [Google Scholar]
- Kim, J.; Kim, H.J.; Kim, C.; Lee, J.H.; Kim, K.W.; Park, Y.M.; Kim, H.W.; Ki, S.Y.; Kim, Y.M.; Kim, W.H. Weakly-supervised deep learning for ultrasound diagnosis of breast cancer. Sci. Rep. 2021, 11, 24382. [Google Scholar]
- Kwak, S.; Hong, S.; Han, B. Weakly supervised semantic segmentation using superpixel pooling network. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31. [Google Scholar]
- Li, H.; Zhang, B.; Zhang, Y.; Liu, W.; Mao, Y.; Huang, J.; Wei, L. A semi-automated annotation algorithm based on weakly supervised learning for medical images. Biocybern. Biomed. Eng. 2020, 40, 787–802. [Google Scholar] [CrossRef]
- Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland, C.; Gustafson, L.; Xiao, T.; Whitehead, S.; Berg, A.C.; Lo, W.Y.; et al. Segment anything. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–3 October 2023; pp. 4015–4026. [Google Scholar]
- Ashkani Chenarlogh, V.; Ghelich Oghli, M.; Shabanzadeh, A.; Sirjani, N.; Akhavan, A.; Shiri, I.; Arabi, H.; Sanei Taheri, M.; Tarzamni, M.K. Fast and accurate U-net model for fetal ultrasound image segmentation. Ultrason. Imaging 2022, 44, 25–38. [Google Scholar] [PubMed]
- Amiri, M.; Brooks, R.; Rivaz, H. Fine-tuning U-Net for ultrasound image segmentation: Different layers, different outcomes. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2020, 67, 2510–2518. [Google Scholar] [PubMed]
- Amiri, M.; Brooks, R.; Behboodi, B.; Rivaz, H. Two-stage ultrasound image segmentation using U-Net and test time augmentation. Int. J. Comput. Assist. Radiol. Surg. 2020, 15, 981–988. [Google Scholar]
- Cheng, D.; Lam, E.Y. Transfer learning U-Net deep learning for lung ultrasound segmentation. arXiv 2021, arXiv:2110.02196. [Google Scholar]
- Chen, G.; Li, L.; Zhang, J.; Dai, Y. Rethinking the unpretentious U-net for medical ultrasound image segmentation. Pattern Recognit. 2023, 142, 109728. [Google Scholar]
- Xu, M.; Ma, Q.; Zhang, H.; Kong, D.; Zeng, T. MEF-UNet: An end-to-end ultrasound image segmentation algorithm based on multi-scale feature extraction and fusion. Comput. Med. Imaging Graph. 2024, 114, 102370. [Google Scholar]
- Weng, Y.; Zhou, T.; Li, Y.; Qiu, X. Nas-unet: Neural architecture search for medical image segmentation. IEEE Access 2019, 7, 44247–44257. [Google Scholar]
- Li, H.; Fang, J.; Liu, S.; Liang, X.; Yang, X.; Mai, Z.; Van, M.T.; Wang, T.; Chen, Z.; Ni, D. Cr-unet: A composite network for ovary and follicle segmentation in ultrasound images. IEEE J. Biomed. Health Inform. 2019, 24, 974–983. [Google Scholar]
- Wang, R.; Zhou, H.; Fu, P.; Shen, H.; Bai, Y. A Multiscale Attentional Unet Model for Automatic Segmentation in Medical Ultrasound Images. Ultrason. Imaging 2023, 45, 159–174. [Google Scholar]
- Inan, N.G.; Kocadağlı, O.; Yıldırım, D.; Meşe, İ.; Kovan, Ö. Multi-class classification of thyroid nodules from automatic segmented ultrasound images: Hybrid ResNet based UNet convolutional neural network approach. Comput. Methods Programs Biomed. 2024, 243, 107921. [Google Scholar]
- Zhang, Y.; Ying, M.T.; Yang, L.; Ahuja, A.T.; Chen, D.Z. Coarse-to-fine stacked fully convolutional nets for lymph node segmentation in ultrasound images. In Proceedings of the 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Shenzhen, China, 15–18 December 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 443–448. [Google Scholar]
- Villa, M.; Dardenne, G.; Nasan, M.; Letissier, H.; Hamitouche, C.; Stindel, E. FCN-based approach for the automatic segmentation of bone surfaces in ultrasound images. Int. J. Comput. Assist. Radiol. Surg. 2018, 13, 1707–1716. [Google Scholar] [PubMed]
- Xing, J.; Li, Z.; Wang, B.; Qi, Y.; Yu, B.; Zanjani, F.G.; Zheng, A.; Duits, R.; Tan, T. Lesion segmentation in ultrasound using semi-pixel-wise cycle generative adversarial nets. IEEE/ACM Trans. Comput. Biol. Bioinform. 2020, 18, 2555–2565. [Google Scholar]
- Hu, Y.; Guo, Y.; Wang, Y.; Yu, J.; Li, J.; Zhou, S.; Chang, C. Automatic tumor segmentation in breast ultrasound images using a dilated fully convolutional network combined with an active contour model. Med. Phys. 2019, 46, 215–228. [Google Scholar] [PubMed]
- Li, Y.; Zhao, H.; Qi, X.; Wang, L.; Li, Z.; Sun, J.; Jia, J. Fully convolutional networks for panoptic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 214–223. [Google Scholar]
- Qian, L.; Huang, H.; Xia, X.; Li, Y.; Zhou, X. Automatic segmentation method using FCN with multi-scale dilated convolution for medical ultrasound image. Vis. Comput. 2023, 39, 5953–5969. [Google Scholar]
- Feng, Y.; Atabansi, C.C.; Nie, J.; Liu, H.; Zhou, H.; Zhao, H.; Hong, R.; Li, F.; Zhou, X. Multi-stage fully convolutional network for precise prostate segmentation in ultrasound images. Biocybern. Biomed. Eng. 2023, 43, 586–602. [Google Scholar]
- Xu, H.; Yang, Y.; Aviles-Rivero, A.I.; Yang, G.; Qin, J.; Zhu, L. LGRNet: Local-Global Reciprocal Network for Uterine Fibroid Segmentation in Ultrasound Videos. arXiv 2024, arXiv:2407.05703. [Google Scholar]
- Pan, P.; Chen, H.; Li, Y.; Cai, N.; Cheng, L.; Wang, S. Tumor segmentation in automated whole breast ultrasound using bidirectional LSTM neural network and attention mechanism. Ultrasonics 2021, 110, 106271. [Google Scholar]
- van den Noort, F.; Sirmacek, B.; Slump, C.H. Recurrent U-net for automatic pelvic floor muscle segmentation on 3D ultrasound. arXiv 2021, arXiv:2107.13833. [Google Scholar]
- Yang, X.; Yu, L.; Wu, L.; Wang, Y.; Ni, D.; Qin, J.; Heng, P.A. Fine-grained recurrent neural networks for automatic prostate segmentation in ultrasound images. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31. [Google Scholar]
- Webb, J.M.; Meixner, D.D.; Adusei, S.A.; Polley, E.C.; Fatemi, M.; Alizad, A. Automatic deep learning semantic segmentation of ultrasound thyroid cineclips using recurrent fully convolutional networks. IEEE Access 2020, 9, 5119–5127. [Google Scholar] [CrossRef]
- Horng, M.H.; Yang, C.W.; Sun, Y.N.; Yang, T.H. DeepNerve: A new convolutional neural network for the localization and segmentation of the median nerve in ultrasound image sequences. Ultrasound Med. Biol. 2020, 46, 2439–2452. [Google Scholar]
- Devisri, B.; Kavitha, M. Fetal growth analysis from ultrasound videos based on different biometrics using optimal segmentation and hybrid classifier. Stat. Med. 2024, 43, 1019–1047. [Google Scholar] [CrossRef] [PubMed]
- Anas, E.M.A.; Mousavi, P.; Abolmaesumi, P. A deep learning approach for real time prostate segmentation in freehand ultrasound guided biopsy. Med. Image Anal. 2018, 48, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Khdhir, R.; Othmen, S.; Belghith, A.; Alamri, J. Breast Cancer Segmentation in Mammograms using Antlion Optimization and CNN/GRU Architectures. In Proceedings of the 2024 International Wireless Communications and Mobile Computing (IWCMC), Ayia Napa, Cyprus, 27–31 May 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1030–1035. [Google Scholar]
- Van Veelen, G.; Schweitzer, K.; Van der Vaart, C. Reliability of pelvic floor measurements on three-and four-dimensional ultrasound during and after first pregnancy: Implications for training. Ultrasound Obstet. Gynecol. 2013, 42, 590–595. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Chen, J. Data augmentation of thyroid ultrasound images using generative adversarial network. In Proceedings of the 2021 IEEE International Ultrasonics Symposium (IUS), Xi’an China, 11–16 September 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–4. [Google Scholar]
- Liang, J.; Yang, X.; Huang, Y.; Li, H.; He, S.; Hu, X.; Chen, Z.; Xue, W.; Cheng, J.; Ni, D. Sketch guided and progressive growing GAN for realistic and editable ultrasound image synthesis. Med. Image Anal. 2022, 79, 102461. [Google Scholar] [CrossRef]
- Bargsten, L.; Schlaefer, A. SpeckleGAN: A generative adversarial network with an adaptive speckle layer to augment limited training data for ultrasound image processing. Int. J. Comput. Assist. Radiol. Surg. 2020, 15, 1427–1436. [Google Scholar] [CrossRef]
- Fatima, N.; Afrakhteh, S.; Iacca, G.; Demi, L. Automatic segmentation of 2D echocardiography ultrasound images by means of generative adversarial network. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2024, 71, 1552–1564. [Google Scholar] [CrossRef]
- Tang, F.; Ding, J.; Wang, L.; Xian, M.; Ning, C. Multi-level global context cross consistency model for semi-supervised ultrasound image segmentation with diffusion model. arXiv 2023, arXiv:2305.09447. [Google Scholar]
- Stojanovski, D.; Hermida, U.; Lamata, P.; Beqiri, A.; Gomez, A. Echo from noise: Synthetic ultrasound image generation using diffusion models for real image segmentation. In Proceedings of the International Workshop on Advances in Simplifying Medical Ultrasound, Vancouver, BC, Canada, 8 October 2023; Springer: Cham, Switzerland, 2023; pp. 34–43. [Google Scholar]
- Katakis, S.; Barotsis, N.; Kakotaritis, A.; Tsiganos, P.; Economou, G.; Panagiotopoulos, E.; Panayiotakis, G. Generation of Musculoskeletal Ultrasound Images with Diffusion Models. BioMedInformatics 2023, 3, 405–421. [Google Scholar] [CrossRef]
- Stevens, T.S.; Meral, F.C.; Yu, J.; Apostolakis, I.Z.; Robert, J.L.; Van Sloun, R.J. Dehazing ultrasound using diffusion models. IEEE Trans. Med. Imaging 2024, 43, 3546–3558. [Google Scholar] [CrossRef]
- Yao, Y.; Duan, X.; Qu, A.; Chen, M.; Chen, J.; Chen, L. DFCG: A Dual-Frequency Cascade Graph model for semi-supervised ultrasound image segmentation with diffusion model. Knowl.-Based Syst. 2024, 300, 112261. [Google Scholar] [CrossRef]
- Sahba, F.; Tizhoosh, H.R.; Salama, M.M. A reinforcement agent for object segmentation in ultrasound images. Expert Syst. Appl. 2008, 35, 772–780. [Google Scholar] [CrossRef]
- Wang, L.; Lekadir, K.; Lee, S.L.; Merrifield, R.; Yang, G.Z. A general framework for context-specific image segmentation using reinforcement learning. IEEE Trans. Med. Imaging 2013, 32, 943–956. [Google Scholar] [CrossRef] [PubMed]
- Mathews, R.P.; Panicker, M.R.; Hareendranathan, A.R.; Chen, Y.T.; Jaremko, J.L.; Buchanan, B.; Narayan, K.V.; Mathews, G. Unsupervised multi-latent space reinforcement learning framework for video summarization in ultrasound imaging. arXiv 2021, arXiv:2109.01309. [Google Scholar]
- Ning, G.; Zhang, X.; Liao, H. Autonomic robotic ultrasound imaging system based on reinforcement learning. IEEE Trans. Biomed. Eng. 2021, 68, 2787–2797. [Google Scholar] [CrossRef]
- Girum, K.B.; Créhange, G.; Hussain, R.; Lalande, A. Fast interactive medical image segmentation with weakly supervised deep learning method. Int. J. Comput. Assist. Radiol. Surg. 2020, 15, 1437–1444. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Huang, L.; Wang, Z.; Luo, J. Deep weakly-supervised breast tumor segmentation in ultrasound images with explicit anatomical constraints. Med. Image Anal. 2022, 76, 102315. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Wang, Z.; Luo, J. Weakly-supervised deep learning for breast tumor segmentation in ultrasound images. In Proceedings of the 2021 IEEE International Ultrasonics Symposium (IUS), Xi’an, China, 11–16 September 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–4. [Google Scholar]
- Leclerc, S.; Smistad, E.; Pedrosa, J.; Østvik, A.; Cervenansky, F.; Espinosa, F.; Espeland, T.; Berg, E.A.R.; Jodoin, P.M.; Grenier, T.; et al. Deep learning for segmentation using an open large-scale dataset in 2D echocardiography. IEEE Trans. Med. Imaging 2019, 38, 2198–2210. [Google Scholar] [CrossRef]
- Tu, Z.; Gu, L.; Wang, X.; Jiang, B. Ultrasound SAM Adapter: Adapting SAM for Breast Lesion Segmentation in Ultrasound Images. arXiv 2024, arXiv:2404.14837. [Google Scholar]
- Guo, A.; Fei, G.; Pasupuleti, H.; Wang, J. ClickSAM: Fine-tuning Segment Anything Model using click prompts for ultrasound image segmentation. In Proceedings of the Medical Imaging 2024: Ultrasonic Imaging and Tomography, San Diego, CA, USA, 18–22 February 2024; SPIE: Bellingham, WA, USA, 2024; Volume 12932, pp. 240–244. [Google Scholar]
- Pandey, S.; Chen, K.F.; Dam, E.B. Comprehensive multimodal segmentation in medical imaging: Combining yolov8 with sam and hq-sam models. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–3 October 2023; pp. 2592–2598. [Google Scholar]
- Paranjape, J.N.; Nair, N.G.; Sikder, S.; Vedula, S.S.; Patel, V.M. Adaptivesam: Towards efficient tuning of sam for surgical scene segmentation. In Proceedings of the Annual Conference on Medical Image Understanding and Analysis, Manchester, UK, 24–26 July 2024; Springer: Cham, Switzerland, 2024; pp. 187–201. [Google Scholar]
- Deng, X.; Wu, H.; Zeng, R.; Qin, J. MemSAM: Taming segment anything model for echocardiography video segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–22 June 2024; pp. 9622–9631. [Google Scholar]
- Kim, S.; Jin, P.; Chen, C.; Kim, K.; Lyu, Z.; Ren, H.; Kim, S.; Liu, Z.; Zhong, A.; Liu, T.; et al. MediViSTA: Medical Video Segmentation via Temporal Fusion SAM Adaptation for Echocardiography. IEEE J. Biomed. Health Inform. 2025. [Google Scholar] [CrossRef]
- Pang, Y.; Li, Y.; Huang, T.; Liang, J.; Ding, Z.; Chen, H.; Zhao, B.; Hu, Y.; Zhang, Z.; Wang, Q. Efficient Breast Lesion Segmentation from Ultrasound Videos Across Multiple Source-limited Platforms. IEEE J. Biomed. Health Inform. 2025. [Google Scholar] [CrossRef]
- Badrinarayanan, V.; Kendall, A.; SegNet, R.C. A deep convolutional encoder-decoder architecture for image segmentation. arXiv 2022, 1511. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Zhou, Z.; Rahman Siddiquee, M.M.; Tajbakhsh, N.; Liang, J. Unet++: A nested u-net architecture for medical image segmentation. In Proceedings of the Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, 20 September 2018; Proceedings 4. Springer: Cham, Switzerland, 2018; pp. 3–11. [Google Scholar]
- Fan, D.P.; Ji, G.P.; Zhou, T.; Chen, G.; Fu, H.; Shen, J.; Shao, L. Pranet: Parallel reverse attention network for polyp segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Lima, Peru, 4–8 October 2020; Springer: Cham, Switzerland, 2020; pp. 263–273. [Google Scholar]
- Wang, K.; Liang, S.; Zhang, Y. Residual feedback network for breast lesion segmentation in ultrasound image. In Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, 27 September–1 October 2021; Proceedings, Part I 24. Springer: Cham, Switzerland, 2021; pp. 471–481. [Google Scholar]
- Tomar, N.K.; Shergill, A.; Rieders, B.; Bagci, U.; Jha, D. TransResU-Net: Transformer based ResU-Net for real-time colonoscopy polyp segmentation. arXiv 2022, arXiv:2206.08985. [Google Scholar]
- Lin, X.; Xiang, Y.; Zhang, L.; Yang, X.; Yan, Z.; Yu, L. SAMUS: Adapting segment anything model for clinically-friendly and generalizable ultrasound image segmentation. arXiv 2023, arXiv:2309.06824. [Google Scholar]
References | ROI | Model | Dataset | Metric |
---|---|---|---|---|
Ashkani et al. [40] | Fetal abdomen | Fast and Accurate U-Net | MFP dataset | Dice: 0.9714 |
AMiri et al. [41] | Breast | Fine-tuning U-Net | 10,000 images | Dice: 0.8 ± 0.03 |
Cheng et al. [43] | Lung | TL U-Net | LUS dataset | Dice: 0.8 |
Amiri et al. [42] | Breast | Two-stage U-Net | 163 B-mode US images | Dice: 0.805 |
Chen et al. [44] | Breast | NU-net | BUSI and STU datasets | Dice: 0.9405 ± 0.0066 |
Xu et al. [45] | Breast and thyroid | MEF-UNet | BUSI, DDTL and BUS | Dice: 0.7276 |
Weng et al. [46] | Prostate | NAS-Unet | Promise12 | Dice: 0.9737 |
Li et al. [47] | Transvaginal | CR-Unet | 3024 TVUS | Dice: 0.912 |
Wang et al. [48] | Thyroid | MSAC-Unet | TND-PUH3 | Dice: 0.822 |
Inan et al. [49] | Thyroid nodule | ResUNet++ | Data obtained from Acıbadem Hospital, Istanbul, Turkey | Dice: 0.924 |
References | ROI | Model | Dataset | Metric |
---|---|---|---|---|
Zhang et al. [50] | Lymph nodes | CFS-FCN | 80 ultrasound images | F1 score: 0.858 |
Villa et al. [51] | Bone | FCN | 1738 US images | Recall: 0.87 |
Xing et al. [52] | Breast | SPCGAN | 670 ultrasound images | Dice: 0.93 |
Hu et al. [53] | Breast | DFCN + PBAC | 570 BUS images | Dice: 0.8897 |
Li et al. [54] | Fetal head | FCN | COCO dataset | Dice: 96.96 ± 2.43% |
Qian et al. [55] | Breast | FCN | Breast ultrasound dataset | Dice: 0.9224 |
Feng et al. [56] | Prostate | Multi-stage FCN | CCH-TRUSPS | Dice: 0.9490 |
Xu et al. [57] | Uterus | LGRNet | 100 videos, each with 50 frames | Dice: 0.775 |
References | ROI | Model | Dataset | Metric |
---|---|---|---|---|
Pan et al. [58] | Breast | Bidirectional LSTM | ABUS image dataset | Dice: 0.8178 |
Noort et al. [59] | Levator ani muscle | CLSTM U-net | Acquired by [66] | Dice: 0.7 |
Yang et al. [60] | Prostate | RNN with shape priors | 300 prostate ultrasound images | DSC: 0.9239 |
Webb et al. [61] | Thyroid | DeepLabv3 + CLSTM | 198 cineclips | Recall: 0.90 |
Horng et al. [62] | Median nerve | U-Net+ LSTM | 420 frames of images | Dice: 0.8975 |
Anas et al. [64] | Prostate | CNN + GRU | 29,394 images | Dice: 0.93 |
Devisri et al. [63] | Fetal | LSTM + U-Net | HC18 | Not provided |
Khdhir et al. [65] | Breast | GLCM + GRU | Wisconsin Diagnostic Breast Cancer | Dice: 0.69 |
References | ROI | Model | Metric |
---|---|---|---|
Liang et al. [67] | Thyroid | Autoencoder-GAN + VAE | Dice: 0.5111 |
Liang et al. [68] | Lung, hip joint, and ovary | GAN + U-Net | Dice: 0.8876 |
Bargsten et al. [69] | Artery layer and lumen | SpeckleGAN + U-Net | Dice: 86.02 ± 0.44% |
Fatima et al. [70] | Cardiology | PatchGAN + U-Net | Dice: 0.961 |
Tang et al. [71] | Breast | MGCC + LDM | F1 score: 62.53 ± 2.99% |
Stojanovski et al. [72] | Heart | Denoising diffusion model | Dice: 88.6 ± 4.91% |
Katakis et al. [73] | Musculoskeletal | Diffusion model | Dice: 0.80 |
Stevens et al. [74] | Heart | Joint posterior sampling Framework | Not provided |
Yao et al. [75] | Breast | DFCG | Dice: 0.7920 |
References | ROI | Model | Dataset | Metric |
---|---|---|---|---|
Girum et al. [80] | Colorectal | RL + CNN | Acquired by [83] | Dice: 0.97 |
Li et al. [81] | Breast | Weakly supervised learning | 1389 BUS images | Dice: 83.0 ± 11.8% |
Li et al. [82] | Breast | CNN + spatial pyramid module | 2805 BUS images | Dice: 73.5 ± 18.0% |
Sahba et al. [76] | Prostate | RL agent for sub-images | 30 TRUS images | Area overlap: 90.65 |
Mathews et al. [78] | Lung | Unsupervised RL framework | LUS dataset | F1 score: over 44 ± 1.7% |
Dataset | ROI | Number | URL |
---|---|---|---|
Breast Ultrasound Images Dataset | Breast | 780 | https://www.kaggle.com/datasets/aryashah2k/breast-ultrasound-images-dataset, accessed on 3 January 2025. |
DDTI: Thyroid Ultrasound Images | Thyroid | 134 | https://www.kaggle.com/datasets/dasmehdixtr/ddti-thyroid-ultrasound-images, accessed on 3 January 2025. |
US Simulation and Segmentation | Abdomen | Not provided | https://www.kaggle.com/datasets/ignaciorlando/ussimandsegm, accessed on 3 January 2025. |
CAMUS-Human Heart Data | Heart | Not provided | https://www.kaggle.com/datasets/shoybhasan/camus-human-heart-data, accessed on 3 January 2025. |
Fetal Health Classification | Fetal | 2126 | https://www.kaggle.com/datasets/andrewmvd/fetal-health-classification, accessed on 3 January 2025. |
A New Dataset and A Baseline Model for Breast Lesion Detection in Ultrasound Videos | Breast | 404 frames | https://github.com/jhl-Det/CVA-Net, accessed on 3 January 2025. |
Mus-V: Multimodal Ultrasound Vascular Segmentation | Neck | 105 videos | https://www.kaggle.com/datasets/among22/multimodal-ultrasound-vascular-segmentation, accessed on 3 January 2025. |
Category | Positive | Negative |
---|---|---|
Actual Positive | True Positive (TP) | True Negative (TN) |
Actual Negative | False Positive (FP) | False Negative (FN) |
Method | Acc (%) ↑ | Se (%) ↑ | Dice (%) ↑ | IoU (%) ↑ | HD (mm) ↓ |
---|---|---|---|---|---|
U-Net (Ronneberger et al., 2015 [22]) | 97.67 | 86.18 | 80.38 | 70.80 | 6.68 |
SegNet (Badrinarayanan et al., 2017 [91]) | 98.93 | 87.34 | 82.90 | 72.71 | 6.73 |
DeepLabV3+ (Chen et al., 2018 [92]) | 96.52 | 84.51 | 79.25 | 68.90 | 7.17 |
U-Net++ (Zhou et al., 2018 [93]) | 98.19 | 87.60 | 83.56 | 73.36 | 6.43 |
PraNet (Fan et al., 2020 [94]) | 98.90 | 86.82 | 83.00 | 72.83 | 6.85 |
RF-Net (Wang et al., 2021 [95]) | 98.14 | 86.63 | 83.27 | 73.09 | 6.68 |
TransResUnet (Tomar et al., 2022 [96]) | 98.95 | 87.35 | 83.74 | 74.62 | 6.38 |
SAMUS (Lin et al., 2023 [97]) | 99.29 | 88.52 | 85.89 | 76.36 | 6.16 |
BUSSAM (Tu et al., 2024 [84]) | 99.32 | 89.16 | 86.59 | 77.21 | 6.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, X.; Zhang, J.; Shao, Y.; Liu, J.; Shi, K.; He, C.; Kong, D. Deep Learning-Based Medical Ultrasound Image and Video Segmentation Methods: Overview, Frontiers, and Challenges. Sensors 2025, 25, 2361. https://doi.org/10.3390/s25082361
Xiao X, Zhang J, Shao Y, Liu J, Shi K, He C, Kong D. Deep Learning-Based Medical Ultrasound Image and Video Segmentation Methods: Overview, Frontiers, and Challenges. Sensors. 2025; 25(8):2361. https://doi.org/10.3390/s25082361
Chicago/Turabian StyleXiao, Xiaolong, Jianfeng Zhang, Yuan Shao, Jialong Liu, Kaibing Shi, Chunlei He, and Dexing Kong. 2025. "Deep Learning-Based Medical Ultrasound Image and Video Segmentation Methods: Overview, Frontiers, and Challenges" Sensors 25, no. 8: 2361. https://doi.org/10.3390/s25082361
APA StyleXiao, X., Zhang, J., Shao, Y., Liu, J., Shi, K., He, C., & Kong, D. (2025). Deep Learning-Based Medical Ultrasound Image and Video Segmentation Methods: Overview, Frontiers, and Challenges. Sensors, 25(8), 2361. https://doi.org/10.3390/s25082361