An Improved Adaptive Monte Carlo Localization Algorithm Integrated with a Virtual Motion Model
Abstract
:1. Introduction
2. AMCL Algorithm
- During the robot’s localization process, the robot must be displaced through motion control for the AMCL algorithm to use the motion model for pose predictive updating.
- Wheel slippage and drift can cause deviations in the motion information collected by the motor encoders, resulting in odometry measurement errors. Such errors can affect the predictive accuracy of the robot’s motion in the AMCL algorithm, leading to a decrease in localization accuracy.
3. Improved AMCL Algorithm
3.1. Virtual Motion Model Based on NDT
3.2. Odometry Motion Model Based on EKF Integration
Algorithm 1: Improved AMCL Algorithm Based on NDT | |
Input: | The particle set from the previous time step ; |
Current lidar scan point cloud ; | |
Environmental map ; | |
Previous time-step lidar scan point cloud ; | |
Total number of particles M; | |
Output: | Particle set at the current time step ; |
1: | Static ; |
2: | ; |
3: | if The robot has not undergone any displacement then |
4: | Calculate according to Equation (13); |
5: | for i = 1 to M do |
6: | Update using according to Equation (1); |
7: | Calculate the weight of each particle based on the map and lidar information; |
8: | end for |
9: | else |
10: | for i = 1 to M do |
11: | Update using according to Equation (1); |
12: | Calculate the weight of each particle based on the map and lidar information; |
13: | end for |
14: | ; |
15: | Calculate ; |
16: | for i = 1 to M do |
17: | with probability do |
18: | add random pose to ; |
19: | else |
20: | draw from with probability ; |
21: | ; |
22: | end with |
23: | end for |
24: | return ; |
4. Results
4.1. Simulation Validation
4.2. Real-World Environment Experiment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brahmi, B.; Ahmed, T.; El Bojairami, I.; Swapnil, A.A.Z.; Assad-Uz-Zaman, M.; Schultz, K.; McGonigle, E.; Rahman, M.H. Flatness based control of a novel smart exoskeleton robot. IEEE/ASME Trans. Mechatron. 2021, 27, 974–984. [Google Scholar] [CrossRef]
- Pashna, M.; Yusof, R.; Ismail, Z.H.; Namerikawa, T.; Yazdani, S. Autonomous multi-robot tracking system for oil spills on sea surface based on hybrid fuzzy distribution and potential field approach. Ocean. Eng. 2020, 207, 107238. [Google Scholar] [CrossRef]
- Keung, K.L.; Lee, C.K.; Ji, P. Industrial internet of things-driven storage location assignment and order picking in a resource synchronization and sharing-based robotic mobile fulfillment system. Adv. Eng. Inform. 2022, 52, 101540. [Google Scholar] [CrossRef]
- Ren, Y.; Friderikos, V. Interference aware path planning for mobile robots under joint communication and sensing in mmWave networks. Comput. Commun. 2024, 225, 1–9. [Google Scholar] [CrossRef]
- Ding, T.; Zhang, Y.; Wang, Z.; Hu, X. Velocity-based rack storage location assignment for the unidirectional robotic mobile fulfillment system. Transp. Res. Part E Logist. Transp. Rev. 2024, 186, 103533. [Google Scholar] [CrossRef]
- Ullah, I.; Adhikari, D.; Khan, H.; Anwar, M.S.; Ahmad, S.; Bai, X. Mobile robot localization: Current challenges and future prospective. Comput. Sci. Rev. 2024, 53, 100651. [Google Scholar] [CrossRef]
- Yang, X.; Huangfu, S.; Yan, S. Fusion positioning method of UWB/IMU/odometer based on improved UKF. J. Chin. Inert. Technol. 2023, 31, 462–471. [Google Scholar]
- Kuncara, I.A.; Widyotriatmo, A.; Hasan, A.; Nazaruddin, Y.Y. Enhancing accuracy in field mobile robot state estimation with GNSS and encoders. Measurement 2024, 235, 114903. [Google Scholar] [CrossRef]
- Ngamakeur, K.; Yongchareon, S.; Yu, J.; Islam, S. Passive infrared sensor dataset and deep learning models for device-free indoor localization and tracking. Pervasive Mob. Comput. 2023, 88, 101721. [Google Scholar] [CrossRef]
- Yeh, S.C.; Wang, C.H.; Hsieh, C.H.; Chiou, Y.S.; Cheng, T.P. Cost-effective fitting model for indoor positioning systems based on bluetooth low energy. Sensors 2022, 22, 6007. [Google Scholar] [CrossRef]
- Bi, J.; Zhao, M.; Yao, G.; Cao, H.; Feng, Y.; Jiang, H.; Chai, D. PSOSVRPos: WiFi indoor positioning using SVR optimized by PSO. Expert Syst. Appl. 2023, 222, 119778. [Google Scholar] [CrossRef]
- Li, Y.; Gao, Z.; Xu, Q.; Yang, C. Comprehensive evaluations of NLOS and linearization errors on UWB positioning. Appl. Sci. 2023, 13, 6187. [Google Scholar] [CrossRef]
- Zhang, H.; Pan, S. LSOS: An FG Position Method Based on Group Phase Ranging Ambiguity Estimation of BeiDou Pseudolite. Remote Sens. 2023, 15, 1924. [Google Scholar] [CrossRef]
- Brena, R.F.; García-Vázquez, J.P.; Galván-Tejada, C.E.; Muñoz-Rodriguez, D.; Vargas-Rosales, C.; Fangmeyer, J., Jr. Evolution of indoor positioning technologies: A survey. J. Sens. 2017, 2017, 2630413. [Google Scholar] [CrossRef]
- Nguyen DT, A.; Joung, J.; Kang, X. Deep gated recurrent unit-based 3D localization for UWB systems. IEEE Access 2021, 9, 68798–68813. [Google Scholar] [CrossRef]
- Mendoza-Silva, G.M.; Torres-Sospedra, J.; Huerta, J. A meta-review of indoor positioning systems. Sensors 2019, 19, 4507. [Google Scholar] [CrossRef]
- Piao, W.; Zhao, X.; Li, Z. MMGraphSLAM: Autonomous indoor positioning based on millimeter wave GraphSLAM. Measurement 2023, 220, 113300. [Google Scholar] [CrossRef]
- Lee, S.; Song, J.B. Robust Mobile Robot Localization Using Optical Flow Sensors and Encoders. In Proceedings of the IEEE International Conference on Robotics and Automation, Proceedings ICRA’04, New Orleans, LA, USA, 26 April–1 May 2004; IEEE: Piscataway, NJ, USA, 2024; pp. 1039–1044. [Google Scholar]
- Huang, L.; Li, H.; Li, W.; Wu, W.; Kang, X. Improvement of Pedestrian Dead Reckoning Algorithm for Indoor Positioning by using Step Length Estimation. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 48, 19–24. [Google Scholar] [CrossRef]
- Teng, X.; Shen, Z.; Huang, L.; Li, H.; Li, W. Multi-sensor fusion based wheeled robot research on indoor positioning method. Results Eng. 2024, 22, 102268. [Google Scholar] [CrossRef]
- Li, L.; Schulze, L.; Kalavadia, K. Promising SLAM Methods for Automated Guided Vehicles and Autonomous Mobile Robots. Procedia Comput. Sci. 2024, 232, 2867–2874. [Google Scholar] [CrossRef]
- Thrun, S.; Burgard, W.; Fox, D. Probabilistic Robotics; Cao, H.Y.; Tan, Z.; Shi, X.X., Translators; China Machine Press: Beijing, China, 2017; pp. 179–189. [Google Scholar]
- Mohseni, A.; Duchaine, V.; Wong, T. Improvement in Monte Carlo localization using information theory and statistical approaches. Eng. Appl. Artif. Intell. 2024, 131, 107897. [Google Scholar] [CrossRef]
- Guan, R.P.; Ristic, B.; Wang, L.; Palmer, J.L. KLD sampling with Gmapping proposal for Monte Carlo localization of mobile robots. Inf. Fusion 2019, 49, 79–88. [Google Scholar] [CrossRef]
- Wang, N.; Wang, J.; Li, L.H. An improved adaptive Monte Carlo localization method for robot. J. Navig. Position. 2019, 7, 31–37. [Google Scholar]
- Zhang, L.; Wu, X.; Gao, R.; Pan, L.; Zhang, Q. A multi-sensor fusion positioning approach for indoor mobile robot using factor graph. Measurement 2023, 216, 112926. [Google Scholar] [CrossRef]
- Hatem, I.; Khalil MA, A. Development of a new technique in ROS for mobile robots localization in known-based 2D environments. Tishreen Univ. J. Res. Sci. Stud. Eng. Sci. Ser. 2021, 43, 1–19. [Google Scholar]
- Friedland, B.; Bernstein, I. Estimation of the State of a Nonlinear Process in the Presence of Nongaussian Noise and Disturbances. J. Frankl. Inst. 1966, 281, 455–480. [Google Scholar] [CrossRef]
- Peter, B. The Normal Distributions Transform: A New Approach to Laser Scan Matching. In Proceedings of the IROS2003, Las Vegas, NV, USA, 27–31 October 2003. [Google Scholar]
- Li, Q.; Li, R.; Ji, K.; Dai, W. Kalman Filter and Its Application. In Proceedings of the 2015 8th International Conference on Intelligent Networks and Intelligent Systems (ICINIS), IEEE, Tianjin, China, 1–3 November 2015; pp. 74–77. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, C.; Xie, D.; Wu, L.; Tang, X.; Zhang, H. An Improved Adaptive Monte Carlo Localization Algorithm Integrated with a Virtual Motion Model. Sensors 2025, 25, 2471. https://doi.org/10.3390/s25082471
Zuo C, Xie D, Wu L, Tang X, Zhang H. An Improved Adaptive Monte Carlo Localization Algorithm Integrated with a Virtual Motion Model. Sensors. 2025; 25(8):2471. https://doi.org/10.3390/s25082471
Chicago/Turabian StyleZuo, Cili, Demin Xie, Lianghong Wu, Xiaolong Tang, and Hongqiang Zhang. 2025. "An Improved Adaptive Monte Carlo Localization Algorithm Integrated with a Virtual Motion Model" Sensors 25, no. 8: 2471. https://doi.org/10.3390/s25082471
APA StyleZuo, C., Xie, D., Wu, L., Tang, X., & Zhang, H. (2025). An Improved Adaptive Monte Carlo Localization Algorithm Integrated with a Virtual Motion Model. Sensors, 25(8), 2471. https://doi.org/10.3390/s25082471