Rice Disease Detection: TLI-YOLO Innovative Approach for Enhanced Detection and Mobile Compatibility
Abstract
:1. Introduction
- The use of transfer learning to pretrain model parameters significantly reduces the need for extensive dataset collection and training time;
- An additional small object detection layer is added to the feature fusion layer, incorporating the iRMB attention mechanism into the C2f module. Combining feature maps of varying depths and integrating depthwise separable convolutions to preserve spatial integrity effectively enhances the detection capabilities for small object features and the efficiency of computational resource utilization;
- The WIoU is used in place of the CIoU as the loss function to improve the model’s generalization capability and balance the regression impact of samples of varying quality.
- By deploying the model on embedded devices, real-time detection of leaf diseases is achieved, aiding in the formulation of agricultural decisions and disease prevention strategies.
2. Related Work
2.1. Rice Disease Detection
2.2. YOLO
3. Methods
3.1. Improved YOLOv8 Model
3.2. Transfer Learning
3.3. Small Detection Layer
3.4. C2f_iRMB Module
- By incorporating attention mechanisms, the iRMB can consider the entire input space when extracting features, thereby enhancing the model’s ability to comprehend complex data patterns, especially in processing visual and sequential data.
- It abstracts a unified Meta-Mobile Block (MMB) from multi-head attention and feed-forward networks, combined with different expansion ratios and efficient operators for design implementation. Integrating various operations into a unified framework in a plug-and-play manner enhances the model’s efficiency and flexibility, better balancing model complexity and computational efficiency [47].
- After incorporating the iRMB attention mechanism, this paper integrates it with the traditional C2f module of YOLOv8, placing it subsequent to the CBS within the bottleneck. This arrangement allows the iRMB to further process the data with deep convolution as the CBS module is about to output, thereby optimizing computational resources and enhancing model efficiency. Figure 7 displays the structural diagrams.
3.5. WIoU Loss Function
3.6. Deploying Mobile Platforms
4. Experiment and Results
4.1. Experiment Preparation
4.1.1. Dataset
4.1.2. Experimental Environment
4.1.3. Evaluation Index
4.2. Ablation Experiments
4.2.1. Comparison of Ablation Experiments
4.2.2. Data Visualization
4.2.3. Detection Visualization
4.3. Comparison of Different Models
4.3.1. Comparison of Consequences
4.3.2. Visualization of Comparison Results
4.3.3. Verification of Mobile Platform Detection
4.3.4. Pretraining Visualization
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Hallerman, E.M.; Liu, Q.; Wu, K.; Peng, Y. The development and status of Bt rice in China. Plant Biotechnol. J. 2016, 14, 839–848. [Google Scholar] [CrossRef] [PubMed]
- Tepdang, S.; Chamnongthai, K. Boundary-based rice-leaf-disease classification and severity level estimation for automatic insecticide injection. Appl. Eng. Agric. 2023, 39, 367–379. [Google Scholar] [CrossRef]
- Bari, B.S.; Islam, M.N.; Rashid, M.; Hasan, M.J.; Razman, M.A.M.; Musa, R.M.; Ab Nasir, A.F.; Majeed, A.P.A. A real-time approach of diagnosing rice leaf disease using deep learning-based faster R-CNN framework. PeerJ Comput. Sci. 2021, 7, e432. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Dai, T.; Chen, Z.; Huang, X.; Xiao, J.; Ma, F.; Ouyang, R. Adaptive Patch Contrast for Weakly Supervised Semantic Segmentation. Eng. Appl. Artif. Intell. 2025, 139, 109626. [Google Scholar] [CrossRef]
- Aggarwal, M.; Khullar, V.; Goyal, N.; Singh, A.; Tolba, A.; Thompson, E.B.; Kumar, S. Pre-trained deep neural network-based features selection supported machine learning for rice leaf disease classification. Agriculture 2023, 13, 936. [Google Scholar] [CrossRef]
- Conrad, A.O.; Li, W.; Lee, D.Y.; Wang, G.L.; Rodriguez-Saona, L.; Bonello, P. Machine learning-based presymptomatic detection of rice sheath blight using spectral profiles. Plant Phenomics 2020, 2020, 8954085. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, D.; Nanehkaran, Y.A.; Li, D. Detection of rice plant diseases based on deep transfer learning. J. Sci. Food Agric. 2020, 100, 3246–3256. [Google Scholar] [CrossRef]
- Shrivastava, V.K.; Pradhan, M.K.; Minz, S.; Thakur, M.P. Rice plant disease classification using transfer learning of deep convolution neural network. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 631–635. [Google Scholar] [CrossRef]
- Ahmed, K.; Shahidi, T.R.; Alam, S.M.I.; Momen, S. Rice leaf disease detection using machine learning techniques. In Proceedings of the 2019 International Conference on Sustainable Technologies for Industry 4.0 (STI), Dhaka, Bangladesh, 24–25 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar]
- Li, S.; Feng, Z.; Yang, B.; Li, H.; Liao, F.; Gao, Y.; Liu, S.; Tang, J.; Yao, Q. An intelligent monitoring system of diseases and pests on rice canopy. Front. Plant Sci. 2022, 13, 972286. [Google Scholar] [CrossRef]
- Daniya, T.; Vigneshwari, S. Deep neural network for disease detection in rice plant using the texture and deep features. Comput. J. 2022, 65, 1812–1825. [Google Scholar] [CrossRef]
- Haridasan, A.; Thomas, J.; Raj, E.D. Deep learning system for paddy plant disease detection and classification. Environ. Monit. Assess. 2023, 195, 120. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Wang, R.; Xie, C.; Liu, L.; Zhang, J.; Li, R.; Wang, F.; Zhou, M.; Liu, W. A recognition method for rice plant diseases and pests video detection based on deep convolutional neural network. Sensors 2020, 20, 578. [Google Scholar] [CrossRef] [PubMed]
- Ma, N.; Su, Y.; Yang, L.; Li, Z.; Yan, H. Wheat seed detection and counting method based on improved YOLOv8 model. Sensors 2024, 24, 1654. [Google Scholar] [CrossRef]
- Latif, G.; Abdelhamid, S.E.; Mallouhy, R.E.; Alghazo, J.; Kazimi, Z.A. Deep learning utilization in agriculture: Detection of rice plant diseases using an improved CNN model. Plants 2022, 11, 2230. [Google Scholar] [CrossRef] [PubMed]
- Rahman, C.R.; Arko, P.S.; Ali, M.E.; Khan, M.A.I.; Apon, S.H.; Nowrin, F.; Wasif, A. Identification and recognition of rice diseases and pests using convolutional neural networks. Biosyst. Eng. 2020, 194, 112–120. [Google Scholar] [CrossRef]
- Patil, R.R.; Kumar, S. Rice-fusion: A multimodality data fusion framework for rice disease diagnosis. IEEE Access 2022, 10, 5207–5222. [Google Scholar] [CrossRef]
- Zhang, G.; Xu, T.; Tian, Y.; Feng, S.; Zhao, D.; Guo, Z. Classification of rice leaf blast severity using hyperspectral imaging. Sci. Rep. 2022, 12, 19757. [Google Scholar] [CrossRef]
- Jain, S.; Sahni, R.; Khargonkar, T.; Gupta, H.; Verma, O.P.; Sharma, T.K.; Bhardwaj, T.; Agarwal, S.; Kim, H. Automatic rice disease detection and assistance framework using deep learning and a Chatbot. Electronics 2022, 11, 2110. [Google Scholar] [CrossRef]
- Firnando, F.M.; Setiadi, D.R.I.M.; Muslikh, A.R.; Iriananda, S.W. Analyzing inceptionv3 and inceptionresnetv2 with data augmentation for rice leaf disease classification. J. Future Artif. Intell. Technol. 2024, 1, 1–11. [Google Scholar] [CrossRef]
- Aldhyani, T.H.; Alkahtani, H.; Eunice, R.J.; Hemanth, D.J. Leaf pathology detection in potato and pepper bell plant using convolutional neural networks. In Proceedings of the 2022 7th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 22–24 June 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1289–1294. [Google Scholar]
- Rajamohanan, R.; Latha, B.C. An optimized YOLO v5 model for tomato leaf disease classification with field dataset. Eng. Technol. Appl. Sci. Res. 2023, 13, 12033–12038. [Google Scholar] [CrossRef]
- Eunice, J.; Popescu, D.E.; Chowdary, M.K.; Hemanth, J. Deep learning-based leaf disease detection in crops using images for agricultural applications. Agronomy 2022, 12, 2395. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 2015, 28. [Google Scholar] [CrossRef] [PubMed]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Wang, Y.; Wang, H.; Peng, Z. Rice diseases detection and classification using attention based neural network and bayesian optimization. Expert Syst. Appl. 2021, 178, 114770. [Google Scholar] [CrossRef]
- Jiang, F.; Lu, Y.; Chen, Y.; Cai, D.; Li, G. Image recognition of four rice leaf diseases based on deep learning and support vector machine. Comput. Electron. Agric. 2020, 179, 105824. [Google Scholar] [CrossRef]
- Anami, B.S.; Malvade, N.N.; Palaiah, S. Deep learning approach for recognition and classification of yield affecting paddy crop stresses using field images. Artif. Intell. Agric. 2020, 4, 12–20. [Google Scholar] [CrossRef]
- Sajitha, P.; Andrushia, D.A.; Suni, S. Multi-class Plant Leaf Disease Classification on Real-Time Images Using YOLO V7. In Proceedings of the International Conference on Image Processing and Capsule Networks, Bangkok, Thailand, 10–11 August 2024; Springer: Berlin/Heidelberg, Germany, 2023; pp. 475–489. [Google Scholar]
- Ritharson, P.I.; Raimond, K.; Mary, X.A.; Robert, J.E.; Andrew, J. DeepRice: A deep learning and deep feature based classification of Rice leaf disease subtypes. Artif. Intell. Agric. 2024, 11, 34–49. [Google Scholar] [CrossRef]
- Kaur, A.; Guleria, K.; Trivedi, N.K. A deep learning-based model for biotic rice leaf disease detection. Multimed. Tools Appl. 2024; 83, 83583–83609. [Google Scholar]
- Dubey, R.K.; Choubey, D.K. Adaptive feature selection with deep learning MBi-LSTM model based paddy plant leaf disease classification. Multimed. Tools Appl. 2024, 83, 25543–25571. [Google Scholar] [CrossRef]
- Stephen, A.; Punitha, A.; Chandrasekar, A. Optimal deep generative adversarial network and convolutional neural network for rice leaf disease prediction. Vis. Comput. 2024, 40, 919–936. [Google Scholar] [CrossRef]
- Wu, T.H.; Wang, T.W.; Liu, Y.Q. Real-time vehicle and distance detection based on improved yolo v5 network. In Proceedings of the 2021 3rd World Symposium on Artificial Intelligence (WSAI), Guangzhou, China, 18–20 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 24–28. [Google Scholar]
- Wang, Z.; Jin, L.; Wang, S.; Xu, H. Apple stem/calyx real-time recognition using YOLO-v5 algorithm for fruit automatic loading system. Postharvest Biol. Technol. 2022, 185, 111808. [Google Scholar] [CrossRef]
- Zhu, X.; Lyu, S.; Wang, X.; Zhao, Q. TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 2778–2788. [Google Scholar]
- Zheng, Z.; Yang, K. Wall crack detection method based on improved YOLOv5 and U2-Net. Int. J. Wirel. Mob. Comput. 2023, 25, 362–367. [Google Scholar] [CrossRef]
- Ting, L.; Baijun, Z.; Yongsheng, Z.; Shun, Y. Ship detection algorithm based on improved YOLO V5. In Proceedings of the 2021 6th International Conference on Automation, Control and Robotics Engineering (CACRE), Dalian, China, 15–17 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 483–487. [Google Scholar]
- Lou, H.; Duan, X.; Guo, J.; Liu, H.; Gu, J.; Bi, L.; Chen, H. DC-YOLOv8: Small-size object detection algorithm based on camera sensor. Electronics 2023, 12, 2323. [Google Scholar] [CrossRef]
- Salehi, A.W.; Khan, S.; Gupta, G.; Alabduallah, B.I.; Almjally, A.; Alsolai, H.; Siddiqui, T.; Mellit, A. A study of CNN and transfer learning in medical imaging: Advantages, challenges, future scope. Sustainability 2023, 15, 5930. [Google Scholar] [CrossRef]
- Weiss, K.; Khoshgoftaar, T.M.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3, 1–40. [Google Scholar] [CrossRef]
- Lin, T.Y.; Maire, M.; Belongie, S.; Bourdev, L.; Girshick, R.; Hays, J.; Perona, P.; Ramanan, D.; Zitnick, C.L.; Dollár, P. Microsoft COCO: Common Objects in Context. arXiv 2015, arXiv:cs.CV/1405.0312. [Google Scholar] [CrossRef]
- Wang, S.; Cao, X.; Wu, M.; Yi, C.; Zhang, Z.; Fei, H.; Zheng, H.; Jiang, H.; Jiang, Y.; Zhao, X.; et al. Detection of pine wilt disease using drone remote sensing imagery and improved yolov8 algorithm: A case study in Weihai, China. Forests 2023, 14, 2052. [Google Scholar] [CrossRef]
- Wang, G.; Chen, Y.; An, P.; Hong, H.; Hu, J.; Huang, T. UAV-YOLOv8: A small-object-detection model based on improved YOLOv8 for UAV aerial photography scenarios. Sensors 2023, 23, 7190. [Google Scholar] [CrossRef]
- Lin, B. Safety helmet detection based on improved YOLOv8. IEEE Access 2024, 14, 17550. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Li, J.; Liu, L.; Xue, Z.; Zhang, B.; Jiang, Z.; Huang, T.; Wang, Y.; Wang, C. Rethinking mobile block for efficient attention-based models. In Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 2–3 October 2023; IEEE Computer Society: Piscataway, NJ, USA, 2023; pp. 1389–1400. [Google Scholar]
- Wang, Y.; Xu, S.; Wang, P.; Li, K.; Song, Z.; Zheng, Q.; Li, Y.; He, Q. Lightweight vehicle detection based on improved YOLOv5s. Sensors 2024, 24, 1182. [Google Scholar] [CrossRef]
- Tong, Z.; Chen, Y.; Xu, Z.; Yu, R. Wise-IoU: Bounding box regression loss with dynamic focusing mechanism. arXiv 2023, arXiv:2301.10051. [Google Scholar]
- Du, X.; Cheng, H.; Ma, Z.; Lu, W.; Wang, M.; Meng, Z.; Jiang, C.; Hong, F. DSW-YOLO: A detection method for ground-planted strawberry fruits under different occlusion levels. Comput. Electron. Agric. 2023, 214, 108304. [Google Scholar] [CrossRef]
- Liang, Z.; Cui, G.; Xiong, M.; Li, X.; Jin, X.; Lin, T. YOLO-C: An Efficient and Robust Detection Algorithm for Mature Long Staple Cotton Targets with High-Resolution RGB Images. Agronomy 2023, 13, 1988. [Google Scholar] [CrossRef]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Xiong, C.; Zayed, T.; Abdelkader, E.M. A novel YOLOv8-GAM-Wise-IoU model for automated detection of bridge surface cracks. Constr. Build. Mater. 2024, 414, 135025. [Google Scholar] [CrossRef]
- Wang, Y.; Zou, H.; Yin, M.; Zhang, X. Smff-yolo: A scale-adaptive yolo algorithm with multi-level feature fusion for object detection in uav scenes. Remote Sens. 2023, 15, 4580. [Google Scholar] [CrossRef]
- Jin, T.; Bercea, G.T.; Le, T.D.; Chen, T.; Su, G.; Imai, H.; Negishi, Y.; Leu, A.; O’Brien, K.; Kawachiya, K.; et al. Compiling onnx neural network models using mlir. arXiv 2020, arXiv:2008.08272. [Google Scholar]
- He, K.; Hu, S.; Yang, X.; Peng, S. A General Inference Framework for Deep Neural Network of Modulation Recognition. In Proceedings of the 5th International Conference on Control and Computer Vision, Xiamen, China, 19–21 August 2022; pp. 218–225. [Google Scholar]
- Goyal, L.; Sharma, C.M.; Singh, A.; Singh, P.K. Leaf and spike wheat disease detection & classification using an improved deep convolutional architecture. Inform. Med. Unlocked 2021, 25, 100642. [Google Scholar]
- Liu, C.; Tao, Y.; Liang, J.; Li, K.; Chen, Y. Object detection based on YOLO network. In Proceedings of the 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 14–16 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 799–803. [Google Scholar]
- Sangaiah, A.K.; Yu, F.N.; Lin, Y.B.; Shen, W.C.; Sharma, A. UAV T-YOLO-rice: An enhanced tiny YOLO networks for rice leaves diseases detection in paddy agronomy. IEEE Trans. Netw. Sci. Eng. 2024, 11, 5201–5216. [Google Scholar] [CrossRef]
- Lu, Y.; Yu, J.; Zhu, X.; Zhang, B.; Sun, Z. YOLOv8-Rice: A rice leaf disease detection model based on YOLOv8. Paddy Water Environ. 2024, 22, 695–710. [Google Scholar] [CrossRef]
Datasets | Number (Images) | Category | Number (Category) |
---|---|---|---|
Bacterial Blight | 427 | ||
Train | 1158 | Rice Blast | 352 |
Brown Spot | 379 | ||
Bacterial Blight | 61 | ||
Val | 145 | Rice Blast | 43 |
Brown Spot | 41 | ||
Bacterial Blight | 56 | ||
Test | 145 | Rice Blast | 41 |
Brown Spot | 48 |
Category | Name | Parameter |
---|---|---|
Hardware | PC | CPU: AMD Ryzen 5 7535H (Amd, CA, USA) |
Memory: 16 GB | ||
GPU: GeForce RTX 4050 Laptop (Nvidia, CA, USA) | ||
Graphics card: 6 GB | ||
OS: Windows 11 (Microsoft, Redmond, WA, USA) | ||
Android | CPU: Qualcomm Snapdragon Gen1 (Qualcomm Inc., San Diego, CA, USA) | |
Memory: 8 G | ||
GPU: Adreno 730 | ||
Graphics card: 1.05 G | ||
OS: Android 14 | ||
Software | Deep learning framework | PyTorch 2.2.1 |
Programming languages | Python 3.9.18 | |
CUDA | 11.8 | |
Hyperparameter | Epochs | 200 |
Batch size | 4 | |
Learning rate | 0.01 |
Learning Rate | Batch Size | Precision (%) | Recall (%) | mAP (%) |
---|---|---|---|---|
0.1 | 2 | 92.4 | 86.8 | 94.0 |
0.1 | 4 | 92.7 | 87.1 | 94.1 |
0.001 | 2 | 92.1 | 86.5 | 93.7 |
0.001 | 4 | 92.3 | 86.1 | 93.6 |
0.01 | 2 | 92.1 | 86.3 | 94.7 |
0.01 | 4 | 93.1 | 88.0 | 95.0 |
Model | Transfer Learning | Detection Layer | WIoU | iRMB | Precision | Recall | mAP | F1 |
---|---|---|---|---|---|---|---|---|
(%) | (%) | (%) | (%) | |||||
YOLOv8n | × | × | × | × | 85.3 | 80.8 | 87.4 | 83.0 |
Model 1 | ✓ | × | × | × | 89.0 | 89.0 | 93.4 | 89.0 |
Model 2 | × | ✓ | × | × | 86.5 | 83.4 | 89.6 | 84.9 |
Model 3 | ✓ | ✓ | × | × | 90.2 | 83.8 | 90.2 | 86.9 |
Model 4 | ✓ | ✓ | ✓ | × | 89.6 | 89.1 | 94.9 | 89.4 |
Model 5 | ✓ | ✓ | × | ✓ | 88.9 | 84.5 | 90.7 | 86.6 |
Ours | ✓ | ✓ | ✓ | ✓ | 93.1 | 88.0 | 95.0 | 90.5 |
Model | Epochs | Precision (%) | Recall (%) | mAP (%) | F1 Score (%) | GFLOPS | Parameters | Time (Mins) |
---|---|---|---|---|---|---|---|---|
Faster RCNN | 100 | 48.32 | 78.44 | 79.85 | 59.80 | 254.2 | 41,305,642 | 201 |
200 | 50.39 | 84.23 | 81.78 | 63.06 | 283 | 103,694,777 | 406 | |
YOLOv3 | 100 | 71.80 | 68.60 | 75.40 | 70.16 | 283 | 103,694,777 | 245 |
200 | 88.32 | 84.90 | 91.60 | 86.58 | 283 | 103,694,777 | 460 | |
YOLOv5 | 100 | 67.60 | 61.40 | 68.60 | 64.35 | 7.2 | 2,509,049 | 52 |
200 | 79.60 | 74.20 | 82.40 | 76.81 | 11.9 | 4,238,441 | 103 | |
YOLOv6 | 100 | 59.40 | 59.80 | 58.40 | 59.60 | 11.9 | 4,238,441 | 42.6 |
200 | 74.60 | 68.50 | 78.00 | 71.42 | 13.2 | 6,020,400 | 86.7 | |
YOLOv7 | 100 | 76.20 | 71.10 | 77.60 | 74.56 | 105.1 | 37,207,344 | 141 |
200 | 87.30 | 84.50 | 90.30 | 85.88 | 105.1 | 37,207,344 | 283.3 | |
YOLOv7-Tiny | 100 | 75.10 | 80.80 | 81.80 | 77.85 | 13.2 | 6,020,400 | 109 |
200 | 76.70 | 81.00 | 82.90 | 78.79 | 13.2 | 6,020,400 | 216.7 | |
YOLOv10 | 200 | 88.60 | 85.2 | 91.00 | 86.87 | 6.7 | 2,300000 | 79 |
Ours | 200 | 93.10 | 88.00 | 95.00 | 90.48 | 12.6 | 2,984,700 | 107 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Wu, W.; Wei, B.; Li, H.; Zhan, J.; Deng, S.; Wang, J. Rice Disease Detection: TLI-YOLO Innovative Approach for Enhanced Detection and Mobile Compatibility. Sensors 2025, 25, 2494. https://doi.org/10.3390/s25082494
Li Z, Wu W, Wei B, Li H, Zhan J, Deng S, Wang J. Rice Disease Detection: TLI-YOLO Innovative Approach for Enhanced Detection and Mobile Compatibility. Sensors. 2025; 25(8):2494. https://doi.org/10.3390/s25082494
Chicago/Turabian StyleLi, Zhuqi, Wangyu Wu, Bingcai Wei, Hao Li, Jingbo Zhan, Songtao Deng, and Jian Wang. 2025. "Rice Disease Detection: TLI-YOLO Innovative Approach for Enhanced Detection and Mobile Compatibility" Sensors 25, no. 8: 2494. https://doi.org/10.3390/s25082494
APA StyleLi, Z., Wu, W., Wei, B., Li, H., Zhan, J., Deng, S., & Wang, J. (2025). Rice Disease Detection: TLI-YOLO Innovative Approach for Enhanced Detection and Mobile Compatibility. Sensors, 25(8), 2494. https://doi.org/10.3390/s25082494