MEF-CAAN: Multi-Exposure Image Fusion Based on a Low-Resolution Context Aggregation Attention Network †
Abstract
:1. Introduction
1.1. Traditional Methods
1.2. Deep Learning Based Methods
2. Methodology
2.1. Context Aggregation Attention Network (CAAN)
2.2. Guided Filtering for Upsampling (GFU)
2.3. Loss Function
2.4. Training
3. Experiments
3.1. Subjective Observation Comparison
3.2. Objective Quality Measure Comparison
3.3. Efficiency Comparison
3.4. Ablation Study
3.5. Limitation in Dynamic Scenes
4. Discussion and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, K.; Wang, Z. Multi-exposure image fusion: A patch-wise approach. In Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27–30 September 2015; pp. 1717–1721. [Google Scholar]
- Lee, S.H.; Park, J.S.; Cho, N.I. A multi-exposure image fusion based on the adaptive weights reflecting the relative pixel intensity and global gradient. In Proceedings of the 2018 IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 1737–1741. [Google Scholar]
- Li, H.; Ma, K.; Yong, H.; Zhang, L. Fast multi-scale structural patch decomposition for multi-exposure image fusion. IEEE Trans. Image Process. 2020, 29, 5805–5816. [Google Scholar] [CrossRef] [PubMed]
- Mertens, T.; Kautz, J.; Van Reeth, F. Exposure fusion: A simple and practical alternative to high dynamic range photography. In Computer Graphics Forum; Blackwell Publishing Ltd.: Oxford, UK, 2009; Volume 28, pp. 161–171. [Google Scholar]
- Goshtasby, A. Fusion of multi-exposure images. Image Vis. Comput. 2005, 23, 611–618. [Google Scholar] [CrossRef]
- Ben Hamza, A.; He, Y.; Krim, H. A multiscale approach to pixel-level image fusion. Integr. Comput.-Aided Eng. 2005, 12, 135–146. [Google Scholar] [CrossRef]
- Burt, P.J.; Adelson, E.H. The Laplacian pyramid as a compact image code. In Readings in Computer Vision; Morgan Kaufmann: San Francisco, CA, USA, 1987; pp. 671–679. [Google Scholar]
- Li, Z.; Zheng, J.; Rahardja, S. Detail-enhanced exposure fusion. IEEE Trans. Image Process. 2012, 21, 4672–4676. [Google Scholar]
- Liu, Y.; Wang, Z. Dense SIFT for ghost-free multi-exposure fusion. J. Vis. Commun. Image Represent. 2015, 31, 208–224. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, W.; Wu, X.; Li, Z. Detail-enhanced multi-scale exposure fusion in YUV color space. IEEE Trans. Circuits Syst. Video Technol. 2019, 30, 2418–2429. [Google Scholar] [CrossRef]
- Qu, L.; Liu, S.; Wang, M.; Song, Z. TransMEF: A Transformer-Based Multi-Exposure Image Fusion Framework using Self-Supervised Multi-Task Learning. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 22 February–1 March 2021. [Google Scholar]
- Han, D.; Li, L.; Guo, X.; Ma, J. Multi-exposure image fusion via deep perceptual enhancement. Inf. Fusion 2022, 79, 248–262. [Google Scholar] [CrossRef]
- Xu, H.; Ma, J.; Zhang, X. MEF-GAN: Multi-exposure image fusion via generative adversarial networks. IEEE Trans. Image Process. 2020, 29, 7203–7216. [Google Scholar] [CrossRef]
- Prabhakar, K.; Srikar, V.; Babu, R. Deepfuse: A deep unsupervised approach for exposure fusion with extreme exposure image pairs. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 4714–4722. [Google Scholar]
- Ma, K.; Zeng, K.; Wang, Z. Perceptual quality assessment for multi-exposure image fusion. IEEE Trans. Image Process. 2015, 24, 3345–3356. [Google Scholar] [CrossRef]
- Qi, Y.; Zhou, Z. Deep unsupervised learning based on color un-referenced loss functions for multi-exposure image fusion. Inf. Fusion 2021, 66, 248–262. [Google Scholar] [CrossRef]
- Xu, H.; Ma, J.; Jiang, J.; Guo, X. U2Fusion: A unified unsupervised image fusion network. IEEE Trans Pattern Anal. Mach. Intell. 2020, 44, 502–518. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.; Duanmu, Z.; Zhu, H.; Fang, Y.; Wang, Z. Deep guided learning for fast multi-exposure image fusion. IEEE Trans. Image Process. 2020, 29, 2808–2819. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, Y.; Sun, P.; Yan, H.; Zhao, X.; Zhang, L. IFCNN: A general image fusion framework based on convolutional neural network. Inf. Fusion 2020, 54, 99–118. [Google Scholar] [CrossRef]
- Cai, J.; Gu, S.; Zhang, L. Learning a deep single image contrast enhancer from multi-exposure images. IEEE Trans. Image Process. 2018, 27, 2049–2062. [Google Scholar] [CrossRef]
- Microsoft COCO: Common Objects in Context. Available online: https://link.springer.com/chapter/10.1007/978-3-319-10602-1_48 (accessed on 8 August 2023).
- Jiang, T.; Wang, C.; Li, X.; Li, R.; Fan, H.; Liu, S. MEF-LUT: Unsupervised 1d lookup tables for multi-exposure image fusion. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Paris, France, 1–6 October 2023; pp. 10542–10551. [Google Scholar]
- Liu, J.; Shang, J.; Liu, R.; Fan, X. Attention-guided global-local adversarial learning for detail-preserving multi-exposure image fusion. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 5026–5040. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141. [Google Scholar]
- Liu, Q.; Pi, J.; Yuan, D. STFNet: Self-supervised transformer for infrared and visible image fusion. IEEE Trans. Emerg. Top. Comput. Intell. 2024, 8, 1513–1526. [Google Scholar] [CrossRef]
- Xie, R.; Tao, M.; Xu, H.; Chen, M.; Yuan, D.; Liu, Q. Overexposed infrared and visible image fusion benchmark and baseline. Expert Syst. Appl. 2025, 266, 126024. [Google Scholar] [CrossRef]
- Chen, Q.; Xu, J.; Koltun, V. Fast image processing with fully-convolutional networks. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2497–2506. [Google Scholar]
- Yu, F.; Koltun, V. Multi-scale context aggregation by dilated convolutions. In Proceedings of the International Conference on Learning Representations, San Juan, Puerto Rico, 2–4 May 2016; pp. 1–13. [Google Scholar]
- Zhang, W.; Wang, C. A Novel Exposure Fusion Method Based on Low-Resolution Context Aggregation Attention Network. In Proceedings of the Conference 2024 17th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Shanghai, China, 26–28 October 2024. [Google Scholar]
- Endo, Y.; Kanamori, Y.; Mitani, J. Deep reverse tone mapping. ACM Trans. Graph 2017, 36, 1–10. [Google Scholar] [CrossRef]
- Fairchild, M. The HDR photographic survey. Color and imaging conference. Soc. Imaging Sci. Technol. 2007, 15, 233–238. [Google Scholar]
- Zeng, K.; Ma, K.; Hassen, R.; Wang, Z. Perceptual evaluation of multi-exposure image fusion algorithms. In Proceedings of the 2014 Sixth International Workshop on Quality of Multimedia Experience (QoMEX), Singapore, 18–20 September 2014; IEEE: Singapore, 2014; pp. 7–12. [Google Scholar]
- Zhang, X. Benchmarking and comparing multi-exposure image fusion algorithms. Inf. Fusion 2021, 74, 111–131. [Google Scholar] [CrossRef]
- Van Aardt, J. Assessment of image fusion procedures using entropy, image quality, and multispectral classification. J. Appl. Remote Sens. 2008, 2, 023522. [Google Scholar] [CrossRef]
- Qu, G.; Zhang, D.; Yan, P. Information measure for performance of image fusion. Electron. Lett. 2002, 38, 313. [Google Scholar] [CrossRef]
- Cui, G.; Feng, H.; Xu, Z.; Li, Q.; Chen, Y. Detail preserved fusion of visible and infrared images using regional saliency extraction and multi-scale image decomposition. Opt. Commun. 2015, 341, 199–209. [Google Scholar] [CrossRef]
- Rajalingam, B.; Priya, R.; Bhavani, R. Hybrid multimodality medical image fusion technique for feature enhancement in medical diagnosis. Int. J. Eng. Sci. Invent. 2018, 152, 52–60. [Google Scholar]
- Rao, Y. In-fibre Bragg grating sensors. Meas. Sci. Technol. 1997, 8, 355. [Google Scholar] [CrossRef]
- Eskicioglu, A.; Fisher, P. Image quality measures and their performance. IEEE Trans. Commun. 1995, 43, 2959–2965. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, J.; Wang, X.; Liu, X. A novel similarity based quality metric for image fusion. Inf. Fusion 2008, 9, 156–160. [Google Scholar] [CrossRef]
- Chen, Y.; Blum, R.S. A new automated quality assessment algorithm for image fusion. Image Vis. Comput. 2009, 27, 1421–1432. [Google Scholar] [CrossRef]
- Han, Y.; Cai, Y.; Cao, Y.; Xu, X. A new image fusion performance metric based on visual information fidelity. Inf. Fusion 2013, 14, 127–135. [Google Scholar] [CrossRef]
Category | Name | Meaning |
---|---|---|
Information theory-based | EN [34] | Entropy |
NMI [35] | Normalized mutual information | |
Image feature-based | AG [36] | Average gradient |
EI [37] | Edge intensity | |
SD [38] | Standard division | |
SF [39] | Spatial frequency | |
Image structural similarity-based | QY [40] | Yang’s metric |
MEF-SSIM [15] | Multi-Exposure Fusion Structural Similarity Index | |
Human perception-inspired | QCB [41] | Chen-Blum metric |
VIF [42] | Visual information fidelity |
Metrics | Metric Values of Different Methods | |||||||
---|---|---|---|---|---|---|---|---|
MEF09 [4] | DSIFT [9] | DEM [10] | FMMEF [3] | MEF-Net [18] | DPE-MEF [12] | MEF-LUT [22] | MEF-CAAN | |
EN [34] | 7.4236 | 7.4626 | 7.4714 | 7.4578 | 7.5453 | 7.3818 | 6.5017 | 7.5371 2 |
NMI [35] | 0.6049 | 0.6923 | 0.6992 | 0.5806 | 0.6937 | 0.6175 | 0.7740 | 0.7817 1 |
AG [36] | 6.1537 | 5.8744 | 6.2253 | 6.2739 | 6.8229 | 6.9472 | 3.3768 | 6.8277 2 |
EI [37] | 60.0109 | 57.7305 | 60.9928 | 61.8744 | 69.8314 | 67.8608 | 32.8804 | 71.4862 1 |
SD [38] | 54.0809 | 54.2094 | 57.7137 | 61.2351 | 62.2835 | 61.7648 | 54.7258 | 63.7908 1 |
SF [39] | 20.2120 | 19.1154 | 20.4091 | 20.7031 | 22.8166 | 23.3935 | 12.1354 | 22.8113 3 |
QY [40] | 0.8618 | 0.8966 | 0.8892 | 0.8485 | 0.8269 | 0.7438 | 0.5282 | 0.8410 5 |
MEF-SSIM [15] | 0.9719 | 0.9753 | 0.9755 | 0.9812 | 0.9628 | 0.9479 | 0.8201 | 0.9703 5 |
QCB [41] | 0.5137 | 0.5200 | 0.4951 | 0.4997 | 0.5032 | 0.4122 | 0.4665 | 0.5053 3 |
VIF [42] | 0.8122 | 0.7963 | 0.8495 | 0.9150 | 0.9381 | 0.7317 | 0.4156 | 0.9416 1 |
Sets | Running Time of Methods (s) | |||
---|---|---|---|---|
MEF-Net [18] | DPE-MEF [12] | MEF-LUT [22] | MEF-CAAN | |
Kluki | 0.234 | 0.697 | 0.107 | 0.241 |
Lighthouse | 0.249 | 0.594 | 0.096 | 0.249 |
Villa | 0.246 | 0.682 | 0.088 | 0.247 |
Night | 0.539 | 1.664 | 0.294 | 0.575 |
SevenElevenNight | 3.556 | 10.864 | 1.868 | 3.750 |
Door | 0.592 | 1.489 | 0.287 | 0.597 |
Average | 0.903 | 2.665 | 0.457 | 0.943 |
Attention Module | MEF-SSIM [15] |
---|---|
CAN without attention module | 0.9604 |
Transformer self-supervised attention module | 0.9693 |
CAAN module | 0.9703 |
Depth | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|
MEF-SSIM | 0.9661 | 0.9684 | 0.9703 | 0.9711 | 0.9716 | 0.9718 |
Width | 8 | 16 | 24 | 32 | 48 | 64 |
MEF-SSIM | 0.9578 | 0.9681 | 0.9703 | 0.9712 | 0.9718 | 0.9721 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Wang, C.; Zhu, J. MEF-CAAN: Multi-Exposure Image Fusion Based on a Low-Resolution Context Aggregation Attention Network. Sensors 2025, 25, 2500. https://doi.org/10.3390/s25082500
Zhang W, Wang C, Zhu J. MEF-CAAN: Multi-Exposure Image Fusion Based on a Low-Resolution Context Aggregation Attention Network. Sensors. 2025; 25(8):2500. https://doi.org/10.3390/s25082500
Chicago/Turabian StyleZhang, Wenxiang, Chunmeng Wang, and Jun Zhu. 2025. "MEF-CAAN: Multi-Exposure Image Fusion Based on a Low-Resolution Context Aggregation Attention Network" Sensors 25, no. 8: 2500. https://doi.org/10.3390/s25082500
APA StyleZhang, W., Wang, C., & Zhu, J. (2025). MEF-CAAN: Multi-Exposure Image Fusion Based on a Low-Resolution Context Aggregation Attention Network. Sensors, 25(8), 2500. https://doi.org/10.3390/s25082500