Distributed Sensor Network Calibration Under Sensor Nonlinearities with Applications in Aerodynamic Pressure Sensing
Abstract
:1. Introduction
Research Methodology
2. Problem Formulation
3. Offset Correction
3.1. Full-Consensus Algorithm
- A1:
- .
- A2:
- , .
- A3:
- Graph possesses a central node.
3.2. Algorithm with Reference
4. Gain Correction
4.1. Full-Consensus Algorithm
- (a)
- ,
- (b)
- (c)
- (d)
- .
4.2. Algorithm with Reference
- A4:
5. Simultaneous Calibration of Offsets and Gains
5.1. Consensus Algorithm
5.2. Algorithm with Reference
6. Calibration in a Stochastic Environment Under Sensor Nonlinearities
6.1. Assumptions and General Aspects
6.2. Offset Calibration
6.3. Gain Calibration
6.3.1. Communication Noise
6.3.2. Measurement Noise
7. Simulation Results
7.1. Offset Calibration
7.2. Gain Calibration
7.3. Simultaneous Offset and Gain Calibration
7.4. Simultaneous Offset and Gain Calibration with Measurement and Communication Noises
8. Calibration of Instrumentation for Aerodynamic Testing
8.1. Multichannel Aerodynamic Pressure-Sensing Instrument: General Description
8.2. Instrument Calibration Using the Analyzed Algorithms
Algorithm 1 Computation of the calibration parameters at node i. |
Initial values , step sizes , weights , Initialize step counter t Repeat For all do Observe measurements and Compute and Send and to all out-neighboring nodes Obtain data and from all Update according to (33) Update according to (4) End for Update the iteration counter Until convergence |
8.3. Scalability
9. Conclusions
- This paper presents a rigorous theoretical analysis of the algorithm for offset calibration belonging to the given class of sensor nonlinearities, including a proof of stability in the B.I.B.O. sense; spacial attention is paid to: (a) the calibration algorithm based on full consensus; (b) the calibration algorithm based on a predefined micro-calibrated reference node.
- This paper achieves the derivation of the explicit formulae for corrected offsets as functions of time.
- This paper presents a rigorous theoretical analysis of the gain calibration algorithm belonging to the given class under the presence of sensor nonlinearities, including: (a) a demonstration of the instability of the gain calibration algorithm based on full consensus; (b) a proof of its B.I.B.O. stability of the calibration algorithm based on a gain reference.
- This paper demonstrates the formulation of an algorithm for the simultaneous calibration of offsets and gains, together with a proof of the B.I.B.O. stability for a case of an algorithm with references for both gain and offset.
- This paper proposes a general methodology for incorporating stochastic disturbances in sensor models together with sensor nonlinearities, including the formulation of an appropriate lemma, opening up new methodological possibilities for extending the obtained results.
- This paper provides comprehensive illustrative simulation analyses of all the theoretically derived conclusions.
- This paper presents a newly designed multichannel aerodynamic pressure-sensing instrument.
- This paper presents the functioning of the newly developed instrument under normal operating conditions.
- This paper demonstrates that the proposed algorithms can be a basis for distributed online real-time blind re-calibration of large sensor networks under normal operating conditions, applicable to complex experiments with the developed pressure-sensing instrument.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Majid, M.; Habib, S.; Javed, A.R.; Rizwan, M.; Srivastava, G.; Gadekallu, T.R.; Lin, J.C.W. Applications of Wireless Sensor Networks and Internet of Things Frameworks in the Industry Revolution 4.0: A Systematic Literature Review. Sensors 2022, 22, 2087. [Google Scholar] [CrossRef]
- Puliafito, A.; Triconi, G.; Zafeiropoulos, A.; Papavasiliu, S. Smart cities in the future as CPS: Challenges and enabling technologies. Sensors 2021, 21, 3349. [Google Scholar] [CrossRef]
- Ramaswami, S.; Khan, F.; Shah, M.; Prasad, B.; Iwendi, C.; Biamba, C. Secure smart wearable computing through artificial intelligence–enabled internet of things and cyberphysical systemsfor health monitoring. Sensors 2022, 22, 1076. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhao, C.; Wang, Y.; Wang, H. Machine learning based calibration of temperature sensors. Sensors 2023, 23, 7347. [Google Scholar] [CrossRef] [PubMed]
- Shafique, K.; Khawaja, B.A.; Sabir, F.; Qazi, S.; Mustaqim, M. Internet of Things (IoT) for Next-Generation Smart Systems: A Review of Current Challenges, Future Trends and Prospects for Emerging 5G-IoT Scenarios. IEEE Access 2020, 8, 23022–23040. [Google Scholar] [CrossRef]
- Jamshed, M.A.; Ali, K.; Abbasi, Q.H.; Imran, M.A.; Ur-Rehman, M. Challenges, Applications, and Future of Wireless Sensors in Internet of Things: A Review. IEEE Sens. J. 2022, 22, 5482–5494. [Google Scholar] [CrossRef]
- Zhang, X.M.; Han, Q.L.; Ge, X.; Ding, D.; Ding, L.; Yue, D.; Peng, C. Networked control systems: A survey of trends and techniques. IEEE/CAA J. Autom. Sin. 2020, 7, 1–17. [Google Scholar] [CrossRef]
- Tomic, S.; Beko, M.; Dinis, R. Distributed RSS-Based Localization in Wireless Sensor Networks Based on Second-Order Cone Programming. Sensors 2014, 14, 18410–18432. [Google Scholar] [CrossRef]
- Barcelo-Ordinas, J.M.; Doudou, M.; Garcia-Vidal, J.; Badache, N. Self-calibration methods for uncontrolled environments in sensor networks: A reference survey. Ad Hoc Netw. 2019, 88, 142–159. [Google Scholar] [CrossRef]
- Pantazis, N.A.; Vergados, D.D. A survey on power control issues in wireless sensor networks. IEEE Commun. Surv. Tutor. 2007, 9, 86–107. [Google Scholar] [CrossRef]
- Huang, P.; Xiao, L.; Soltani, S.; Mutka, M.W.; Xi, N. The evolution of MAC protocols in wireless sensor networks: A survey. IEEE Commun. Surv. Tutor. 2012, 15, 101–120. [Google Scholar] [CrossRef]
- Pantazis, N.A.; Nikolidakis, S.A.; Vergados, D.D. Energy-efficient routing protocols in wireless sensor networks: A survey. IEEE Commun. Surv. Tutor. 2012, 15, 551–591. [Google Scholar] [CrossRef]
- Barcelo-Ordinas, J.M.; Chanet, J.P.; Hou, K.M.; Garcia-Vidal, J. A survey of wireless sensor technologies applied to precision agriculture. Precis. Agric. 2013, 13, 801–808. [Google Scholar]
- Whitehouse, K.; Culler, D. Calibration as parameter estimation in sensor networks. In Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks and Applications, Atlanta, GA, USA, 28 September 2002; pp. 59–67. [Google Scholar]
- Whitehouse, K.; Culler, D. Macro-calibration in sensor/actuator networks. Mobile Netw. Applicat. 2003, 8, 463–472. [Google Scholar] [CrossRef]
- Delaine, F.; Lebental, B.; Rivano, H. Framework of the simulation of sensors networks aimed at evaluating in situ calibration algorithms. Sensors 2020, 20, 4577. [Google Scholar] [CrossRef]
- Levin, A.; Weiss, Y.; Durand, F.; Freeman, W. Understanding and evaluating blind deconvolution algorithms. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 1964–1971. [Google Scholar]
- Yu, C.; Xie, L. On Recursive Blind Equalization in Sensor Networks. IEEE Trans. Signal Process. 2015, 63, 662–672. [Google Scholar] [CrossRef]
- Nandi, A. Blind Estimation Using Higher-Order Statistics; Kluwer Academic Publishers: Boston, MA, USA, 1999. [Google Scholar]
- Cambareri, V.; Jacques, L. Through the haze: A non-convex approach to blind calibration for linear random sensing models. Inf. Inference J. IMA 2019, 8, 205–271. [Google Scholar] [CrossRef]
- Boumchlich, A.; Picault, J.; Aumond, P.; Can, A.; Bocher, E. Blind calibration of environmental acoustics measuring smartphones. Sensors 2024, 24, 1255. [Google Scholar] [CrossRef]
- Balzano, L.; Nowak, R. Blind calibration of sensor networks. In Proceedings of the International Conference on Information Processing in Sensor Networks, Cambridge, MA, USA, 25–27 April 2007; pp. 79–88. [Google Scholar]
- Bychkovskiy, V.; Megerian, S.; Estrin, D.; Potkonjak, M. A Collaborative Approach to In-Place Sensor Calibration. In Proceedings of the International Conference on Information Processing in Sensor Networks, Palo Alto, CA, USA, 25–27 April 2003; pp. 301–316. [Google Scholar]
- Sooriyaachchi, V.; Lary, D.J.; Wijiratna, L.; Waczak, J. Causality driven feature selection for calibrating low-cost airborne particulate sensors using machine learning. Sensors 2024, 24, 7304. [Google Scholar] [CrossRef]
- Balzano, L.; Nowak, R. Blind Calibration; Technical Report TR-UCLA-NESL-200702-01; Networked and Embedded Systems Laboratory, UCLA: Los Angeles, CA, USA, 2007. [Google Scholar]
- Bilen, C.; Puy, G.; Gribonval, R.; Daudet, L. Convex Optimization Approaches for Blind Sensor Calibration Using Sparsity. IEEE Trans. Signal Process. 2014, 62, 4847–4856. [Google Scholar] [CrossRef]
- Wang, C.; Ramanathan, P.; Saluja, K.K. Moments Based Blind Calibration in Mobile Sensor Networks. In Proceedings of the 2008 IEEE International Conference on Communications, Beijing, China, 12–13 May 2008; pp. 896–900. [Google Scholar]
- Wang, Y.; Yang, A.; Li, Z.; Wang, P.; Yang, H. Blind drift calibration of sensor networks using signal space projection and Kalman filter. In Proceedings of the 2015 IEEE Tenth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), Singapore, 7–9 April 2015; pp. 1–6. [Google Scholar]
- Wang, Y.; Yang, A.; Li, Z.; Chen, X.; Wang, P.; Yang, H. Blind Drift Calibration of Sensor Networks Using Sparse Bayesian Learning. IEEE Sens. J. 2016, 16, 6249–6260. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, A.; Chen, X.; Wang, P.; Wang, Y.; Yang, H. A Deep Learning Approach for Blind Drift Calibration of Sensor Networks. IEEE Sens. J. 2017, 17, 4158–4171. [Google Scholar] [CrossRef]
- Dorffer, C.; Puigt, M.; Delmaire, G.; Roussel, G. Blind Calibration of Mobile Sensors Using Informed Nonnegative Matrix Factorization. In Proceedings of the Latent Variable Analysis and Signal Separation, Liberec, Czech Republic, 25–28 August 2015; Vincent, E., Yeredor, A., Koldovský, Z., Tichavský, P., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 497–505. [Google Scholar]
- Butarelli, N.; El-Gohari, N. Consensus based clustering for indoor sensor deplpyment and indoor condition monitoring. Build. Environ. 2023, 244, 110550. [Google Scholar] [CrossRef]
- Stanković, M.; Stanković, S.; Johansson, K.; Beko, M.; Camarinha-Matos, L. On Consensus-Based Distributed Blind Calibration of Sensor Networks. Sensors 2018, 18, 4027. [Google Scholar] [CrossRef]
- Stanković, M.S.; Stanković, S.S.; Johansson, K.H. Distributed Blind Calibration in Lossy Sensor Networks via Output Synchronization. IEEE Trans. Autom. Control 2015, 60, 3257–3262. [Google Scholar] [CrossRef]
- Stanković, M.S.; Stanković, S.S.; Johansson, K.H. Distributed Macro Calibration in Sensor Networks. In Proceedings of the Mediterranean Conference on Control & Automation, Barcelona, Spain, 3–6 July 2012; pp. 1049–1054. [Google Scholar]
- Stanković, M.S.; Stanković, S.S.; Johansson, K.H. Asynchronous Distributed Blind Calibration of Sensor Networks under Noisy Measurements. IEEE Trans. Control Netw. Syst. 2018, 5, 571–582. [Google Scholar] [CrossRef]
- Stanković, M.S.; Stanković, S.S.; Johansson, K.H. Distributed time synchronization for networks with random delays and measurement noise. Automatica 2018, 93, 126–137. [Google Scholar] [CrossRef]
- Giridhar, D.; Kumar, P.R. Distributed clock synchronization over wireless networks: Algorithms and analysis. In Proceedings of the IEEE Conference on Decision and Control, San Diego, CA, USA, 13–15 December 2006; pp. 263–270. [Google Scholar]
- Sommer, P.; Wattenhofer, R. Gradient clock synchronization in wireless sensor networks. In Proceedings of the International Conference on Information Processing in Sensor Networks, San Francisco, CA, USA, 13–16 April 2009; pp. 37–48. [Google Scholar]
- Schenato, L.; Fiorentin, F. Average TimeSynch: A consensus-based protocol for time synchronization in wireless sensor networks. Automatica 2011, 47, 1878–1886. [Google Scholar] [CrossRef]
- Carli, R.; Chiuso, A.; Schenato, L.; Zampieri, S. Optimal Synchronization for Networks of Noisy Double Integrators. IEEE Trans. Autom. Control 2008, 56, 1146–1152. [Google Scholar] [CrossRef]
- Liao, C.; Barooah, P. Distributed clock skew and offset estimation from relative measurements in mobile networks with Markovian switching topologies. Automatica 2013, 49, 3015–3022. [Google Scholar] [CrossRef]
- Stanković, M.S.; Stanković, S.S.; Johansson, K.H. Distributed time synchronization in lossy wireless sensor networks. In Proceedings of the 3rd IFAC Workshop on Distributed Estimation and Control in Networked Systems, Santa Barbara, CA, USA, 13–14 September 2012; pp. 25–30. [Google Scholar]
- Stanković, M.; Antić, D. Distributed consensus-based calibration of networked control systems. Facta Univ. Autom. Control Robot. 2020, 18, 95–111. [Google Scholar] [CrossRef]
- Stanković, M. Distributed asynchronous consensus-based algorithm for blind calibration of sensor networks with autonomous gain correction. IET Control Theory Appl. 2018, 12, 2287–2293. [Google Scholar] [CrossRef]
- Stanković, M.; Antić, D. Distributed non-linear robust consensus-based sensor calibration for networked control systems. IET Control Theory Appl. 2020, 14, 1200–1208. [Google Scholar] [CrossRef]
- Stanković, M.; Antić, D.; Nikolić, S. Convegence Rate for Distributed Macro Calibration of Sensor Networks based on Consensus. Acta Polytech. Hung. 2023, 20, 161–178. [Google Scholar] [CrossRef]
- Godsil, C.; Royle, G. Algebraic Graph Theory; Springer: New York, NY, USA, 2001. [Google Scholar]
- Ljung, L.; Söderström, T. Theory and Pracice of Recursive Identification; MIT Press: Cambridge, MA, USA, 1983. [Google Scholar]
- Polyak, B.T.; Tsypkin, Y.Z. Pseudogradient adaptation and training algorithms. Avtomat. i Telemekh. 1973, 3, 45–68. [Google Scholar]
- Polyak, B.T.; Tsypkin, Y.Z. Adaptive estimation algorithms (convergence, optimality, stability). Autom. Remote Control 1979, 71–84. [Google Scholar]
- Rugh, W.J. Linear System Theory; Prentice Hall: New York, NY, USA, 1996. [Google Scholar]
- Olfati-Saber, R.; Fax, A.; Murray, R. Consensus and cooperation in networked multi-agent systems. Proc. IEEE 2007, 95, 215–233. [Google Scholar] [CrossRef]
- Stanković, M.S.; Stanković, S.S.; Stipanović, D.M. Consensus-based decentralized real-time identification of large-scale systems. Automatica 2015, 60, 219–226. [Google Scholar] [CrossRef]
- Huang, M.; Manton, J.H. Stochastic approximation for consensus seeking: Mean square and almost sure convergence. In Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, LA, USA, 12–14 December 2007; pp. 306–311. [Google Scholar]
- Huang, M.; Manton, J.H. Stochastic Lyapunov analysis for consensus algorithms with noisy measurements. In Proceedings of the 2007 American Control Conference, New York, NY, USA, 11–13 July 2007; pp. 1419–1424. [Google Scholar]
- Huang, M.; Manton, J.H. Stochastic consensus seeking with noisy and directed inter-agent communications: Fixed and randomly varying topologies. IEEE Trans. Autom. Control 2010, 55, 235–241. [Google Scholar] [CrossRef]
- Ren, W. Consensus strategies for cooperative control of vehicle formations. IET Control Theory Appl. 2007, 1, 505–512. [Google Scholar] [CrossRef]
- Xiao, L.; Boyd, S. Fast linear iterations for distributed averaging. Syst. Control Lett. 2004, 53, 65–78. [Google Scholar] [CrossRef]
- Chen, H.F. Stochastic Approximation and Its Applications; Kluwer Academic: Dordrecht, Netherlands, 2002. [Google Scholar]
- Ljung, L. System Identification—Theory for the User; Prentice Hall International: Englewood Cliffs, NJ, USA, 1989. [Google Scholar]
- Borkar, V. Asynchronous stochastic approximation. SIAM J. Control Optim. 1998, 36, 840–851. [Google Scholar] [CrossRef]
- Borkar, V.; Meyn, S.P. The ODE method for convergence of stochastic approximation and reinforcement learning. SIAM J. Control Optim. 2000, 38, 447–469. [Google Scholar] [CrossRef]
- Polyak, B.T. Convergence and rate of convergence of iterative stochastic algorithms, I General Case. Autom. Remote Control 1976, 83–94. [Google Scholar]
- Zhang, D.; Subramanian, S.; Hampson, R.; Jackson, W.; Kontis, K.; Dobie, G. Automotive Aerodynamics Sensing Using Low-Profile Pressure Sensor Strip. IEEE Trans. Instrum. Meas. 2023, 72, 1–9. [Google Scholar] [CrossRef]
- Cellucci, D.; Cramer, N.; Swei, S.S.M. Distributed Pressure Sensing for Enabling Self-Aware Autonomous Aerial Vehicles. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 6769–6775. [Google Scholar]
- Tanaka, H.; Tamura, Y.; Ohtake, K.; Nakai, M.; Kim, Y.C. Experimental investigation of aerodynamic forces and wind pressures acting on tall buildings with various unconventional configurations. J. Wind. Eng. Ind. Aerodyn. 2012, 107–108, 179–191. [Google Scholar] [CrossRef]
- Lazić, Z.; Smiljanić, M.; Tanasković, D.; Rasljić-Rafajilović, M.; Cvetanović, K.; Milinković, E.; Bosković, M.; Andrić, S.; Poljak, P.; Frantlović, M. Development of a MEMS Multisensor Chip for Aerodynamic Pressure Measurements. Eng. Proc. 2023, 58, 52. [Google Scholar] [CrossRef]
- Kumar, S.; Pant, B. Design principles and considerations for the ‘ideal’ silicon piezoresistive pressure sensor: A focused review. Microsyst. Technol. 2014, 20, 1213–1247. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanković, S.S.; Stanković, M.S.; Veinović, M.; Jokić, I.; Frantlović, M. Distributed Sensor Network Calibration Under Sensor Nonlinearities with Applications in Aerodynamic Pressure Sensing. Sensors 2025, 25, 2505. https://doi.org/10.3390/s25082505
Stanković SS, Stanković MS, Veinović M, Jokić I, Frantlović M. Distributed Sensor Network Calibration Under Sensor Nonlinearities with Applications in Aerodynamic Pressure Sensing. Sensors. 2025; 25(8):2505. https://doi.org/10.3390/s25082505
Chicago/Turabian StyleStanković, Srdjan S., Miloš S. Stanković, Mladen Veinović, Ivana Jokić, and Miloš Frantlović. 2025. "Distributed Sensor Network Calibration Under Sensor Nonlinearities with Applications in Aerodynamic Pressure Sensing" Sensors 25, no. 8: 2505. https://doi.org/10.3390/s25082505
APA StyleStanković, S. S., Stanković, M. S., Veinović, M., Jokić, I., & Frantlović, M. (2025). Distributed Sensor Network Calibration Under Sensor Nonlinearities with Applications in Aerodynamic Pressure Sensing. Sensors, 25(8), 2505. https://doi.org/10.3390/s25082505