Efficacy of a Waist-Mounted Sensor in Predicting Prospective Falls Among Older People Residing in Community Dwellings: A Prospective Cohort Study †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Equipment: Sensor System
2.3. Study Design and Data Acquisition
2.4. Outcome Measures
2.5. Analytical Groups
2.6. Data Analysis
3. Results
3.1. Analysis of Physical Performance Differences by Risk Group Across Two Groups
3.2. Discriminant Validity of Physical Performance Tests in Fall Risk Classification
3.3. Discriminant Validity of Cognitive Screening Tool in Fall Risk Classification
3.4. Correlation Analysis of Physical Tests and Sensor Risk Classification
3.5. Correlation Analysis and Logistic Regression Analysis of Fall Risk Predictors
3.6. Sensor Sensitivity
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Falls Fact Sheet. 2018. Available online: https://www.who.int/news-room/fact-sheets/detail/falls (accessed on 4 March 2025).
- Gamage, N.; Rathnayake, N.; Alwis, G. Knowledge and Perception of Falls among Community Dwelling Elderly: A Study from Southern Sri Lanka. Curr. Gerontol. Geriatr. Res. 2018, 2018, 7653469. [Google Scholar] [CrossRef] [PubMed]
- Fong, N.K.; Siu, M.H.A.; Ma, P.P.S.; Au Yeung, K.K.Y.; Sze, P.P.C.; Chan, C.H. Domiciliary environmental risk factors for accidental falls among community-living older persons: A prospective 12-month study. Healthy Aging Res. 2015, 5, 1–10. [Google Scholar]
- Sterling, D.A.; O’Connor, J.A.; Bonadies, J. Geriatric falls: Injury severity is high and disproportionate to mechanism. J. Trauma 2001, 50, 116–119. [Google Scholar] [CrossRef] [PubMed]
- Ambrose, A.F.; Paul, G.; Hausdorff, J.M. Risk factors for falls among older adults: A review of the literature. Maturitas 2013, 75, 51–61. [Google Scholar] [CrossRef]
- Zijlstra, G.A.R.; van Haastregt, J.C.M.; van Eijk, J.T.M.; van Rossum, E.; Stalenhoef, P.A.; Kempen, G.I.J.M. Prevalence and correlates of fear of falling, and associated avoidance of activity in the general population of community-living older people. Age Ageing 2007, 36, 304–309. [Google Scholar] [CrossRef]
- To, W.T.; Fong, K.N.K. Fear of falling among older adults: Measurements and interventions. In Ageing Care in the Community: Current Practices, Practice-Research, and Future Directions; Fong, K.N.K., Tong, K.W., Eds.; City University of Hong Kong Press: Hong Kong, China, 2024; pp. 121–150. [Google Scholar]
- Chu, L.W.; Chi, I.; Chiu, A.Y.Y. Falls and fall-related injuries in community-dwelling elderly persons in Hong Kong: A study on risk factors, functional decline, and health services utilization after falls. Hong Kong Med. J. 2007, 13 (Suppl. S1), S8–S12. [Google Scholar]
- Chu, M.M.; Fong, K.N.K.; Lit, A.C.; Rainer, T.H.; Cheng, S.W.; Au, F.L.; Fung, H.K.; Wong, C.M.; Tong, H.K. An occupational therapy fall reduction home visit program for community-dwelling older adults in Hong Kong after an emergency department visit for a fall. J. Am. Geriatr. Soc. 2017, 65, 364–372. [Google Scholar] [CrossRef]
- Scott, V.; Votova, K.; Scanlan, A.; Close, J. Multifactorial and functional mobility assessment tools for fall risk among older adults in community, home-support, long-term and acute care settings. Age Ageing 2007, 36, 130–139. [Google Scholar] [CrossRef]
- Barry, E.; Galvin, R.; Keogh, C.; Horgan, F.; Fahey, T. Is the Timed Up and Go test a useful predictor of risk of falls in community-dwelling older adults: A systematic review and meta-analysis. BMC Geriatr. 2014, 14, 14. [Google Scholar] [CrossRef]
- Myers, H.; Nikoletti, S. Fall risk assessment: A prospective investigation of nurses’ clinical judgement and risk assessment tools in predicting patient falls. Int. J. Nurs. Pract. 2003, 9, 158–165. [Google Scholar] [CrossRef]
- Beauchet, O.; Fantino, B.; Allali, G.; Muir, S.W.; Montero-Odasso, M.; Annweiler, C. Timed Up and Go test and risk of falls in older adults: A systematic review. J. Nutr. Health Aging 2011, 15, 933–938. [Google Scholar] [CrossRef] [PubMed]
- Howcroft, J.; Kofman, J.; Lemaire, E.D. Review of fall risk assessment in geriatric populations using inertial sensors. J. Neuroeng. Rehabil. 2013, 10, 91. [Google Scholar] [CrossRef] [PubMed]
- Rivolta, M.W.; Aktaruzzaman, M.; Rizzo, G.; Lafortuna, C.L.; Ferrarin, M.; Bovi, G.; Bonardi, D.R.; Sassi, R. Automatic vs. clinical assessment of fall risk in older individuals: A proof of concept. In Proceedings of the IEEE Engineering in Medicine and Biology Society Annual Conference, Milan, Italy, 25–29 August 2015; pp. 6935–6938. [Google Scholar]
- Brigante, C.; Abbate, N.; Basile, A.; Faulisi, A.; Sessa, S. Towards miniaturization of a MEMS-based wearable motion capture system. IEEE Trans. Ind. Electron. 2011, 58, 3234–3241. [Google Scholar] [CrossRef]
- Li, K.J.; Wong, N.L.Y.; Law, M.C.; Lam, F.M.H.; Wong, H.C.; Chan, T.O.; Wong, K.N.; Zheng, Y.P.; Huang, Q.Y.; Wong, A.Y.L.; et al. Reliability, validity, and identification ability of a commercialized waist-attached inertial measurement unit (IMU) sensor-based system in fall risk assessment of older people. Biosensors 2023, 13, 998. [Google Scholar] [CrossRef]
- Howcroft, J.; Kofman, J.; Lemaire, E.D. Prospective fall-risk prediction models for older adults based on wearable sensors. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1812–1820. [Google Scholar] [CrossRef]
- Bezold, J.; Krell-Roesch, J.; Eckert, T.; Jekauc, D.; Woll, A. Sensor-based fall risk assessment in older adults with or without cognitive impairment: A systematic review. Eur. Rev. Aging Phys. Act. 2021, 18, 15. [Google Scholar] [CrossRef]
- Subramaniam, S.; Faisal, A.I.; Deen, M.J. Wearable sensor systems for fall risk assessment: A review. Front. Digit. Health 2022, 4, 921506. [Google Scholar] [CrossRef]
- Toh, S.F.M.; Fong, K.N.K.; Cruz Gonzalez, P.; Tang, Y.M. Application of home-based wearable technologies in stroke rehabilitation: A scoping review. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 1614–1623. [Google Scholar] [CrossRef]
- Montesinos, L.; Castaldo, R.; Pecchia, L. Wearable Inertial Sensors for Fall Risk Assessment and Prediction in Older Adults: A Systematic Review and Meta-Analysis. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 573–582. [Google Scholar] [CrossRef]
- Sebastiani, C.; Wong, J.Y.X.; Litt, A.; Loewen, J.; Reece, K.; Conlin, N.; Dunand, T.; Montero Odasso, M.; D’Amore, C.; Saunders, S.; et al. Mapping sex and gender differences in falls among older adults: A scoping review. J. Am. Geriatr. Soc. 2024, 72, 903–915. [Google Scholar] [CrossRef]
- Aspire Fall Risk Management. Available online: https://www.booguu.bio/aspire?lang=en (accessed on 11 September 2023).
- Wong, A.; Law, L.S.; Liu, W.; Wang, Z.; Lo, E.S.; Lau, A.; Wong, L.K.; Mok, V.C. Montreal Cognitive Assessment: One Cutoff Never Fits All. Stroke 2015, 46, 3547–3550. [Google Scholar] [CrossRef] [PubMed]
- Vellas, B.J.; Wayne, S.J.; Romero, L.; Baumgartner, R.N.; Rubenstein, L.Z.; Garry, P.J. One-leg balance is an important predictor of injurious falls in older persons. J. Am. Geriatr. Soc. 1997, 45, 735–738. [Google Scholar] [CrossRef] [PubMed]
- Montero-Odasso, M.; Schapira, M.; Soriano, E.R.; Varela, M.; Kaplan, R.; Camera, L.A.; Mayorga, L.M. Gait velocity as a single predictor of adverse events in healthy seniors aged 75 years and older. J. Gerontol. A Biol. Sci. Med. Sci. 2005, 60, 1304–1309. [Google Scholar] [CrossRef] [PubMed]
- Buatois, S.; Perret-Guillaume, C.; Gueguen, R.; Miget, P.; Vancon, G.; Perrin, P.; Benetos, A. A simple clinical scale to stratify risk of recurrent falls in community-dwelling adults aged 65 years and older. Phys. Ther. 2010, 90, 550–560. [Google Scholar] [CrossRef]
- Wong, A.; Yiu, S.; Nasreddine, Z.; Leung, K.T.; Lau, A.; Soo, Y.O.Y.; Wong, L.K.; Mok, V. Validity and reliability of two alternate versions of the Montreal Cognitive Assessment (Hong Kong version) for screening of mild neurocognitive disorder. PLoS ONE 2018, 13, e0196344. [Google Scholar] [CrossRef]
- Chen, M.; Wang, H.; Yu, L.; Yeung, E.H.K.; Luo, J.; Tsui, K.L.; Zhao, Y. A systematic review of wearable sensor-based technologies for fall risk assessment in older adults. Sensors 2022, 22, 6752. [Google Scholar] [CrossRef]
- Chittrakul, J.; Siviroj, P.; Sungkarat, S.; Sapbamrer, R. Multi-System Physical Exercise Intervention for Fall Prevention and Quality of Life in Pre-Frail Older Adults: A Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2020, 17, 3102. [Google Scholar] [CrossRef]
- Muir, S.W.; Berg, K.; Chesworth, B.; Klar, N.; Speechley, M. Balance impairment as a risk factor for falls in community-dwelling older adults who are high functioning: A prospective study. Phys. Ther. 2010, 90, 338–347. [Google Scholar] [CrossRef]
- Ishigaki, E.Y.; Ramos, L.G.; Carvalho, E.S.; Lunardi, A.C. Effectiveness of muscle strengthening and description of protocols for preventing falls in the elderly: A systematic review. Braz. J. Phys. Ther. 2014, 18, 111–118. [Google Scholar] [CrossRef]
- Kang, H.; Lee, B. Comparison of gait variables and relative risk of falls according to walking speed during flat and obstacle walking of fallers and non-fallers in elderly women. Exerc. Sci. 2022, 31, 230–238. [Google Scholar] [CrossRef]
- Adam, C.E.; Fitzpatrick, A.L.; Leary, C.S.; Hajat, A.; Phelan, E.A.; Park, C.; Semmens, E.O. The association between gait speed and falls in community-dwelling older adults with and without mild cognitive impairment. Int. J. Environ. Res. Public Health 2021, 18, 3712. [Google Scholar] [CrossRef] [PubMed]
- Adam, C.E.; Fitzpatrick, A.L.; Leary, C.S.; Hajat, A.; Ilango, S.D.; Park, C.; Phelan, E.A.; Semmens, E.O. Change in gait speed and fall risk among community-dwelling older adults with and without mild cognitive impairment: A prospective cohort analysis. BMC Geriatr. 2023, 23, 328. [Google Scholar] [CrossRef] [PubMed]
- Fong, K.N.K.; Chung, R.C.K.; Sze, P.P.C.; Ng, C.K.M. Factors associated with fall risk of community-dwelling older people: A decision tree analysis. Digit. Health 2023, 9, 20552076231181202. [Google Scholar] [CrossRef] [PubMed]
- Panel on Prevention of Falls in Older Persons, American Geriatrics Society and British Geriatrics Society. Summary of the updated American Geriatrics Society/British Geriatrics Society clinical practice guideline for prevention of falls in older persons. J. Am. Geriatr. Soc. 2011, 59, 148–157. [Google Scholar] [CrossRef]
- Food and Health Bureau, Government Secretariat. Hong Kong Reference Framework for Preventive Care for Older Adults in Primary Care Settings: Module on Falls in Elderly. Available online: https://www.healthbureau.gov.hk/phcc/rfs/src/pdfviewer/web/pdf/preventivecareforolderadults/en/06_en_Module_on_Falls_in_elderly.pdf (accessed on 15 October 2019).
Characteristics | Group 1 | Group 2 | ||||
---|---|---|---|---|---|---|
High-Risk Group (n = 25) | Moderate-Risk Group (n = 12) | p | High-Risk Group (n = 16) | Moderate-Risk Group (n = 6) | p | |
Age (year), mean ± SD | 71.56 ± 5.01 | 72.33 ± 3.80 | 0.64 | 71.63 ± 5.15 | 72.33 ± 4.23 | 0.77 |
Gender (%) | ||||||
Male | 6 (24) | 2 (16.7) | 5 (31.25) | 0 (0) | ||
Female | 19 (76) | 10 (83.33) | 11 (68.75) | 6 (100) | ||
No. of falls in past 12 months (%) | 4 (16) | 2 (16.67) | 3 (18.75) | 0 (0) | ||
On >4 medications (%) | 4 (12) | 2 (16.7) | 3 (18.75) | 1 (16.7) |
Fall Risk Level | 1 Predicted Group Membership, n (%), Using SLST | ||
---|---|---|---|
Moderate | High | Total | |
Moderate | 6 (50) | 6 (50) | 12 |
High | 12 (48) | 13 (52) | 25 |
2 Predicted Group Membership, n (%), using 6MWT | |||
Moderate | High | Total | |
Moderate | 7 (58.3) | 5 (41.7) | 12 |
High | 8 (32) | 17 (68) | 25 |
3 Predicted Group Membership, n (%), using 5STS | |||
Moderate | High | Total | |
Moderate | 4 (33.3) | 8 (66.7) | 12 |
High | 7 (28) | 18 (72) | 25 |
Fall Risk Level | 1 Predicted Group Membership, n (%), Using MoCA | ||
---|---|---|---|
Moderate | High | Total | |
Moderate | 4 (66.7) | 2 (33.3) | 6 |
High | 9 (56.3) | 7 (43.8) | 16 |
Risk Classification by the Sensor | Actual Outcomes | |
---|---|---|
Actual Fall (%) | No Fall (%) | |
High-risk group | 5 (13.51) | 20 (54.05) |
Moderate-risk group | 0 (0) | 12 (32.43) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, K.-M.; Fong, K.N.K. Efficacy of a Waist-Mounted Sensor in Predicting Prospective Falls Among Older People Residing in Community Dwellings: A Prospective Cohort Study. Sensors 2025, 25, 2516. https://doi.org/10.3390/s25082516
Lai K-M, Fong KNK. Efficacy of a Waist-Mounted Sensor in Predicting Prospective Falls Among Older People Residing in Community Dwellings: A Prospective Cohort Study. Sensors. 2025; 25(8):2516. https://doi.org/10.3390/s25082516
Chicago/Turabian StyleLai, Ka-Ming, and Kenneth N. K. Fong. 2025. "Efficacy of a Waist-Mounted Sensor in Predicting Prospective Falls Among Older People Residing in Community Dwellings: A Prospective Cohort Study" Sensors 25, no. 8: 2516. https://doi.org/10.3390/s25082516
APA StyleLai, K.-M., & Fong, K. N. K. (2025). Efficacy of a Waist-Mounted Sensor in Predicting Prospective Falls Among Older People Residing in Community Dwellings: A Prospective Cohort Study. Sensors, 25(8), 2516. https://doi.org/10.3390/s25082516