RE-YOLOv5: Enhancing Occluded Road Object Detection via Visual Receptive Field Improvements
Abstract
:1. Introduction
- (1)
- An object detection algorithm RE-YOLOv5 based on receptive field enhancement is proposed, which effectively solves the problem of low accuracy in occluded object detection caused by the difficulty in extracting effective features in complex road scenes.
- (2)
- To improve the feature extraction ability of the backbone network for occluded objects, the CSPLayer with Deformable Convnets (CSPD) module is designed by introducing deformable convolution in the CSPLayer. The Receptive Field Atrous Enhancement (RFAE) module is designed using atrous convolution to obtain richer contextual information.
- (3)
- In the post-processing stage, the network is optimized using an EIOU-NMS algorithm, which is used to improve the accuracy of occluded object detection. Various experiments validate the superiority of this method.
2. Related Work
2.1. Occlusion Object Detection
2.2. Receptive Field Enhancement
2.3. Non-Maximum Suppression
2.4. Emerging Research Directions
3. System Model
3.1. RE-YOLOv5 Overall Structure
3.2. CSPLayer with Deformable Convnets
3.3. Receptive Field Atrous Enhancement Module
3.4. EIOU-NMS: Enhanced Post-Processing
Algorithm 1 EIOU-NMS. |
|
4. Experiments and Discussion
4.1. Experimental Setup
4.1.1. Datasets and Data Preprocessing
4.1.2. Experimental Parameter Settings
4.1.3. Evaluation Indicators
4.2. Comparative Experimental Analysis
4.3. Qualitative Analysis of Occlusion Object Detection
4.4. Ablation Experiment
4.5. Comparison of Different Reprocessing Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, H. Where will automotive intelligent driving technology go. Automob. Accessories 2022, 2022, 40–41. [Google Scholar]
- Razi, A.; Chen, X.; Li, H.; Wang, H.; Russo, B.; Chen, Y.; Yu, H. Deep learning serves traffic safety analysis: A forward-looking review. IET Intell. Transp. Syst. 2023, 17, 22–71. [Google Scholar] [CrossRef]
- Li, A.; Guo, C.; Huang, X.; Cao, J.; Liu, G. A review of object detection methods for self-driving cars. J. Shandong Jiaotong Inst. 2022, 30, 20–29. [Google Scholar]
- Basnet, K.S.; Shrestha, J.K.; Shrestha, R.N. Pavement performance model for road maintenance and repair planning: A review of predictive techniques. Digit. Transp. Saf. 2023, 2, 253–267. [Google Scholar] [CrossRef]
- Kaur, J.; Singh, W. Tools, techniques, datasets and application areas for object detection in an image: A review. Multimed. Tools Appl. 2022, 81, 38297–38351. [Google Scholar] [CrossRef]
- Kim, J.U.; Kwon, J.; Kim, H.G.; Ro, Y.M. Bbc net: Bounding-box critic network for occlusion-robust object detection. IEEE Trans. Circuits Syst. Video Technol. 2019, 30, 1037–1050. [Google Scholar] [CrossRef]
- Mao, Q.C.; Sun, H.M.; Zuo, L.Q.; Jia, R.S. Finding every car: A traffic surveillance multi-scale vehicle object detection method. Appl. Intell. 2020, 50, 3125–3136. [Google Scholar] [CrossRef]
- Tian, D.; Lin, C.; Zhou, J.; Duan, X.; Cao, Y.; Zhao, D.; Cao, D. Sa-yolov3: An efficient and accurate object detector using self-attention mechanism for autonomous driving. IEEE Trans. Intell. Transp. Syst. 2020, 23, 4099–4110. [Google Scholar] [CrossRef]
- Tan, Y.; Yao, H.; Li, H.; Lu, X.; Xie, H. Prf-ped: Multi-scale pedestrian detector with prior-based receptive field. In Proceedings of the International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021; pp. 6059–6064. [Google Scholar]
- Xie, H.; Zhang, W.; Shin, H. Occluded pedestrian detection techniques by deformable attention-guided network (dang). Appl. Sci. 2021, 11, 6025. [Google Scholar] [CrossRef]
- Liu, M.; Wan, L.; Wang, B.; Wang, T. Se-yolov4: Shuffle expansion yolov4 for pedestrian detection based on pixelshuffle. Appl. Intell. 2023, 53, 18171–18188. [Google Scholar] [CrossRef]
- Chi, C.; Zhang, S.; Xing, J. Selective Refinement Network for High Performance Face Detection. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; pp. 8231–8238. [Google Scholar]
- Najibi, M.; Samangouei, P.; Chellappa, R.; Davis, L.S. Ssh: Single stage headless face detector. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 4875–4884. [Google Scholar]
- Wang, W.; Li, S.; Shao, J.; Jumahong, H. LKC-Net: Large kernel convolution object detection network. Sci. Rep. 2023, 13, 9535. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Guo, J.; Zhou, Y.; Yu, J.; Kotsia, I.; Zafeiriou, S. Retinaface: Single-stage dense face localisation in the wild. arXiv 2019, arXiv:1905.00641. [Google Scholar]
- Yu, Z.; Huang, H.; Chen, W.; Su, Y.; Liu, Y.; Wang, X. Yolo-facev2: A scale and occlusion aware face detector. Pattern Recognit. 2024, 155, 110714. [Google Scholar] [CrossRef]
- Neubeck, A.; Van Gool, L. Efficient non-maximum suppression. In Proceedings of the 18th International Conference on Pattern Recognition (ICPR’06), Hong Kong, China, 22–24 August 2006; pp. 850–855. [Google Scholar]
- Bodla, N.; Singh, B.; Chellappa, R.; Davis, L.S. Soft-NMS–improving object detection with one line of code. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 5561–5569. [Google Scholar]
- Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-IoU loss: Faster and better learning for bounding box regression. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; pp. 12993–13000. [Google Scholar]
- Lu, Y.; Wu, Y.; Liu, B.; Zhang, T.; Li, B.; Chu, Q.; Yu, N. Cross-modality person re-identification with shared-specific feature transfer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 13379–13389. [Google Scholar]
- Labbaki, S.; Minary, P. Orthogonal Sequential Fusion in Multimodal Learning. In Proceedings of the International Conference on Learning Representations, Vienna, Austria, 7–11 May 2024. [Google Scholar]
- Zhang, Z.; Hoai, M. Object detection with self-supervised scene adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 21589–21599. [Google Scholar]
- Saunders, K.; Vogiatzis, G.; Manso, L.J. Self-supervised monocular depth estimation: Let’s talk about the weather. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Vancouver, BC, Canada, 17–24 June 2023; pp. 8907–8917. [Google Scholar]
- Han, W.; Yin, J.; Shen, J. Self-supervised monocular depth estimation by direction-aware cumulative convolution network. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 1–6 October 2023; pp. 8613–8623. [Google Scholar]
- Zhu, X.; Hu, H.; Lin, S.; Dai, J. Deformable convnets v2: More deformable, better results. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 9308–9316. [Google Scholar]
- Ma, J.; Dai, Y.; Tan, Y.P. Atrous convolutions spatial pyramid network for crowd counting and density estimation. Neurocomputing 2019, 350, 91–101. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient channel attention for deep convolutional neural networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, Seattle, WA, USA, 13–19 June 2020; pp. 11534–11542. [Google Scholar]
- Zhang, Y.F.; Ren, W.; Zhang, Z.; Jia, Z.; Wang, L.; Tan, T. Focal and efficient iou loss for accurate bounding box regression. Neurocomputing 2022, 506, 146–157. [Google Scholar] [CrossRef]
- Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The kitti dataset. Int. J. Robot. Res. 2013, 32, 1231–1237. [Google Scholar] [CrossRef]
- Zhang, S.; Benenson, R.; Schiele, B. Citypersons: A diverse dataset for pedestrian detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3213–3221. [Google Scholar]
- Zhang, H.; Cisse, M.; Dauphin, Y.N.; Lopez-Paz, D. Mixup: Beyond empirical risk minimization. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018; pp. 1–13. [Google Scholar]
- Choi, J.; Chun, D.; Kim, H.; Lee, H.J. Gaussian yolov3: An accurate and fast object detector using localization uncertainty for autonomous driving. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 502–511. [Google Scholar]
- Ke, X.; Li, J. U-fpndet: A one-shot traffic object detector based on u-shaped feature pyramid module. IET Image Process. 2021, 15, 2146–2156. [Google Scholar] [CrossRef]
- Gasperini, S.; Haug, J.; Mahani, M.A.N.; Marcos-Ramiro, A.; Navab, N.; Busam, B.; Tombari, F. Certainnet: Sampling-free uncertainty estimation for object detection. IEEE Robot. Autom. Lett. 2021, 7, 698–705. [Google Scholar] [CrossRef]
- Yi, J.; Wu, P.; Metaxas, D.N. Assd: Attentive single shot multibox detector. Comput. Vis. Image Underst. 2019, 189, 102827–102835. [Google Scholar] [CrossRef]
- Song, X.; Zhou, Z.; Zhang, L.; Lu, X.; Hei, X. Psns-ssd: Pixel-level suppressed nonsalient semantic and multicoupled channel enhancement attention for 3d object detection. IEEE Robot. Autom. Lett. 2024, 9, 603–610. [Google Scholar] [CrossRef]
- Mushtaq, H.; Deng, X.; Jiang, P.; Wan, S.; Ali, M.; Ullah, I. GFA-SMT: Geometric Feature Aggregation and Self-Attention in a Multi-Head Transformer for 3D Object Detection in Autonomous Vehicles. IEEE Trans. Intell. Transp. Syst. 2025, 26, 3557–3573. [Google Scholar] [CrossRef]
- Ruan, B.; Zhang, C. Occluded pedestrian detection combined with semantic features. IET Image Process. 2021, 15, 2292–2300. [Google Scholar] [CrossRef]
- Zhang, S.; Wen, L.; Bian, X.; Lei, Z.; Li, S.Z. Occlusion-aware r-cnn: Detecting pedestrians in a crowd. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 637–653. [Google Scholar]
- Ma, J.; Wan, H.; Wang, J.; Xia, H.; Bai, C. An improved one-stage pedestrian detection method based on multi-scale attention feature extraction. J. Real-Time Image Process. 2021, 18, 1–14. [Google Scholar] [CrossRef]
- Ma, J.; Wan, H.; Wang, J.; Xia, H.; Bai, C. An improved scheme of deep dilated feature extraction on pedestrian detection. Signal Image Video Process. 2021, 15, 231–239. [Google Scholar] [CrossRef]
- Xia, H.; Wan, H.; Ou, J.; Ma, J.; Lv, X.; Bai, C. Mafa-net: Pedestrian detection network based on multi-scale attention feature aggregation. Appl. Intell. 2022, 52, 1–14. [Google Scholar] [CrossRef]
- Zhang, T.; Ye, Q.; Zhang, B.; Liu, J.; Zhang, X.; Tian, Q. Feature Calibration Network for Occluded Pedestrian Detection. IEEE Trans. Intell. Transp. Syst. 2022, 23, 4151–4163. [Google Scholar] [CrossRef]
- Li, Z.; Luo, N.; Zhang, X.; Guo, Z.; Fang, X.; Qiao, Y. Crowdassign: A Label Assignment Scheme for Pedestrian Detection in Crowded Scenes. In Proceedings of the 2024 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 27–30 October 2024; pp. 326–331. [Google Scholar]
- Zou, F.; Li, X.; Xu, Q.; Sun, Z.; Zhu, J. Correlation-and-Correction Fusion Attention Network for Occluded Pedestrian Detection. IEEE Sens. J. 2023, 23, 6061–6073. [Google Scholar] [CrossRef]
Category | Method | Key Innovation/Advantages | Limitations/Drawbacks |
---|---|---|---|
Detection Component-Specific Optimization | BBCNet [6] | Adversarial learning with bounding-box estimators to identify occlusion regions. | Limited to car-to-car occlusion; requires joint training. |
SA-YOLOv3 [8] | Optimized regression loss for occluded object localization. | Focuses on intra-class occlusion only. | |
Context-Aware Optimization | PRFB [9] | Aligns receptive fields with pedestrian aspect ratios to reduce background interference. | Sensitive to extreme pose variations. |
Deformable Attention-guided Network [10] | Attention-guided deformable convolution for non-rigid feature sampling. | High computational complexity. | |
SE-YOLOv4 [11] | PixelShuffle-based upsampling for feature integrity preservation. | Requires careful hyperparameter tuning. | |
Receptive Field Enhancement | Selective Refinement [12] | Multi-branch adaptive fusion of features from varying receptive fields. | Lacks dynamic adaptation to occlusion patterns. |
Large Kernel Attention [14] | Large receptive field attention for channel-wise features. | May dilute local details in dense scenes. | |
NWD Loss [16] | Wasserstein distance for small object localization. | Limited to face detection scenarios. | |
Post-processing Optimization | Soft-NMS [18] | Gradual confidence reduction based on IOU values. | Fails when location-confidence mismatch exists. |
DIOU-NMS [19] | Incorporates centroid distance into suppression criteria. | Ignores aspect ratio compatibility. | |
Emerging Research Directions | Shared-Specific Fusion [20] | Decouples modality-shared and specific features (22.5% mAP improvement). | Needs multi-sensor hardware support. |
Orthogonal Fusion [21] | Phased fusion with orthogonal constraints reduces redundancy. | High memory footprint. | |
Pseudo-Label Cross-Teaching [22] | Background-invariant adaptation. | Limited to fixed-view scenarios. | |
Weather-Augmented Framework [24] | Pseudo-supervised loss + weather-aware augmentation for foggy/nighttime robustness. | Requires weather-specific augmentation. |
Notation | Description | Notation | Description |
---|---|---|---|
Atrous convolution | Adjustment parameter; the default value is set to 2 | ||
Adaptive one-dimensional convolution | h | The height of the baseline prediction box | |
B | List with all prediction boxes | The height of the remaining prediction box | |
b | Adjustment parameter, the default value is set to 1 | k | The size of the convolution kernel |
Remaining prediction boxes | M | Baseline prediction boxes | |
C | The number of channels | Confidence threshold | |
c | The diagonal length of the smallest outer bounding rectangle | Channel mapping | |
The height of the smallest outer bounding rectangle | The spatial positional relationship between the two boxes | ||
Concat | Concatenate | Receptive field size | |
The width of the smallest outer bounding rectangle | Euclidean distance between center points | ||
D | The final list of prediction boxes | S | Confidence values corresponding to all prediction boxes |
d | Dilation ratio | The updated confidence value | |
F | Feature map | w | The width of the baseline prediction box |
Output feature map | The width of the remaining prediction box | ||
GAP | Global average pooling | Denotes the nearest odd number taken when it is not possible to divide |
Object Category | Number of Instances | Number of Obscured | Percentage% |
---|---|---|---|
Car | 28,521 | 15,231 | 53.4 |
Pedestrian | 4445 | 1805 | 40.6 |
Cyclist | 1612 | 772 | 44.5 |
Evaluation Criteria | Easy | Moderate | Hard |
---|---|---|---|
Minimum Height of the Bounding Box (Pixel) | 40 | 25 | 25 |
Degree of Visibility | Bare | Partial occlusion | Heavy occlusion |
Truncation Rate% | 15 | 30 | 50 |
Methods | Car | Pedestrian | Cyclist | mAP | ||||||
---|---|---|---|---|---|---|---|---|---|---|
E | M | H | E | M | H | E | M | H | ||
Faster RCNN | 82.9 | 77.8 | 66.3 | 83.3 | 68.4 | 62.4 | 56.4 | 46.4 | 42.8 | 65.1 |
BBCNet | 92.6 | 91 | 86.2 | 86.2 | 69.5 | 64.5 | 75.4 | 66.7 | 60.5 | 76.9 |
Gaussian-YOLO [32] | 89.91 | 84.36 | 75.65 | 58.43 | 50.95 | 43.69 | 45.97 | 31.37 | 30.53 | 56.76 |
CenterNet | 92.3 | 89.15 | 82.17 | 76.53 | 67.53 | 59.37 | 73.48 | 52.63 | 50.25 | 71.49 |
U-FPNDet [33] | 91.3 | 89.7 | 81.8 | 75.7 | 72.1 | 68.4 | 74.5 | 68.4 | 62.1 | 76 |
CertainNet [34] | 93.81 | 89.36 | 82.11 | 76.33 | 66.13 | 58.54 | 78.02 | 57.49 | 55.2 | 72.99 |
ASSD [35] | 89.28 | 89.95 | 82.11 | 69.07 | 62.49 | 60.18 | 75.23 | 76.16 | 72.83 | 75.25 |
PSNS-SSD [36] | 89.13 | 84.27 | 78.73 | 68.69 | 62.31 | 57.22 | 88.48 | 73.48 | 68.13 | 74.41 |
PointRCNN [37] | 93.42 | 89.11 | 84.25 | 55.17 | 48.10 | 44.90 | 81.83 | 70.94 | 63.25 | 70.11 |
RE-YOLOv5 | 94.21 | 92.76 | 82.65 | 86.56 | 75.56 | 69.01 | 88.1 | 76.44 | 73.13 | 82.04 |
Methods | Reasonable (%) | Bare (%) | Partial (%) | Heavy (%) |
---|---|---|---|---|
MF-CSP [38] | 11.2 | 7.2 | 10.4 | 47.9 |
OR-CNN [39] | 12.8 | 6.7 | 15.3 | 55.7 |
MSCM-ANet [40] | 11.95 | 7.9 | 11.1 | 50.1 |
DDFE [41] | 12.9 | 8.2 | 12.1 | 50.5 |
MAFA-Net [42] | 11.47 | 6.29 | 10.05 | 43.84 |
FA-Net [43] | 11.6 | – | 11.9 | 42.8 |
FCOS w [44] | 13.9 | 8.18 | 14.23 | 47.7 |
CCFA-Net [45] | – | 5.66 | 13.35 | 49.99 |
YOLOv5 | 15.24 | 7.8 | 18.19 | 49.96 |
RE-YOLOv5 | 10.98 | 5.16 | 13.49 | 40.31 |
Methods | CSPD | RFAE | EIOU-NMS | Reasonable (%) | Bare (%) | Partial (%) | Heavy (%) | Parameter (MB) | FPS |
---|---|---|---|---|---|---|---|---|---|
1 | 15.24 | 7.8 | 18.19 | 49.96 | 47 | 61 | |||
2 | ✔ | 13.21 | 6.26 | 14.32 | 45.3 | 47.62 | 51 | ||
3 | ✔ | 14.65 | 6.88 | 15.34 | 46.17 | 48.714 | 55 | ||
4 | ✔ | 14.35 | 7.03 | 16.3 | 47.03 | 47 | 58 | ||
5 | ✔ | ✔ | 12.88 | 6.11 | 14.01 | 42.61 | 49.334 | 49 | |
6 | ✔ | ✔ | ✔ | 10.98 | 5.16 | 13.49 | 40.31 | 49.334 | 43 |
Methods | Car | Pedestrian | Cyclist | mAP | ||||||
---|---|---|---|---|---|---|---|---|---|---|
E | M | H | E | M | H | E | M | H | ||
1 | 92.07 | 89.91 | 79.31 | 85.23 | 74.1 | 66.71 | 86.7 | 73.31 | 70.01 | 79.7 |
2 | 93.51 | 91.23 | 81.37 | 85.66 | 75.26 | 68.35 | 87.81 | 75.22 | 71.98 | 81.15 |
3 | 93.11 | 91.04 | 81.22 | 85.41 | 74.6 | 67.66 | 87.22 | 74.68 | 71.46 | 80.71 |
4 | 92.8 | 90.8 | 80.11 | 85.34 | 74.27 | 67.21 | 87.11 | 74.15 | 71.25 | 80.33 |
5 | 93.74 | 92.13 | 82.22 | 86.07 | 75.49 | 68.56 | 88.03 | 75.63 | 72.58 | 81.6 |
6 | 94.21 | 92.76 | 82.65 | 86.56 | 75.56 | 69.01 | 88.1 | 76.44 | 73.13 | 82.04 |
Methods | Car | Pedestrian | Cyclist | mAP | ||||||
---|---|---|---|---|---|---|---|---|---|---|
E | M | H | E | M | H | E | M | H | ||
Greedy-NMS | 93.74 | 92.13 | 82.22 | 86.07 | 75.49 | 68.56 | 88.03 | 75.63 | 72.58 | 81.6 |
DIOU-NMS | 94.1 | 92.33 | 82.46 | 86.27 | 75.5 | 68.66 | 88.08 | 76.01 | 72.88 | 81.81 |
EIOU-NMS | 94.21 | 92.76 | 82.65 | 86.56 | 75.56 | 69.01 | 88.1 | 76.44 | 73.13 | 82.04 |
Methods | Reasonable (%) | Bare (%) | Partial (%) | Heavy (%) |
---|---|---|---|---|
Greedy-NMS | 12.88 | 6.11 | 14.01 | 42.61 |
DIOU-NMS | 11.21 | 5.48 | 13.64 | 41.78 |
EIOU-NMS | 10.98 | 5.16 | 13.49 | 40.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Xiong, X.; Zhang, Y.; Fan, X.; Zhang, Y.; Huang, H.; Hu, D.; He, M.; Liu, Z. RE-YOLOv5: Enhancing Occluded Road Object Detection via Visual Receptive Field Improvements. Sensors 2025, 25, 2518. https://doi.org/10.3390/s25082518
Li T, Xiong X, Zhang Y, Fan X, Zhang Y, Huang H, Hu D, He M, Liu Z. RE-YOLOv5: Enhancing Occluded Road Object Detection via Visual Receptive Field Improvements. Sensors. 2025; 25(8):2518. https://doi.org/10.3390/s25082518
Chicago/Turabian StyleLi, Tianyu, Xuanrui Xiong, Yuan Zhang, Xiaolin Fan, Yushu Zhang, Haihong Huang, Dan Hu, Mengting He, and Zhanjun Liu. 2025. "RE-YOLOv5: Enhancing Occluded Road Object Detection via Visual Receptive Field Improvements" Sensors 25, no. 8: 2518. https://doi.org/10.3390/s25082518
APA StyleLi, T., Xiong, X., Zhang, Y., Fan, X., Zhang, Y., Huang, H., Hu, D., He, M., & Liu, Z. (2025). RE-YOLOv5: Enhancing Occluded Road Object Detection via Visual Receptive Field Improvements. Sensors, 25(8), 2518. https://doi.org/10.3390/s25082518