Enhanced Simultaneous Localization and Mapping Algorithm Based on Deep Learning for Highly Dynamic Environment
Abstract
:1. Introduction
- (1)
- A SLAM algorithm based on deep learning for applications in a highly dynamic environment is designed. Based on ORB-SLAM2, a process of segmenting dynamic targets using lightweight YOLOv10n is added. The process runs concurrently with the local mapping thread of ORB-SLAM2;
- (2)
- The client and server based on socket process communication are designed. In YOLOv10, the server is used to transmit the detection results to the client. In ORB-SLAM2, the client is used to receive the detection results from the server, and the detection results are passed into the feature point detection module to filter the dynamic feature points. After ensuring the consistency and compatibility of the two ends of the communication interface, the information transmission between different processes is realized;
- (3)
- The experimental results show that the proposed algorithm greatly improves the accuracy of the ORB-SLAM2 algorithm, and the improvement rate is more than 96%. The processing speed is also improved compared with other dynamic SLAM algorithms. In this paper, the average processing time of each frame of the image is 0.0488 s, and the average processing speed is 20 frames per second.
2. Dynamic Visual SLAM Algorithm Framework
2.1. Lightweight Target Detection
Algorithm 1 YOLOv10n Dynamic Detection Algorithm |
Input: dataset_path: The path to the TUM dataset. model_path: The path to the YOLOv10n model. client_address: The address of the client. dynamic_object_id: ID of dynamic object. Output: detection_results: Detection box information Procedure:
|
2.2. RANSAC + EPnP Algorithm
2.3. Socket Process Communication
3. Experiment and Result Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Quan, M.; Piao, S.; Li, G. An Overview of Visual SLAM. CAAI Trans. Intell. Syst. 2016, 11, 768–776. [Google Scholar]
- Albekairi, M.; Mekki, H.; Kaaniche, K.; Yousef, A. An Innovative Collision-Free Image-Based Visual Servoing Method for Mobile Robot Navigation Based on the Path Planning in the Image Plan. Sensors 2023, 23, 9667. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Fan, Y.; Mannan, A.; Wang, S.; Long, L.; Feng, Z. Real–Time Estimation of Tree Position, Tree Height, and Tree Diameter at Breast Height Point, Using Smartphones Based on Monocular SLAM. Forests 2024, 15, 939. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, S.; Xie, Y.; Xiong, T.; Wu, M. A Review of Sensing Technologies for Indoor Autonomous Mobile Robots. Sensors 2024, 24, 1222. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Luo, H.; Yin, X.; Zhang, Y.; Li, Z. Affording Social Experience for Adolescents Using Immersive Virtual Reality: A Moderated Mediation Analysis. Children 2024, 11, 1362. [Google Scholar] [CrossRef] [PubMed]
- Holzinger, A.; Saranti, A.; Angerschmid, A.; Retzlaff, C.O.; Gronauer, A.; Pejakovic, V.; Medel-Jimenez, F.; Krexner, T.; Gollob, C.; Stampfer, K. Digital Transformation in Smart Farm and Forest Operations Needs Human-Centered AI: Challenges and Future Directions. Sensors 2022, 22, 3043. [Google Scholar] [CrossRef] [PubMed]
- Weng, J.; Lei, Q.; Tao, J. Visual Odometry Calculation Method Based on Improved ORB. Control. Decis. 2024, 39, 819–826. [Google Scholar]
- Forster, C.; Zhang, Z.C.; Gassner, M.; Werlberger, M.; Scaramuzza, D. SVO: Semidirect Visual Odometry for Monocular and Multicamera Systems. IEEE Trans. Robot. 2017, 33, 249–265. [Google Scholar] [CrossRef]
- Cattaneo, D.; Vaghi, M.; Valada, A. LCDNet: Deep Loop Closure Detection and Point Cloud Registration for LiDAR SLAM. IEEE Trans. Robot. 2022, 38, 2074–2093. [Google Scholar] [CrossRef]
- Bescos, B.; Fácil, J.M.; Civera, J.; Neira, J. DynaSLAM: Tracking, Mapping, and Inpainting in Dynamic Scenes. IEEE Robot. Autom. Lett. 2018, 3, 4076–4083. [Google Scholar] [CrossRef]
- Bescos, B.; Campos, C.; Tardós, J.D.; Neira, J. DynaSLAM II: Tightly-Coupled Multi-Object Tracking and SLAM. IEEE Robot. Autom. Lett. 2021, 6, 5191–5198. [Google Scholar] [CrossRef]
- Cheng, Q.; Chen, W.; Sun, R.; Wang, J.; Weng, D. RANSAC–Based Instantaneous Real–Time Kinematic Positioning with GNSS Triple–Frequency Signals in Urban Areas. J. Geod. 2024, 98, 24. [Google Scholar] [CrossRef]
- Mur–Artal, R.; Tardós, J.D. ORB–SLAM2: An Open–Source SLAM System for Monocular, Stereo, and RGB–D Cameras. IEEE Trans. Robot. 2017, 33, 1255–1262. [Google Scholar] [CrossRef]
- Gao, R.Z.; Li, Z.H.; Li, J.F.; Li, B.; Zhang, J.; Liu, J. Real–Time SLAM Based on Dynamic Feature Point Elimination in Dynamic Environment. IEEE Access 2023, 11, 113952–113964. [Google Scholar] [CrossRef]
- Wang, A.; Chen, H.; Liu, L.; Chen, K.; Lin, Z.; Han, J. YOLOv10: Real-Time End-to-End Object Detection. Adv. Neural Inf. Process. Syst. 2025, 37, 107984–108011. [Google Scholar]
- Li, C.Y.; Li, L.L.; Geng, Y.F.; Jiang, H.; Cheng, M.; Zhang, B.; Ke, Z.; Xu, X.; Chu, X. YOLOv6 v3.0: A Full–Scale Reloading. arXiv 2023, arXiv:2301.05586. [Google Scholar]
- Wang, C.Y.; Yeh, I.H.; Liao, H.Y.M. YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information. arXiv 2024, arXiv:2402.13616. [Google Scholar]
- Xu, S.L.; Wang, X.X.; Lv, W.Y.; Chang, Q.; Cui, C.; Deng, K.; Wang, G.; Dang, Q.; Wei, S.; Du, Y.; et al. PP–YOLOE: An Evolved Version of YOLO. arXiv 2022, arXiv:2203.16250. [Google Scholar]
- Panaretos, V.M.; Zemel, Y. Statistical Aspects of Wasserstein Distances. Annu. Rev. Stat. Appl. 2019, 6, 405–431. [Google Scholar] [CrossRef]
- Gong, X.; Lv, Y.; Xu, X.; Wang, Y.; Li, M. Pose Estimation of Omnidirectional Camera with Improved EPnP Algorithm. Sensors 2021, 21, 4008. [Google Scholar] [CrossRef] [PubMed]
- Sturm, J.; Engelhard, N.; Endres, F.; Burgard, W.; Cremers, D. A Benchmark for the Evaluation of RGB–D SLAM Systems. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Portugal, 7–12 October 2012; pp. 573–580. [Google Scholar]
Model | Test Size | #Params | FLOPs | Apval | Latency |
---|---|---|---|---|---|
YOLOv10n | 640 | 2.3 M | 6.7 G | 38.5% | 1.84 ms |
YOLOv10s | 640 | 7.2 M | 21.6 G | 46.3% | 2.49 ms |
YOLOv10m | 640 | 15.4 M | 59.1 G | 51.1% | 4.74 ms |
YOLOv10b | 640 | 19.1 M | 92.0 G | 52.5% | 5.74 ms |
YOLOv10l | 640 | 24.4 M | 120.3 G | 53.2% | 7.28 ms |
YOLOv10x | 640 | 29.5 M | 160.4 G | 54.4% | 10.70 ms |
xyz | Static | rpy | Half | |||||
---|---|---|---|---|---|---|---|---|
RMSE | S.D. | RMSE | S.D. | RMSE | S.D. | RMSE | S.D. | |
ORB-SLAM2 | 1.886891 | 0.283696 | 2.760182 | 0.004479 | 2.480451 | 0.230039 | 0.615633 | 0.162303 |
Ours | 0.012961 | 0.015896 | 0.005218 | 0.002650 | 0.008292 | 0.026500 | 0.020821 | 0.015988 |
DynaSLAM | RDS-SLAM | DS-SLAM | YOLO-SLAM | RTD-SLAM | Ours | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sequence | RMSE | S.D. | RMSE | S.D. | RMSE | S.D. | RMSE | S.D. | RMSE | S.D. | RMSE | S.D. |
w_xyz | 0.015 | 0.009 | 0.057 | 0.023 | 0.025 | 0.016 | 0.015 | 0.007 | 0.020 | 0.009 | 0.012 | 0.015 |
W_rpy | 0.035 | 0.019 | 0.160 | 0087 | 0.444 | 0.235 | 0.216 | 0.100 | 0.167 | 0.030 | 0.082 | 0.026 |
W_static | 0.006 | 0.003 | 0.021 | 0.012 | 0.007 | 0.004 | 0.007 | 0.004 | 0.121 | 0.002 | 0.005 | 0.002 |
W_half_sphere | 0.025 | 0.016 | 0.087 | 0.045 | 0.031 | 0.016 | 0.028 | 0.014 | 0.028 | 0.025 | 0.020 | 0.015 |
SLAM Algorithm | Processing Time per Frame |
---|---|
ORB-SLAM2 | 0.0239 |
DynaSLAM | >13 |
DS-SLAM | 0.0793 |
RDS-SLAM | 0.2137 |
YOLO-SLAM | 0.7220 |
RTD-SLAM | 0.0578 |
Ours | 0.0488 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Wang, H.; Sun, J.; Zhang, J.A. Enhanced Simultaneous Localization and Mapping Algorithm Based on Deep Learning for Highly Dynamic Environment. Sensors 2025, 25, 2539. https://doi.org/10.3390/s25082539
Lu Y, Wang H, Sun J, Zhang JA. Enhanced Simultaneous Localization and Mapping Algorithm Based on Deep Learning for Highly Dynamic Environment. Sensors. 2025; 25(8):2539. https://doi.org/10.3390/s25082539
Chicago/Turabian StyleLu, Yin, Haibo Wang, Jin Sun, and J. Andrew Zhang. 2025. "Enhanced Simultaneous Localization and Mapping Algorithm Based on Deep Learning for Highly Dynamic Environment" Sensors 25, no. 8: 2539. https://doi.org/10.3390/s25082539
APA StyleLu, Y., Wang, H., Sun, J., & Zhang, J. A. (2025). Enhanced Simultaneous Localization and Mapping Algorithm Based on Deep Learning for Highly Dynamic Environment. Sensors, 25(8), 2539. https://doi.org/10.3390/s25082539