Smartphone-Based SPAD Value Estimation for Jujube Leaves Using Machine Learning: A Study on RGB Feature Extraction and Hybrid Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Overview
2.2. Data Collection
2.2.1. Leaf Sampling
2.2.2. SPAD Measurement
2.2.3. Image Data Acquisition
2.3. Image Preprocessing
2.4. Selection of Color Features
2.5. Feature Selection via Correlation and Principal Component Analysis
2.5.1. Support Vector Regression (SVR)
2.5.2. Relevance Vector Machine (RVM)
2.5.3. CNN Model
2.5.4. CNN-SVR Model
2.5.5. CNN-RVM Model
2.5.6. Model Training and Validation
3. Results
3.1. Measurement Results
3.2. Correlation Analysis Between Color Features and Chlorophyll Content
3.3. The Best Model for Predicting SPAD
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ruan, J.; Han, Y.; Kennedy, J.F.; Jiang, H.; Cao, H.; Zhang, Y.; Wang, T. A review on polysaccharides from jujube and their pharmacological activities. Carbohydr. Polym. Technol. Appl. 2022, 3, 100220. [Google Scholar] [CrossRef]
- Addo, K.A.; Bi, J.; Chen, Q.; Wu, X.; Zhou, M.; Lyu, J.; Song, J. Understanding the caking behavior of amorphous jujube powder by powder rheometer. LWT 2019, 101, 483–490. [Google Scholar] [CrossRef]
- Al-Saeedi, A.H.; Al-Ghafri, M.T.H.; Hossain, M.A. Comparative evaluation of total phenols, flavonoids content and antioxidant potential of leaf and fruit extracts of Omani Ziziphus jujuba L. Pac. Sci. Rev. A Nat. Sci. Eng. 2016, 18, 78–83. [Google Scholar] [CrossRef]
- Rashwan, A.K.; Karim, N.; Shishir, M.R.I.; Bao, T.; Lu, Y.; Chen, W. Jujube fruit: A potential nutritious fruit for the development of functional food products. J. Funct. Foods 2020, 75, 104205. [Google Scholar] [CrossRef]
- Zhu, D.; Jiang, N.; Wang, N.; Zhao, Y.; Liu, X. A Literature Review of the Pharmacological Effects of Jujube. Foods 2024, 13, 193. [Google Scholar] [CrossRef]
- Tuerxun, N.; Zheng, J.; Wang, R.; Wang, L.; Liu, L. Hyperspectral estimation of chlorophyll content in jujube leaves: Integration of derivative processing techniques and dimensionality reduction algorithms. Front. Plant Sci. 2023, 14, 1260772. [Google Scholar] [CrossRef]
- Blankenship, R.E. Origin and early evolution of photosynthesis. Photosynth. Res. 1992, 33, 91–111. [Google Scholar] [CrossRef]
- Shin, Y.K.; Bhandari, S.R.; Lee, J.G. Monitoring of Salinity, Temperature, and Drought Stress in Grafted Watermelon Seedlings Using Chlorophyll Fluorescence. Front. Plant Sci. 2021, 12, 786309. [Google Scholar] [CrossRef]
- Richardson, A.D.; Duigan, S.P.; Berlyn, G.P. An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytol. 2002, 153, 185–194. [Google Scholar] [CrossRef]
- Rinawati, M.; Sari, L.A.; Pursetyo, K.T. Chlorophyll and carotenoids analysis spectrophotometer using method on microalgae. IOP Conf. Ser. Earth Environ. Sci. 2020, 441, 012056. [Google Scholar] [CrossRef]
- Porro, D.; Dorigatti, C.; Stefanini, M.; Ceschini, A. Use of Spad Meter in Diagnosis of Nutritional Status in Apple and Grapevine. Acta Hortic. 2001, 564, 243–252. [Google Scholar] [CrossRef]
- Zulini, L.; Rubinigg, M.; Zorer, R.; Bertamini, M. Effects of Drought Stress on Chlorophyll Fluorescence and Photosynthetic Pigments in Grapevine Leaves (Vitis vinifera Cv. ‘White Riesling’). Acta Hortic. 2007, 754, 289–294. [Google Scholar] [CrossRef]
- Ates, F.; Kaya, O. The Relationship Between Iron and Nitrogen Concentrations Based On Kjeldahl Method and SPAD-502 Readings in Grapevine (Vitis vinifera L. cv. ‘Sultana Seedless’). Erwerbs-Obstbau 2021, 63 (Suppl. S1), 53–59. [Google Scholar] [CrossRef]
- Liu, J.; Han, J.; Chen, X.; Shi, L.; Zhang, L. Nondestructive detection of rape leaf chlorophyll level based on Vis-NIR spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 222, 117202. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhu, R.; Zhang, J.; Ni, L.; Shen, H.; Xie, P. A Novel and Convenient Method for Early Warning of Algal Cell Density by Chlorophyll Fluorescence Parameters and Its Application in a Highland Lake. Front. Plant Sci. 2018, 9, 869. [Google Scholar] [CrossRef]
- Maccioni, A.; Agati, G.; Mazzinghi, P. New vegetation indices for remote measurement of chlorophylls based on leaf directional reflectance spectra. J. Photochem. Photobiol. B Biol. 2001, 61, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Lenz-Wiedemann, V.; Chen, X.; Bareth, G. Estimating leaf chlorophyll of barley at different growth stages using spectral indices to reduce soil background and canopy structure effects. ISPRS J. Photogramm. Remote Sens. 2014, 97, 58–77. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X.; Zhang, X.; Xu, X.; Huang, X.; Wang, D.; Amin, A. Spectral-based estimation of chlorophyll content and determination of background interference mechanisms in low-coverage rice. Comput. Electron. Agric. 2024, 226, 109442. [Google Scholar] [CrossRef]
- Campana, M.G.; Colussi, M.; Delmastro, F.; Mascetti, S.; Pagani, E. A Transfer Learning and Explainable Solution to Detect mpox from Smartphones images. Pervasive Mob. Comput. 2024, 98, 101874. [Google Scholar] [CrossRef]
- Fu, L.; Zhu, J.; Li, W.-l.; You, J.-g.; Hua, Z.-y. Fast estimation method of volumes of landslide deposit by the 3D reconstruction of smartphone images. Landslides 2021, 18, 3269–3278. [Google Scholar] [CrossRef]
- Anello, M.; Mateo, F.; Bernardi, B.; Giuffrè, A.M.; Blasco, J.; Gómez-Sanchis, J. Convolutional neural networks to assess bergamot essential oil content in the field from smartphone images. Ind. Crops Prod. 2024, 220, 119233. [Google Scholar] [CrossRef]
- Taneja, P.; Vasava, H.K.; Daggupati, P.; Biswas, A. Multi-algorithm comparison to predict soil organic matter and soil moisture content from cell phone images. Geoderma 2021, 385, 114863. [Google Scholar] [CrossRef]
- Dang, L.M.; Danish, S.; Khan, A.; Alam, N.; Fayaz, M.; Nguyen, D.K.; Song, H.-K.; Moon, H. An efficient zero-labeling segmentation approach for pest monitoring on smartphone-based images. Eur. J. Agron. 2024, 160, 127331. [Google Scholar] [CrossRef]
- Barman, U.; Saikia, M.J. Smartphone Contact Imaging and 1-D CNN for Leaf Chlorophyll Estimation in Agriculture. Agriculture 2024, 14, 1262. [Google Scholar] [CrossRef]
- Liang, Z.; Wang, S.; Huang, Y. Predictions of apple mechanical damage volume using micro-CT measurements and support vector regression(SVR). Comput. Electron. Agric. 2024, 226, 109402. [Google Scholar] [CrossRef]
- Helgøy, I.M.; Skaug, H.J.; Li, Y. Sparse Bayesian learning using TMB (Template Model Builder). Stat. Comput. 2024, 34, 15. [Google Scholar] [CrossRef]
- Ghimire, S.; Bhandari, B.; Casillas-Pérez, D.; Deo, R.C.; Salcedo-Sanz, S. Hybrid deep CNN-SVR algorithm for solar radiation prediction problems in Queensland, Australia. Eng. Appl. Artif. Intell. 2022, 112, 104860. [Google Scholar] [CrossRef]
- Bodor-Pesti, P.; Taranyi, D.; Nyitrainé Sárdy, D.Á.; Le Phuong Nguyen, L.; Baranyai, L. Correlation of the Grapevine (Vitis vinifera L.) Leaf Chlorophyll Concentration with RGB Color Indices. Horticulturae 2023, 9, 899. [Google Scholar] [CrossRef]
- Lu, Y.; Young, S.; Wang, H.; Wijewardane, N. Robust plant segmentation of color images based on image contrast optimization. Comput. Electron. Agric. 2022, 193, 106711. [Google Scholar] [CrossRef]
- Woebbecke, D.M.; Meyer, G.E.; Bargen, K.V.; Mortensen, D.A. Color indices for weed identification under various soil, residue, and lighting conditions. Trans. ASAE 1994, 38, 259–269. [Google Scholar] [CrossRef]
- Louhaichi, M.; Borman, M.M.; Johnson, D.E. Spatially Located Platform and Aerial Photography for Documentation of Grazing Impacts on Wheat. Geocarto Int. 2001, 16, 65–70. [Google Scholar] [CrossRef]
- Li, Y.; Chen, D.; Walker, C.N.; Angus, J.F. Estimating the nitrogen status of crops using a digital camera. Field Crops Res. 2010, 118, 221–227. [Google Scholar] [CrossRef]
- Saberioon, M.M.; Amin, M.S.M.; Anuar, A.R.; Gholizadeh, A.; Wayayok, A.; Khairunniza-Bejo, S. Assessment of rice leaf chlorophyll content using visible bands at different growth stages at both the leaf and canopy scale. Int. J. Appl. Earth Obs. Geoinf. 2014, 32, 35–45. [Google Scholar] [CrossRef]
- Li, X.; Wu, J.; Bai, T.; Wu, C.; He, Y.; Huang, J.; Li, X.; Shi, Z.; Hou, K. Variety classification and identification of jujube based on near-infrared spectroscopy and 1D-CNN. Comput. Electron. Agric. 2024, 223, 109122. [Google Scholar] [CrossRef]
- Shen, S.; Nemani, V.; Liu, J.; Hu, C.; Wang, Z. In A Hybrid Machine Learning Model for Battery Cycle Life Prediction with Early Cycle Data. In Proceedings of the 2020 IEEE Transportation Electrification Conference & Expo (ITEC), Chicago, IL, USA, 23–26 June 2020; pp. 181–184. [Google Scholar]
- Shi, H.; Guo, J.; An, J.; Tang, Z.; Wang, X.; Li, W.; Zhao, X.; Jin, L.; Xiang, Y.; Li, Z.; et al. Estimation of Chlorophyll Content in Soybean Crop at Different Growth Stages Based on Optimal Spectral Index. Agronomy 2023, 13, 663. [Google Scholar] [CrossRef]
- Wei, L.; Lu, L.; Shang, Y.; Ran, X.; Liu, Y.; Fang, Y. Can SPAD Values and CIE L*a*b* Scales Predict Chlorophyll and Carotenoid Concentrations in Leaves and Diagnose the Growth Potential of Trees? An Empirical Study of Four Tree Species. Horticulturae 2024, 10, 548. [Google Scholar] [CrossRef]
- Özreçberoğlu, N.; Kahramanoğlu, İ. Mathematical models for the estimation of leaf chlorophyll content based on RGB colours of contact imaging with smartphones: A pomegranate example. Folia Hortic. 2020, 32, 57–67. [Google Scholar] [CrossRef]
Color Space | Number | Color Characteristics |
---|---|---|
RGB | 22 | R, G, B, R − G, R − B, G − B, R/G, R/B, G/B, (G − R)/(G + R), (G + B − R)/(2R), (G + B − R)/(2G), (G + B − R)/(2B), (R − G − B)/(R + B), (R − G − B)/(R + G), (R − G − B)/(G + B), (B − G − R)/(R + B), (B − G − R)/(B + G), (B − G − R)/(G + R), (2G − R − B)/(2G + R + B), (G − B)/(G + B), (G − B)B/(R + G) |
Normalized RGB | 6 | r, g, b, r − g, r − b, g − b |
Principal Component | Variance Contribution | Cumulative Variance Contribution |
---|---|---|
PC1 | 92.03831% | 92.03831% |
PC2 | 6.68462% | 98.72294% |
PC3 | 0.82799% | 99.55093% |
PC4 | 0.41319% | 99.96413% |
PC5 | 0.02890% | 99.99303% |
PC6 | 0.00366% | 99.99669% |
PC7 | 0.00209% | 99.99878% |
PC8 | 0.00103% | 99.99981% |
PC9 | 0.00007% | 99.99989% |
PC10 | 0.00007% | 99.99996% |
PC11 | 0.00002% | 99.99997% |
PC12 | 0.00001% | 99.99998% |
PC13 | 0.00001% | 99.99999% |
PC14 | 0.00000% | 99.99999% |
PC15 | 0.00000% | 100.00000% |
PC16 | 0.00000% | 100.00000% |
PC17 | 0.00000% | 100.00000% |
PC18 | 0.00000% | 100.00000% |
PC19 | 0.00000% | 100.00000% |
PC20 | 0.00000% | 100.00000% |
PC21 | 0.00000% | 100.00000% |
Model | Training Set | Validation Set | ||||||
---|---|---|---|---|---|---|---|---|
R2 | Std | RMSE | Std | R2 | Std | RMSE | Std | |
SVR | 68.58% | 6.04% | 3.30 | 0.034 | 73.32% | 4.09% | 2.74 | 0.039 |
RVM | 68.69% | 5.69% | 3.30 | 0.032 | 70.29% | 5.06% | 2.70 | 0.037 |
CNN | 70.15% | 4.59% | 3.00 | 0.035 | 65.57% | 3.82% | 2.95 | 0.041 |
CNN-SVR | 72.21% | 4.10% | 3.10 | 0.027 | 77.44% | 2.50% | 2.50 | 0.035 |
CNN-RVM | 70.46% | 4.95% | 3.05 | 0.041 | 56.06% | 4.56% | 3.50 | 0.120 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Shi, Z.; Hou, K.; Yan, N.; Wu, C.; Li, X. Smartphone-Based SPAD Value Estimation for Jujube Leaves Using Machine Learning: A Study on RGB Feature Extraction and Hybrid Modeling. Sensors 2025, 25, 2545. https://doi.org/10.3390/s25082545
Wang Q, Shi Z, Hou K, Yan N, Wu C, Li X. Smartphone-Based SPAD Value Estimation for Jujube Leaves Using Machine Learning: A Study on RGB Feature Extraction and Hybrid Modeling. Sensors. 2025; 25(8):2545. https://doi.org/10.3390/s25082545
Chicago/Turabian StyleWang, Qi, Ziyan Shi, Kaiyao Hou, Ning Yan, Cuiyun Wu, and Xu Li. 2025. "Smartphone-Based SPAD Value Estimation for Jujube Leaves Using Machine Learning: A Study on RGB Feature Extraction and Hybrid Modeling" Sensors 25, no. 8: 2545. https://doi.org/10.3390/s25082545
APA StyleWang, Q., Shi, Z., Hou, K., Yan, N., Wu, C., & Li, X. (2025). Smartphone-Based SPAD Value Estimation for Jujube Leaves Using Machine Learning: A Study on RGB Feature Extraction and Hybrid Modeling. Sensors, 25(8), 2545. https://doi.org/10.3390/s25082545