Building a Realistic Virtual Luge Experience Using Photogrammetry
Abstract
:1. Introduction
- A novel photogrammetry sensing to VR pipeline for the sport of luge.
- VR parameters (visual and physics modeling) needed to achieve realism in the context of safety and training.
- User studies with subject matter experts (members of the Austrian luge team).
- The first VR simulator for luge designed for realism, acceptance, and usability needed for training.
2. Material and Methods
2.1. VR Game Development
2.1.1. Acceptability of the Proof of Concept
2.1.2. Photogrammmetry
2.1.3. Creating the Virtual World
2.1.4. Physics in the Game
- Grab the diagonal rod. In this phase, the athlete would grab the rod that is attached to the left steel of the luge with their right hand or vice versa.
- Pull the grabbed rod. In this phase, the rod is pulled. The pulling is indicated by pushing the middle finger button. This position of the controller is then set as the reference position. The further the controller is pulled away from this reference position, the more the pulling motion contributes to the torque that acts on the luge.
- Leaning into the curve. The IMU in the headset measures how far the player leans. Leaning into the curve can be interpreted as weight distribution change. The leaning angle directly contributes to the torque that acts on the luge in a linear fashion. The more the player leans into the curve, the stronger the torque will be.
2.1.5. Game Modes
- Index finger buttons (left and right) for braking/steering with the feet.
- Position in space of the left and right controller.
- The Y button respawns the avatar on the track.
- The X button resets the camera view.
2.2. Beta Testing and Expert Consultation
3. Results
3.1. VRodel Simulator
3.2. Expert Consultation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
etc. | et cetera. |
e.g. | exempli gratia. |
UTAUT2 | Unified Theory of Acceptance and Use of Technology-2. |
VR | Virtual reality. |
References
- Heim, D.; Altgeld, K.; Hasler, R.M.; Aghayev, E.; Exadaktylos, A.K. A 13-year analysis from Switzerland of non-fatal sledging (sledding or tobogganing) injuries. Injury 2014, 45, 338–341. [Google Scholar] [CrossRef] [PubMed]
- Evans, K.H.C.; McAdams, R.J.; Roberts, K.J.; McKenzie, L.B. Sledding-Related Injuries Among Children and Adults Treated in US Emergency Departments From 2008 to 2017. Clin. J. Sport Med. 2021, 31, e460–e466. [Google Scholar] [CrossRef] [PubMed]
- Sterr, R. Rodeln in Zahlen, 1st ed.; Österreichisches Kuratorium für Alpine Sicherheit: Innsbruck, Austria, 2019. [Google Scholar]
- Plattner, P. analyse:berg Winter 2022/23, 24th ed.; Österreichisches Kuratorium für Alpine Sicherheit: Innsbruck, Austria, 2023. [Google Scholar]
- Corra, S.; de Giorgi, F. Sledding injuries: Is safety in this winter pastime overlooked? A three-year survey in South-Tyrol. J. Trauma Manag. Outcomes 2007, 1, 5. [Google Scholar] [CrossRef] [PubMed]
- Cimpello, L.B.; Garcia, M.; Rueckmann, E.; Markevicz, C. Sledding: How fast can they go? J. Trauma 2009, 66, S23–S26. [Google Scholar] [CrossRef]
- Ruedl, G.; Pocecco, E.; Kopp, M.; Raas, C.; Blauth, M.; Brucker, P.U.; Burtscher, M. Einflussfaktoren auf das Tragen von Schutzausrüstung bei erwachsenen Rodlern. Sportverletz. Sportschaden 2015, 29, 180–184. [Google Scholar] [CrossRef]
- Ruedl, G.; Pocecco, E.; Raas, C.; Blauth, M.; Brucker, P.U.; Burtscher, M.; Kopp, M. Influence of adult role modeling on child/adolescent helmet use in recreational sledging: An observational study. Wien. Klin. Wochenschr. 2016, 128, 266–270. [Google Scholar] [CrossRef]
- Ruedl, G.; Pocecco, E.; Raas, C.; Brucker, P.U.; Greier, K.; Burtscher, M. Unfallursachen und Risikofaktoren bei erwachsenen Rodlern: Eine retrospektive Studie. Sportverletz. Sportschaden 2017, 31, 45–49. [Google Scholar] [CrossRef]
- Thöni, E. Sledding & Tobogganing Safety Tips—Learn How to Steer and Brake, 1st ed.; Tirol Werbung GmbH: Innsbruck, Austria, 2021. [Google Scholar]
- Austrian Luge Federation. Ausbildung zum Rodelguide; Austrian Luge Federation: Innsbruck, Austria, 2023. [Google Scholar]
- Xie, B.; Liu, H.; Alghofaili, R.; Zhang, Y.; Jiang, Y.; Lobo, F.D.; Li, C.; Li, W.; Huang, H.; Akdere, M.; et al. A Review on Virtual Reality Skill Training Applications. Front. Virtual Real. 2021, 2, 645153. [Google Scholar] [CrossRef]
- Abich, J.; Parker, J.; Murphy, J.S.; Eudy, M. A review of the evidence for training effectiveness with virtual reality technology. Virtual Real. 2021, 25, 919–933. [Google Scholar] [CrossRef]
- Statista. AR & VR—Österreich. Statista. Available online: https://www.statista.com/outlook/amo/ar-vr/austria (accessed on 13 April 2025).
- Stinson, C.; Bowman, D.A. Feasibility of training athletes for high-pressure situations using virtual reality. IEEE Trans. Vis. Comput. Graph. 2014, 20, 606–615. [Google Scholar] [CrossRef]
- Pastel, S.; Petri, K.; Chen, C.H.; Wiegand Cáceres, A.M.; Stirnatis, M.; Nübel, C.; Schlotter, L.; Witte, K. Training in virtual reality enables learning of a complex sports movement. Virtual Real. 2023, 27, 523–540. [Google Scholar] [CrossRef]
- Sawan, N.; Eltweri, A.; de Lucia, C.; Pio Leonardo Cavaliere, L.; Faccia, A.; Roxana Moşteanu, N. Mixed and Augmented Reality Applications in the Sport Industry. In Proceedings of the 2020 2nd International Conference on E-Business and E-Commerce Engineering, Bangkok, Thailand, 29–31 December 2020; pp. 55–59. [Google Scholar]
- Hayotte, M.; Kreiner, J.; Hollaus, B. Parents’, Teachers’ and Sledders’ Acceptability of a Virtual Reality Game for Sledding Safety Education: Cross-Sectional Study. Available online: https://preprints.jmir.org/preprint/63813/accepted (accessed on 13 April 2025).
- van Gisbergen, M.; Kovacs, M.; Campos, F.; van der Heeft, M.; Vugts, V. What We Don’t Know. The Effect of Realism in Virtual Reality on Experience and Behaviour. In Augmented Reality and Virtual Reality; Tom Dieck, M.C., Jung, T., Eds.; Progress in IS; Springer International Publishing: Cham, Switzerland, 2019; pp. 45–57. [Google Scholar]
- Newman, M.; Gatersleben, B.; Wyles, K.J.; Ratcliffe, E. The use of virtual reality in environment experiences and the importance of realism. J. Environ. Psychol. 2022, 79, 101733. [Google Scholar] [CrossRef]
- Austrian Luge Federation. Register of Tobogganing Tracks in Austria. Available online: https://www.rodelwelten.com/rodelbahnen/region/tirol (accessed on 10 June 2024).
- Land Tirol. Kühtai Toboggan Run. Available online: https://www.tyrol.com/things-to-do/sports/tobogganing/toboggan-runs/a-kuehtai-toboggan-run (accessed on 10 June 2024).
- Kietzig, A.M.; Hatzikiriakos, S.G.; Englezos, P. Ice friction: The effects of surface roughness, structure, and hydrophobicity. J. Appl. Phys. 2009, 106, 024303. [Google Scholar] [CrossRef]
- Poirier, L.; Lozowski, E.P.; Maw, S.; Stefanyshyn, D.J.; Thompson, R.I. Experimental analysis of ice friction in the sport of bobsleigh. Sport. Eng. 2011, 14, 67–72. [Google Scholar] [CrossRef]
- Kietzig, A.M.; Hatzikiriakos, S.G.; Englezos, P. Ice friction: The effect of thermal conductivity. J. Glaciol. 2010, 56, 473–479. [Google Scholar] [CrossRef]
- de Koning, J.J.; de Groot, G.; van Ingen Schenau, G.J. Ice friction during speed skating. J. Biomech. 1992, 25, 565–571. [Google Scholar] [CrossRef]
- Wolfsperger, F.; Meyer, F.; Gilgien, M. The Snow-Friction of Freestyle Skis and Snowboards Predicted From Snow Physical Quantities. Front. Mech. Eng. 2021, 7, 728722. [Google Scholar] [CrossRef]
- Brownlie, L. Aerodynamic drag reduction in winter sports: The quest for “free speed”. Proc. Inst. Mech. Eng. Part P J. Sport. Eng. Technol. 2021, 235, 365–404. [Google Scholar] [CrossRef]
- Sandra Poeschl. The German VR Simulation Realism Scale—Psychometric Construction for Virtual Reality Applications with Virtual Humans. Stud. Health Technol. Inform. 2013, 191, 33–37. [Google Scholar]
- Taber, K.S. The Use of Cronbach’s Alpha When Developing and Reporting Research Instruments in Science Education. Res. Sci. Educ. 2018, 48, 1273–1296. [Google Scholar] [CrossRef]
- Gao, M.; Kortum, P.; Oswald, F.L. Multi-Language Toolkit for the System Usability Scale. Int. J. Hum.-Comput. Interact. 2020, 36, 1883–1901. [Google Scholar] [CrossRef]
- Harborth, D.; Pape, S. German Translation of the Unified Theory of Acceptance and Use of Technology 2 (UTAUT2) Questionnaire. SSRN Electron. J. 2018. [Google Scholar] [CrossRef]
- Kapser, S.; Abdelrahman, M. Acceptance of autonomous delivery vehicles for last-mile delivery in Germany—Extending UTAUT2 with risk perceptions. Transp. Res. Part C Emerg. Technol. 2020, 111, 210–225. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis. Curr. Dir. Psychol. Sci. 1992, 1, 98–101. [Google Scholar] [CrossRef]
- Venkatesh, V.; Thong, J.Y.; Xu, X. Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Q. 2012, 36, 157–178. [Google Scholar] [CrossRef]
- Kim, H.; Kim, Y.; Lee, J.; Kim, J. Stereoscopic objects affect reaching performance in virtual reality environments: Influence of age on motor control. Front. Virtual Real. 2024, 5, 1475482. [Google Scholar] [CrossRef]
- Lee, J.; Sinclair, M.; Gonzalez-Franco, M.; Ofek, E.; Holz, C. TORC: A Virtual Reality Controller for In-Hand High-Dexterity Finger Interaction. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow Scotland, UK, 4–9 May 2019; pp. 1–13. [Google Scholar]
- Whitmire, E.; Benko, H.; Holz, C.; Ofek, E.; Sinclair, M. Haptic Revolver: Touch, Shear, Texture, and Shape Rendering on a Reconfigurable Virtual Reality Controller. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, Montreal, QC, Canada, 21–26 April 2018; pp. 1–12. [Google Scholar]
- General Laser. Datasheet of REACH RS2+: Multi-Band RTK GNSS Receiver with Centimeter Precision, 1st ed.; Emlid: Budapest, Hungary, 2022; Available online: https://files.emlid.com/docs/Datasheet-RS2%2B-ENG-web.pdf?_gl=1*1dfasao*_up*MQ..*_ga*MjI0NDU2NjMyLjE3NDQ4Njk5NzQ.*_ga_2L30ZMM7Q4*MTc0NDg2OTk3My4xLjAuMTc0NDg2OTk3My4wLjAuMA.. (accessed on 13 April 2025).
- Campo-Prieto, P.; Cancela-Carral, J.M.; Alsina-Rey, B.; Rodríguez-Fuentes, G. Immersive Virtual Reality as a Novel Physical Therapy Approach for Nonagenarians: Usability and Effects on Balance Outcomes of a Game-Based Exercise Program. J. Clin. Med. 2022, 11, 3911. [Google Scholar] [CrossRef]
- Venkatesh, V.; Thong, J.; Xu, X. Unified Theory of Acceptance and Use of Technology: A Synthesis and the Road Ahead. J. Assoc. Inf. Syst. 2016, 17, 328–376. [Google Scholar] [CrossRef]
Equipment | Identification | Configuration | Used for Virtual Model |
---|---|---|---|
Drone | DJI Mavic 3 | Manual Flight | Yes |
Drone | DJI Phantom 4 | Automated Flight | Yes |
Ground station | Reach RS2+ | RTK | Yes |
Cameras | 4 · GoPro Hero 11 | Ultra Wide Mode | No |
Markerspray | - | Color: pink | Yes |
Surface | Friction Coefficient |
---|---|
Ice | 0.01 |
Dry snow | 0.05 |
Wet snow | 0.12 |
ID | Virtual Scene Realism 1 | Audience Behavior Realism 1 | Virtual Sound Realism 1 | System Usability Scale 2 | Performance Expectancy 3 | Effort Expectancy 3 | Social Influence 3 | Facilitating Conditions 3 | Hedonic Motivation 3 | Price Sensitivity 4 | Habit 3 | Behavioral Intention 3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 4.2 | 5.0 | 4.0 | 80.0 | 5.5 | 6.0 | 6.0 | 5.0 | 6.3 | 5.8 | 4.3 | 6.0 |
2 | 3.8 | 3.0 | 1.0 | 67.5 | 4.5 | 5.3 | 4.7 | 5.5 | 6.0 | 3.4 | 2.8 | 5.0 |
3 | 5.0 | 4.5 | 3.0 | 95.0 | 1.8 | 3.5 | 3.3 | 4.3 | 7.0 | 3.0 | 1.8 | 4.3 |
4 | 4.0 | 4.0 | 3.0 | 65.0 | 2.0 | 4.3 | 5.0 | 4.0 | 3.3 | 2.2 | 2.0 | 2.0 |
5 | 3.2 | 2.5 | 3.0 | 57.5 | 4.8 | 4.8 | 5.0 | 4.8 | 5.3 | 4.4 | 4.5 | 5.3 |
6 | 3.6 | 3.0 | 4.0 | 80.0 | 4.0 | 4.8 | 5.0 | 3.3 | 5.0 | 3.0 | 2.8 | 4.3 |
7 | 4.4 | 4.4 | 2.0 | 85.0 | 3.8 | 6.3 | 4.0 | 6.8 | 6.7 | 1.4 | 2.8 | 4.7 |
8 | 4.0 | 4.0 | 4.0 | 97.5 | 4.5 | 6.8 | 4.7 | 7.0 | 6.3 | 3.2 | 3.8 | 5.0 |
9 | 4.2 | 4.0 | 5.0 | 80.0 | 3.5 | 5.8 | 3.7 | 4.3 | 5.7 | 2.0 | 2.3 | 3.7 |
10 | 2.4 | 3.5 | 2.0 | 55.0 | 2.5 | 4.8 | 2.7 | 3.3 | 4.3 | 2.6 | 2.5 | 4.0 |
11 | 4.2 | 4.0 | 3.0 | 72.5 | 2.8 | 6.3 | 3.0 | 5.5 | 5.0 | 3.0 | 3.5 | 4.0 |
12 | 4.2 | 4.3 | 3.0 | 75.0 | 6.5 | 5.5 | 5.0 | 4.8 | 6.3 | 4.2 | 4.0 | 6.0 |
13 | 4.2 | 4.3 | 3.0 | 67.5 | 1.5 | 6.3 | 3.3 | 5.5 | 6.0 | 2.0 | 2.5 | 4.7 |
14 | 3.6 | 3.3 | 2.0 | 50.0 | 3.8 | 5.0 | 2.3 | 4.5 | 4.0 | 2.8 | 2.0 | 3.3 |
15 | 4.4 | 2.5 | 3.0 | 62.5 | 5.0 | 4.5 | 4.0 | 2.8 | 5.0 | 3.2 | 3.3 | 5.0 |
Average | 4.0 | 3.8 | 3.0 | 72.7 | 3.8 | 5.3 | 4.1 | 4.8 | 5.5 | 3.1 | 3.0 | 4.5 |
Standard deviation | 0.6 | 0.8 | 1.0 | 13.9 | 1.4 | 0.9 | 1.1 | 1.2 | 1.1 | 1.1 | 0.9 | 1.0 |
1. Virtual Scene Realism 1 | 2. Audience Behavior Realism 1 | 3. Virtual Sound Realism 1 | 4. System Usability Scale 2 | 5. Performance Expectancy 3 | 6. Effort Expectancy 3 | 7. Social Influence 3 | 8. Facilitating Conditions 3 | 9. Hedonic Motivation 3 | 10. Price Sensitivity 4 | 11. Habit 3 | 12. Behavioral Intention 3 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | |||||||||||
2 | 0.588 * | - | ||||||||||
3 | 0.174 | 0.212 | - | |||||||||
4 | 0.539 * | 0.594 * | 0.520 * | - | ||||||||
5 | −0.063 | −0.234 | 0.156 | 0.037 | - | |||||||
6 | 0.141 | 0.370 | 0.168 | 0.396 | 0.110 | - | ||||||
7 | −0.056 | 0.035 | 0.415 | 0.269 | 0.618 * | −0.055 | - | |||||
8 | 0.151 | 0.387 | −0.097 | 0.404 | 0.086 | 0.831 ** | 0.045 | - | ||||
9 | 0.588 * | 0.635 * | 0.151 | 0.769 ** | 0.199 | 0.390 | 0.220 | 0.562 * | - | |||
10 | −0.141 | −0.167 | 0.156 | −0.006 | 0.776 ** | −0.092 | 0.562 * | 0.071 | 0.200 | - | ||
11 | −0.075 | −0.103 | 0.237 | 0.100 | 0.783 ** | 0.396 | 0.567 * | 0.371 | 0.251 | 0.723 ** | - | |
12 | 0.162 | 0.097 | 0.111 | 0.227 | 0.759 ** | 0.246 | 0.583 * | 0.360 | 0.599 * | 0.748 ** | 0.808 ** | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hollaus, B.; Kreiner, J.; Gallinat, M.; Hayotte, M.; Yu, D. Building a Realistic Virtual Luge Experience Using Photogrammetry. Sensors 2025, 25, 2568. https://doi.org/10.3390/s25082568
Hollaus B, Kreiner J, Gallinat M, Hayotte M, Yu D. Building a Realistic Virtual Luge Experience Using Photogrammetry. Sensors. 2025; 25(8):2568. https://doi.org/10.3390/s25082568
Chicago/Turabian StyleHollaus, Bernhard, Jonas Kreiner, Maximilian Gallinat, Meggy Hayotte, and Denny Yu. 2025. "Building a Realistic Virtual Luge Experience Using Photogrammetry" Sensors 25, no. 8: 2568. https://doi.org/10.3390/s25082568
APA StyleHollaus, B., Kreiner, J., Gallinat, M., Hayotte, M., & Yu, D. (2025). Building a Realistic Virtual Luge Experience Using Photogrammetry. Sensors, 25(8), 2568. https://doi.org/10.3390/s25082568