Motion Analysis in Alpine Skiing: Sensor Placement and Orientation-Invariant Sensing
Abstract
:1. Introduction
Problem Statement
- How do sensor location and orientation affect the proposed monitoring algorithms in other studies, especially turn detection?
- Is there any sensor setup to collect the most informative data independent of sensor location and orientation?
- Can the recorded signals from a sensor positioned on the body, with an arbitrary location and orientation, be rotated to the Optimal Reference Frame?
2. Materials and Methods
Data Collection
3. Skier Fixed Reference Frame
4. Preprocessing Algorithm
4.1. Sensor Fusion
4.2. Side Motion Detection
5. Turn Detection
6. Results
6.1. Transformation
6.2. Turn Detection
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turnbull, J.; Kilding, A.; Keogh, J. Physiology of alpine skiing. Scand. J. Med. Sci. Sport. 2009, 19, 146–155. [Google Scholar] [CrossRef]
- Stead, J.; Poolton, J.; Alder, D. Performance slumps in sport: A systematic review. Psychol. Sport Exerc. 2022, 61, 102136. [Google Scholar] [CrossRef]
- Hermann, A.; Senner, V. Knee injury prevention in alpine skiing. A technological paradigm shift towards a mechatronic ski binding. J. Sci. Med. Sport 2021, 24, 1038–1043. [Google Scholar] [CrossRef]
- Zwölfer, M.; Heinrich, D.; Schindelwig, K.; Wandt, B.; Rhodin, H.; Spörri, J.; Nachbauer, W. Deep learning-based 2D keypoint detection in alpine ski racing–A performance analysis of state-of-the-art algorithms applied to regular skiing and injury situations. JSAMS Plus 2023, 2, 100034. [Google Scholar] [CrossRef]
- Supej, M. 3D measurements of alpine skiing with an inertial sensor motion capture suit and GNSS RTK system. J. Sport. Sci. 2010, 28, 759–769. [Google Scholar] [CrossRef] [PubMed]
- Yoshioka, S.; Fujita, Z.; Hay, D.C.; Ishige, Y. Pose tracking with rate gyroscopes in alpine skiing. Sport. Eng. 2018, 21, 177–188. [Google Scholar] [CrossRef]
- Qi, J.; Li, D.; Zhang, C.; Wang, Y. Alpine skiing tracking method based on deep learning and correlation filter. IEEE Access 2022, 10, 39248–39260. [Google Scholar] [CrossRef]
- Dunnhofer, M.; Micheloni, C. Visual tracking in camera-switching outdoor sport videos: Benchmark and baselines for skiing. Comput. Vis. Image Underst. 2024, 243, 103978. [Google Scholar] [CrossRef]
- Supej, M.; Holmberg, H.C. Monitoring the performance of alpine skiers with inertial motion units: Practical and methodological considerations. J. Sci. Sport Exerc. 2021, 3, 249–256. [Google Scholar] [CrossRef]
- Martínez, A.; Brunauer, R.; Venek, V.; Snyder, C.; Jahnel, R.; Buchecker, M.; Thorwartl, C.; Stöggl, T. Development and validation of a gyroscope-based turn detection algorithm for alpine skiing in the field. Front. Sport. Act. Living 2019, 1, 18. [Google Scholar] [CrossRef]
- Azadi, B.; Haslgrübler, M.; Anzengruber-Tanase, B.; Sopidis, G.; Ferscha, A. Robust Feature Representation Using Multi-Task Learning for Human Activity Recognition. Sensors 2024, 24, 681. [Google Scholar] [CrossRef]
- Federolf, P.A. Quantifying instantaneous performance in alpine ski racing. J. Sport. Sci. 2012, 30, 1063–1068. [Google Scholar] [CrossRef]
- Hébert-Losier, K.; Supej, M.; Holmberg, H.C. Biomechanical factors influencing the performance of elite alpine ski racers. Sport. Med. 2014, 44, 519–533. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-García, I.; Navarro-Marchal, I.; Ocaña-Wilhelmi, J.; Palma, A.J.; Gómez-López, P.J.; Carvajal, M.A. Development and evaluation of a low-drift inertial sensor-based system for analysis of alpine skiing performance. Sensors 2021, 21, 2480. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Chirinos Buxadé, C.; Padullés Riu, J.M.; Gavaldà Castet, D.; Trabucchi, M.; Fernández-Valdés, B.; Tuyà Viñas, S.; Moras Feliu, G. Influence of Turn Cycle Structure on Performance of Elite Alpine Skiers Assessed through an IMU in Different Slalom Course Settings. Sensors 2022, 22, 902. [Google Scholar] [CrossRef] [PubMed]
- Vaverka, F.; Vodickova, S. Laterality of the lower limbs and carving turns. Biol. Sport 2010, 27. [Google Scholar] [CrossRef]
- Bon, I.; Očić, M.; Cigrovski, V.; Rupčić, T.; Knjaz, D. What are kinematic and kinetic differences between short and parallel turn in Alpine skiing? Int. J. Environ. Res. Public Health 2021, 18, 3029. [Google Scholar] [CrossRef]
- Yu, G.; Jang, Y.J.; Kim, J.; Kim, J.H.; Kim, H.Y.; Kim, K.; Panday, S.B. Potential of IMU sensors in performance analysis of professional alpine skiers. Sensors 2016, 16, 463. [Google Scholar] [CrossRef]
- Martínez, A.; Snyder, C.; Moore, S.R.; Stöggl, T. A comprehensive comparison and validation of published methods to detect turn switch during alpine skiing. Sensors 2021, 21, 2573. [Google Scholar] [CrossRef]
- Russo, C.; Puppo, E.; Roati, S.; Somà, A. Proposal of an alpine skiing kinematic analysis with the aid of miniaturized monitoring sensors, a pilot study. Sensors 2022, 22, 4286. [Google Scholar] [CrossRef]
- Debertin, D.; Wachholz, F.; Mikut, R.; Federolf, P. Quantitative downhill skiing technique analysis according to ski instruction curricula: A proof-of-concept study applying principal component analysis on wearable sensor data. Front. Bioeng. Biotechnol. 2022, 10, 1003619. [Google Scholar] [CrossRef] [PubMed]
- Klous, M.; Müller, E.; Schwameder, H. Collecting kinematic data on a ski/snowboard track with panning, tilting, and zooming cameras: Is there sufficient accuracy for a biomechanical analysis? J. Sport. Sci. 2010, 28, 1345–1353. [Google Scholar] [CrossRef]
- Vaverka, F.; Vodickova, S.; Elfmark, M. Kinetic analysis of ski turns based on measured ground reaction forces. J. Appl. Biomech. 2012, 28, 41–47. [Google Scholar] [CrossRef]
- Martínez, A.; Nakazato, K.; Scheiber, P.; Snyder, C.; Stöggl, T. Comparison of the turn switch time points measured by portable force platforms and pressure insoles. Front. Sport. Act. Living 2020, 2, 2. [Google Scholar] [CrossRef]
- Brodie, M.; Walmsley, A.; Page, W. Fusion motion capture: A prototype system using inertial measurement units and GPS for the biomechanical analysis of ski racing. Sport. Technol. 2008, 1, 17–28. [Google Scholar] [CrossRef]
- Supej, M.; Spörri, J.; Holmberg, H.C. Methodological and practical considerations associated with assessment of alpine skiing performance using global navigation satellite systems. Front. Sport. Act. Living 2020, 1, 74. [Google Scholar] [CrossRef]
- Matsumura, S.; Ohta, K.; Yamamoto, S.i.; Koike, Y.; Kimura, T. Comfortable and convenient turning skill assessment for alpine skiers using imu and plantar pressure distribution sensors. Sensors 2021, 21, 834. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shao, T.; Jiang, P.; Shan, G.; Wang, L.; Li, G. A Pilot Study on a Multimodal Wearable System by Applying a Two-Chain Biomechanical Model in the Alpine Ski Slalom. In Proceedings of the 2021 IEEE International Conference on Real-time Computing and Robotics (RCAR), Xining, China, 15–19 July 2021; pp. 1082–1086. [Google Scholar]
- Khaked, A.A.; Oishi, N.; Roggen, D.; Lago, P. Investigating the Effect of Orientation Variability in Deep Learning-based Human Activity Recognition. In Proceedings of the Adjunct Proceedings of the 2023 ACM International Joint Conference on Pervasive and Ubiquitous Computing & the 2023 ACM International Symposium on Wearable Computing, Cancun, Mexico, 8–12 October 2023; pp. 480–485. [Google Scholar]
- Roggen, D.; Förster, K.; Calatroni, A.; Bulling, A.; Tröster, G. On the issue of variability in labels and sensor configurations in activity recognition systems. In Proceedings of the Best Practice in Activity Recognition Workshop at the 8th International Conference on Pervasive Computing, Zurich, Switzerland, 1 December 2010; pp. 1–4. [Google Scholar]
- Zhong, Y.; Deng, Y. Sensor orientation invariant mobile gait biometrics. In Proceedings of the IEEE international joint conference on biometrics, Clearwater, FL, USA, 29 September–2 October 2014; pp. 1–8. [Google Scholar]
- STMicroelectronics. LSM6DSL iNEMO Inertial Module: Always-On 3D Accelerometer and 3D Gyrosc; STMicroelectronics: Geneva, Switzerland, 2017. [Google Scholar]
- AKM. AK09916 3-axis Electronic Compass. 2015. Available online: https://www.alldatasheet.com/html-pdf/917549/AKM/AK09916/54/1/AK09916.html (accessed on 21 January 2025).
- Paulich, M.; Schepers, M.; Rudigkeit, N.; Bellusci, G. Xsens MTw Awinda: Miniature Wireless Inertial-Magnetic Motion Tracker for Highly Accurate 3D Kinematic Applications; Xsens: Enschede, The Netherlands, 2018; pp. 1–9. [Google Scholar]
- Österreichische Skischule, D. Snowsport Austria, 3rd ed.; Publisher Brothers Hollinek I & Co. GmbH: Wien, Austria, 2021. [Google Scholar]
- Yan, Z.; Subbaraju, V.; Chakraborty, D.; Misra, A.; Aberer, K. Energy-efficient continuous activity recognition on mobile phones: An activity-adaptive approach. In Proceedings of the 2012 16th International Symposium on Wearable Computers, Newcastle, UK, 18–22 June 2012; pp. 17–24. [Google Scholar]
- LaValle, S.M.; Yershova, A.; Katsev, M.; Antonov, M. Head tracking for the Oculus Rift. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), HongKong, China, 31 May–7 June 2014; pp. 187–194. [Google Scholar]
- LaValle, S.M. Virtual Reality; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar]
- Nazarahari, M.; Rouhani, H. Sensor fusion algorithms for orientation tracking via magnetic and inertial measurement units: An experimental comparison survey. Inf. Fusion 2021, 76, 8–23. [Google Scholar] [CrossRef]
- Azadi, B.; Haslgrübler, M.; Anzengruber-Tanase, B.; Grünberger, S.; Ferscha, A. Alpine skiing activity recognition using smartphone’s IMUs. Sensors 2022, 22, 5922. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Cazelles, B.; Chavez, M.; Berteaux, D.; Ménard, F.; Vik, J.O.; Jenouvrier, S.; Stenseth, N.C. Wavelet analysis of ecological time series. Oecologia 2008, 156, 287–304. [Google Scholar] [CrossRef] [PubMed]
- Martínez, A.; Jahnel, R.; Buchecker, M.; Snyder, C.; Brunauer, R.; Stöggl, T. Development of an automatic alpine skiing turn detection algorithm based on a simple sensor setup. Sensors 2019, 19, 902. [Google Scholar] [CrossRef] [PubMed]
- Young, A.D. Comparison of orientation filter algorithms for realtime wireless inertial posture tracking. In Proceedings of the 2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks, Berkeley, CA, USA, 3–5 June 2009; pp. 59–64. [Google Scholar]
- Nazarahari, M.; Rouhani, H. 40 years of sensor fusion for orientation tracking via magnetic and inertial measurement units: Methods, lessons learned, and future challenges. Inf. Fusion 2021, 68, 67–84. [Google Scholar] [CrossRef]
- Tuck, K. Tilt Sensing Using Linear Accelerometers. Freescale Semiconductor Application Note AN3107. 2007. Available online: https://www.nxp.com/docs/en/application-note/AN3461.pdf (accessed on 20 July 2020).
# | Location | When | Glacier | Sensor | Subjects | Duration (m) * | Turns + |
---|---|---|---|---|---|---|---|
1 | Hintertux, Tyrol | June 2019 | Yes | Galaxy S9, Xsens | 4 | 58 | 261 |
2 | Dachstein, Upper Austria | November 2019 | Yes | Galaxy S9, Xsens | 2 | 48 | 129 |
Input | RMSE | MAE | TDR_std * |
---|---|---|---|
accY | 4.56 | 2.67 | 0.39 |
gyrX | 2.67 | 1.15 | 0.22 |
Roll angle | 6.14 | 3.69 | 0.37 |
Baseline | 5.90 | 4.70 | 0.50 |
Side motion | 0.77 | 0.50 | 0.09 |
Ground truth | 0.00 | 0.00 | 0.00 |
Sensor Location | accY | gyrX | Roll Angle | Side Motion | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | MAE | TR_std * | RMSE | MAE | TR_std * | RMSE | MAE | TR_std * | RMSE | MAE | TR_std * | |
Chest | 0.00 | 0.00 | 0.00 | 1.13 | 0.64 | 0.10 | 3.77 | 1.27 | 0.16 | 0.77 | 0.50 | 0.09 |
Pelvis | 0.00 | 0.00 | 0.00 | 0.66 | 0.44 | 0.08 | 6.32 | 2.88 | 0.24 | 0.71 | 0.38 | 0.08 |
Pelvis left—smartphone | 5.82 | 3.27 | 0.35 | 1.00 | 0.64 | 0.13 | 6.74 | 4.27 | 0.35 | 0.85 | 0.64 | 0.10 |
Pelvis right—smartphone | 4.92 | 3.00 | 0.39 | 1.64 | 1.05 | 0.21 | 5.40 | 2.64 | 0.29 | 0.85 | 0.55 | 0.09 |
Shoulder left | 2.56 | 1.36 | 0.19 | 5.58 | 3.32 | 0.49 | 7.30 | 4.45 | 0.43 | 0.71 | 0.41 | 0.08 |
Shoulder right | 4.88 | 2.64 | 0.30 | 5.45 | 3.23 | 0.42 | 5.53 | 3.59 | 0.38 | 0.77 | 0.50 | 0.09 |
Upper arm left | 3.10 | 2.00 | 0.29 | 1.89 | 1.14 | 0.15 | 5.38 | 3.09 | 0.30 | 0.74 | 0.45 | 0.08 |
Upper arm right | 2.47 | 1.55 | 0.21 | 4.45 | 1.77 | 0.23 | 7.38 | 4.95 | 0.31 | 0.83 | 0.50 | 0.09 |
Front arm left | 5.20 | 3.68 | 0.37 | 1.02 | 0.68 | 0.13 | 8.31 | 6.05 | 0.33 | 0.71 | 0.41 | 0.09 |
Front arm right | 7.02 | 5.41 | 0.53 | 0.83 | 0.59 | 0.11 | 7.26 | 5.05 | 0.36 | 0.77 | 0.50 | 0.10 |
Thigh left | 4.68 | 3.14 | 0.41 | 2.24 | 1.18 | 0.15 | 5.91 | 3.82 | 0.37 | 0.77 | 0.50 | 0.10 |
Thigh right | 1.33 | 0.77 | 0.23 | 0.85 | 0.64 | 0.10 | 6.75 | 3.77 | 0.36 | 0.80 | 0.55 | 0.09 |
Leg left | 6.41 | 5.09 | 0.49 | 0.60 | 0.36 | 0.08 | 8.63 | 6.64 | 0.57 | 0.80 | 0.55 | 0.10 |
Leg right | 6.47 | 4.90 | 0.53 | 0.45 | 0.20 | 0.05 | 7.91 | 6.05 | 0.52 | 0.71 | 0.50 | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azadi, B.; Haslgrübler, M.; Ferscha, A. Motion Analysis in Alpine Skiing: Sensor Placement and Orientation-Invariant Sensing. Sensors 2025, 25, 2582. https://doi.org/10.3390/s25082582
Azadi B, Haslgrübler M, Ferscha A. Motion Analysis in Alpine Skiing: Sensor Placement and Orientation-Invariant Sensing. Sensors. 2025; 25(8):2582. https://doi.org/10.3390/s25082582
Chicago/Turabian StyleAzadi, Behrooz, Michael Haslgrübler, and Alois Ferscha. 2025. "Motion Analysis in Alpine Skiing: Sensor Placement and Orientation-Invariant Sensing" Sensors 25, no. 8: 2582. https://doi.org/10.3390/s25082582
APA StyleAzadi, B., Haslgrübler, M., & Ferscha, A. (2025). Motion Analysis in Alpine Skiing: Sensor Placement and Orientation-Invariant Sensing. Sensors, 25(8), 2582. https://doi.org/10.3390/s25082582