The Relative Performance of NDIR-based Sensors in the Near Real-time Analysis of CO2 in Air
Abstract
:1. Introduction
2. Materials and methods
2.1 Background of CO2 analysis
2.2 Experimental methodology
3. Results and discussions
3.1 The overall pattern of CO2 analysis
3.2 Performance evaluation of NDIR sensors
3.3 Comparison with previous studies
4. Summary
Acknowledgments
References and Notes
- WMO. The 13th WMO/IAEA Meeting of Experts on Carbon Dioxide Concentration and Related Tracers Measurement Techniques, TD No. 1359), Boulder, Colorado, USA, 19-22 September 2005; 2006.
- Harvey, L.D. D. Allowable CO2concentrations under the United Nations Framework Convention on Climate Change as a function of the climate sensitivity probability distribution function. Environmental Research Letters 2007. [Google Scholar] [CrossRef]
- Orr, J.C.; Fabry, V.J.; Aumont, O.; Bopp, L.; Doney, S.C.; Feely, R.M.; Gnanadesikan, A.; Gruber, N.; Ishida, A.F.; Joos, R.; Key, M.; Lindsay, K.; Maier-Reimer, E.; Matear, R.J.; Monfray, P.; Mouchet, A.; Najjar, R.G.; Plattner, G.-K.; Rodgers, K.B.; Sabine, C.L.; Sarmiento, J.L.; Schlitzer, R.; Slater, R.D.; Totterdell, I.J.; Weirig, M.-F.; Yamanaka, Y.; Yool, A. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature. 2005, 437, 681–686. [Google Scholar]
- Henderson, E.R. Carbon dioxide measures up as a real hazard. 2006. http://www.rimbach.com/scripts/Article/ Accessed on 12 June, 2007.
- Hannan, J. Your Role in the “Greenhouse Effect”. ITEST Bulletin. 1997, 28, 9–11. [Google Scholar]
- NIOSH Chemical Listing and Documentation of Revised IDLH Values: Documentation for Immediately Dangerous to Life or Health Concentrations (IDLH), 1995.
- Ferng, S.F.; Lee, L.W. Indoor air quality assessment of daycare facilities with carbon dioxide, temperature, and humidity as indicators. Journal of Environmental Health. 2002, 65, 14–18. [Google Scholar]
- Daisey, J.M.; Angell, W.J.; Apte, M.G. Indoor air quality, ventilation and health symptoms in schools: an analysis of existing information. Indoor Air 2003, 13, 53–64. [Google Scholar]
- Ramachandran, G.; Adgate, J.L.; Banerjee, S.; Church, TR.; Jones, D.; Fredrickson, A.; Sexton, K. Indoor air quality in two urban elementary schools measurements of airborne fungi, carpet allergens, CO2, temperature, and relative humidity. Journal of Occupational and Environmental Hygiene. 2005, 2(11), 553–566. [Google Scholar]
- Jennings, PR.; Fahringer, D.; Collins, T. Sick building syndrome. Indoor air quality and your patients' health. JAAPA. 2000, 34-6, 39. [Google Scholar]
- Gupta, S.; Khare, M.; Goyal, R. Sick building syndrome— A case study in a multistory centrally air-conditioned building in the Delhi City. Building and Environment. 2007, 42, 2797–2809. [Google Scholar]
- Giannovario, J.A.; Grob, R.L.; Rulon, P.W. Analysis of trace pollutants in the air by means of cryogenic gas chromatography. Journal of Chromatography A. 1976, 121, 285–294. [Google Scholar]
- Woebkenberg, M.L. Carbon dioxide: method 6603: NIOSH Manual of Analytical Methods (NMAM). 1994. [Google Scholar]
- Radwan, L. Infrared CO2 analysis in expired air as a test of the pulmonary function. I. Evaluation of the capnographic curve. Pol.Med. J 1967, 6, 403–11. [Google Scholar]
- Nydal, R.; Lovseth, K. Carbon-14 measurements in atmospheric CO2from northern and southern hemisphere sites. 1962-1993. 1996. ORNL/CDIAC, NDP-057. [Google Scholar]
- Verkouteren, R.M.; Dorko, W.D. High-accuracy gas analysis via isotope dilution mass spectrometry: carbon dioxide in air. Analytical chemistry. 1989, 21, 2416–22. [Google Scholar]
- Esler, M. B.; Griffith, D.W.; Wilson, S.R.; Steele, L.P. Precision trace gas analysis by FT-IR spectroscopy. Simultaneous analysis of CO2, CH4, N2O, and CO in air. Analytical Chemistry. 2000, 72, 206–15. [Google Scholar]
- Satienperakul, S.; Cardwell, T.J.; Cattrall, R.W.; McKelvie, I.D.; Taylor, D.M.; Kolev, S.D. Determination of carbon dioxide in gaseous samples by gas diffusion-flow injection. Talanta. 2004, 62, 631–636. [Google Scholar]
- Baadenhuijsen, H.; Jacobs, H.E.H. Seuren. Determination of total CO2 in plasma by automated flow-injection analysis. Clinical chemistry. 1979, 25, 443–445. [Google Scholar]
- Lang, W.; Wolf, U.H.; Zander, R. A sensitive continuous and discontinuous photometric determination of oxygen, carbon dioxide, and carbon monoxide in gases and fluids. Analytical Biochemistry. 1979, 92, 255–264. [Google Scholar]
- Motomizu, S.; Toei, K.; Kuwaki, T.; Oshima, M. Gas-Diffusion Unit with Tubular Microporous Poly (tetrafluoroethy1ene) Membrane for Flow-Injection Determination of Carbon Dioxide. Analytical Chemistry. 1987, 59, 2930–32. [Google Scholar]
- Linares, P.; Castro, M.D.; Luque, de.; Valcarcel, M. Simultaneous determination of carbon dioxide and sulphur dioxide in wine by gas-diffusion/flow-injection analysis. Analytica Chimica Acta. 1989, 225, 443–448. [Google Scholar]
- Bruckenstein, S.; Symanski, S. Continuous conductimetric sensor for carbon dioxide. Analytical Chemistry. 1986, 58, 1766–1770. [Google Scholar]
- Calegario, F.F.; Cosso, R.G.; Almeida, F.V.; Vercesi, A.E.; Jardim, W.F. Determination of the respiration rate of tomato fruit using flow analysis. Postharvest Biology and Technology. 2001, 22, 249–256. [Google Scholar]
- Almeida, F.V.; Guimaraes, J.R.; Jardim, W.F. Measuring the CO2flux at the air/water interface in lakes using flow injection analysis. Journal of Environmental Monitoring. 2001, 3, 317–321. [Google Scholar]
- Liu, S.; Tubino, M. Dual-phase gas-permeation flow-injection thermometric analysis for the determination of carbon dioxide. Talanta. 1998, 47, 711–717. [Google Scholar]
- Su, X.-L.; Tan, H.-W.; Li, W.-F.; Wei, W.-Z.; Yao, S.-Z. Comparison of a Piezoelectric Impedance Sensor-Based Flow-Injection System and a N, N, N', N'-Tetrakis-2-hydroxylethyl Ethylenediamine-Coated Quartz Crystal Microbalance for Determination of CO2 in Wine and Beer. Analytical Sciences. 1998, 14, 553. [Google Scholar]
- Yao, S.-Z.; Su, X.-L. Gas diffusion flow injection analysis with bulk acoustic wave detection and the applications for determining nitrogen, carbon, or sulfite species in varieties of complex matrixes. Journal of AOAC International. 1999, 82, 1479–1487. [Google Scholar]
- Wong, J. Y. NDIR Gas Sensor. US Patent No. 5,444,249, 22 Aug.
- Sashida, T.; Saitou, T.; Egawa, M. Development of a carbon dioxide concentration meter using a solid electrolyte sensor; 2002; SICE, Aug 5-7; 2002; Osaka. [Google Scholar]
- Yi, S.H.; Park, Y.W.; Han, S.O.; Min, N.; Kim, E.S.; Ahn, T.W. Novel NDIR CO2sensor for indoor Air quality monitoring. The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, Seoul, Korea, June 5-9 2005; 2005. [Google Scholar]
- Lang, T.; Wiemhöfer, H.-D.; Göpel, W. Carbonate Based CO2 Sensors with High Performance. Sensors and Actuators B. 1996, 34, 383–387. [Google Scholar]
- Stuart, B.H. Infrared Spectroscopy: Fundamentals and Applications (Analytical Techniques in the Sciences (AnTs).; John Wiley and Sons, 2004. [Google Scholar]
- Miller, L. J. Principles of Infrared Technology: A Practical Guide to the State of the Art; Springer, 2001. [Google Scholar]
- Werle, P.W.; Mazzinghi, P.; Amato, F.D.; Rosa, De M.; Maurer, K.; Slemr, F. Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy. Spectrochimica Acta Part A. 2004, 60, 1685–1705. [Google Scholar]
- Norback, D.; Ancker, K.; Johanson, G. Field Evaluation of CO2 Detector Tubes for Measuring Outdoor Air Supply Rate in the Indoor Environment. Indoor Air. 1992, 2, 58–64. [Google Scholar]
Property / specification | Sensor model | |
---|---|---|
B-530 | H-550 | |
Sensing Method | (Non dispersive Infrared) | |
Measurement Range | 0∼10,000 ppm | 0∼50,000 ppm |
Storage Temperature | -20 ∼ +60°C | -20 ∼ +60°C |
Operating Temperature | 0∼+50°C | 0 ∼ +50°C |
Sensitivity | ±20 ppm ± 1% | ±20 ppm ± 1% |
Accuracy | ±30 ppm ±5% | ±30 ppm ±5% |
Response time (90%) | Within 120 sec | Within 30 sec |
Operating Humidity (RH: (%) | 0∼95% RH | 0∼95% RH |
Input Power | DC12 V | DC12 V |
Size | 50(T)X65(W)X25.5(H) mm | 38(L)X32(W)X12(H) mm |
Output Signal | Analog (0.5 V ∼4.5 V,2∼10 V) | Digital (UART Rx,,Tx) |
Sensor units | |||||||
---|---|---|---|---|---|---|---|
H11] | H21] | H31] | B12] | B22] | B32] | ||
[A] 3 second data | Mean ± SD (Median) | 438 ±36.3 (436) | 445 ± 40 (442) | 407 ±39.8 (396) | 396 ±34.2 (391) | 448 ± 31.7 (442) | 439 ± 30.2 (433) |
(raw data) | Range | 333-668 | 335-678 | 307-666 | 323-557 | 317-678 | 335-668 |
N | 383.662 | 383,660 | 383,581 | 383,406 | 383,469 | 383.555 | |
[B] After conversion into hourly intervals | Mean ± SD (Median) | 438 ±33.8 (437) | 445 ± 37.2 (445) | 407 ±37 (401) | 396 ±30.9 (392) | 448 ± 29 (442) | 439 ±27.4 (433) |
Range | 372-586 | 368-601 | 330-572 | 336-522 | 391-595 | 386-582 | |
N | 304 | 304 | 304 | 304 | 304 | 304 |
Sensor units | |||||||
---|---|---|---|---|---|---|---|
H11] | H21] | H31] | B2] | B22] | B32] | ||
[A] 3 second raw data | Mean ± SD (Median) | 2.25 ±2.93 (1.95) | 2.21 ±4.96 (2.85) | -5.15 ± 5.74 (-5.58) | -5.60 ±6.51 (-7.47) | 4.15 ± 2.77 (4.16) | 2.49 ± 2.52 (2.51) |
(N = 359.919) | Range | -9.87-15.2 | -17.2-17.7 | -24.6-10.8 | -20.1-21.6 | -18.9-23.5 | -10.5-18.6 |
[B] Hourly data | Mean ± SD (Median) | 2.03 ±2.52 (1.54) | 3.73 ±2.76 (3.46) | -5.11 ±5.35 (-5.42) | -7.68 ±3.98 (-8.12) | 4.63 ± 2.05 (4.75) | 2.40 ±2.00 (2.55) |
(N = 304) | Range | -2.76-10.7 | -2.46-11.0 | -15.2-7.86 | -16.6-2.64 | -0.23-9.74 | -3.49-6.98 |
H1 | H2 | H3 | B1 | B2 | B3 | |
---|---|---|---|---|---|---|
H1 | 1 | |||||
H2 | 0.98** | 1 | ||||
H3 | 0.75** | 0.75** | 1 | |||
B1 | 0.70** | 0.72** | 0.39** | 1 | ||
B2 | 0.85** | 0.88** | 0.66** | 0.88** | 1 | |
B3 | 0.85** | 0.86** | 0.66** | 0.92** | 0.99** | 1 |
Method | Measurement condition | Mean | SD | N | CV | RSE (%) |
---|---|---|---|---|---|---|
NDIR-sensor 1] | Laboratory | 429 | 33 | 6 | 7.69 | 2.334] |
GD-FIA 2] | In open air (Laboratory) | 338 | 35 | 3 | 10.4 | 5.98 |
GC-TCD 2] | In open air (Laboratory) | 335 | 36 | 3 | 10.7 | 6.2 |
CO2 monitor 2l | In open air (Laboratory) | 320 | 3 | 3 | 0.94 | 0.54 |
GD-FIA2] | Undercover car parking | 565 | 9 | 3 | 1.59 | 0.92 |
GC-TCD2] | Undercover car parking | 554 | 15 | 3 | 2.71 | 1.56 |
CO2 monitor21 | Undercover car parking | 541 | 18 | 3 | 3.33 | 1.92 |
GD-FIA2] | Soil atmosphere | 5770 | 340 | 3 | 5.89 | 3.4 |
GC-TCD21 | Soil atmosphere | 5820 | 340 | 3 | 5.84 | 3.37 |
GD-FIA21 | Headspace in milk container | 6020 | 80 | 3 | 1.33 | 0.77 |
GC-TCD2] | Headspace in milk container | 5750 | 190 | 3 | 3.3 | 1.91 |
Detector tube anlysis3] | Indoor air | 800-1000 | -5] | -5] | -5] | 5-7 |
© 2007 by MDPI ( http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.
Share and Cite
Pandey, S.K.; Kim, K.-H. The Relative Performance of NDIR-based Sensors in the Near Real-time Analysis of CO2 in Air. Sensors 2007, 7, 1683-1696. https://doi.org/10.3390/s7091683
Pandey SK, Kim K-H. The Relative Performance of NDIR-based Sensors in the Near Real-time Analysis of CO2 in Air. Sensors. 2007; 7(9):1683-1696. https://doi.org/10.3390/s7091683
Chicago/Turabian StylePandey, Sudhir Kumar, and Ki-Hyun Kim. 2007. "The Relative Performance of NDIR-based Sensors in the Near Real-time Analysis of CO2 in Air" Sensors 7, no. 9: 1683-1696. https://doi.org/10.3390/s7091683
APA StylePandey, S. K., & Kim, K. -H. (2007). The Relative Performance of NDIR-based Sensors in the Near Real-time Analysis of CO2 in Air. Sensors, 7(9), 1683-1696. https://doi.org/10.3390/s7091683