Spatially Explicit Large Area Biomass Estimation: Three Approaches Using Forest Inventory and Remotely Sensed Imagery in a GIS
Abstract
:1. Introduction
1.1 Biomass Estimation Methods
1.2 Biomass: The Canadian Context
1.3 Objective
2. Study Area and Data
2.1. Study Area
2.2. Field Data
2.3. Forest Inventory Data
2.4. Remotely Sensed Data
3. Methods
3.1. Remotely Sensed Image Classification
3.2. Validation of the classified Landsat imagery
3.3. Data Compatibility: Field Data and Remotely Sensed Outputs
3.4. Data Compatibility: Field Data and Forest Inventory
- Each tree was divided into ten segments—the stump segment was 30 cm in length, and the remaining nine segments were equal in length, i.e., segment_length= (tree_height-30cm)÷9 and Kozak's formula was used to predict the inside-bark diameter at the top, middle, and bottom of each of these segments. The parameters used for Saskatchewan tree species in Kozak's formula were taken from [122].
- The volume of the stump segment was calculated using the volume formula for a cylinder, and the volume of the top segment was calculated using the volume formula for a cone.
- Newton's formula for volume of a neiloid, cone, or paraboloid frustum [123] was used to calculate the volume of the remaining eight segments.
- The volumes of all segments of each tree were totaled, and the point sampling factors were applied to individual tree volumes to determine the per-hectare volume represented by each tree. Finally, the sum of each of these per-hectare volumes was found, the result being the total live stem volume of the study plot.
- The volume of the stump was first subtracted from the total volume of each tree.
- Kozak's formula was applied in reverse, as described in [121], to determine the merchantable height of each tree, or the height at which the diameter inside bark was approximately 8.01 cm. The formula for volume of a cone was used to calculate the volume of wood above the merchantable height, and this amount was subtracted from the total volume.
- Point sampling factors were applied to the remaining volume of each tree as in step 5 above, and the merchantable stand volume in cubic meters per hectare was totaled for each study plot.
- Field plots which fell in a single forest inventory polygon were grouped together, and values for sub-merchantable volume, total volume of big trees, and merchantable volume were averaged for these groups of field plots.
- The average merchantable volumes of the field plot groups were divided into 30 m3/ha classes. The variance and average total volume of small trees in each of these classes was found, and a lookup table to find the average volume of small trees for a given merchantable volume was created (Table 4). The volume of small trees for a given merchantable volume was adjusted in four instances to produce a smoother relationship between the two variables.
- For trees larger than 8.01 cm, linear regression analysis was used to predict the total volume of these big trees as a function of merchantable volume. The model,
- Volumes predicted in (2) and (3) above were totaled for each plot to find the total stem volume using:
3.5. Method 1: Biomass estimation from forest inventory
3.6. Method 2: Biomass estimation from remotely sensed image outputs
3.7. Method 3: Biomass estimation using a hybrid approach
4. Results and Discussion
4.1. Method 1: Biomass estimation from forest inventory
4.2. Validation of the classified Landsat imagery
4.3. Method 2: Biomass estimation from remotely sensed imagery
4.4. Method 3: Biomass estimation using a hybrid approach
5. Conclusions
Acknowledgments
References and Notes
- Bonnor, G.M. Inventory of forest biomass in Canada; Canadian Forest Service: Hull, Quebec, 1985; Cat. No. FO42-80. [Google Scholar]
- Kurz, W.A.; Apps, M.; Banfield, E.; Stinson, G. Forest carbon accounting at the operational scale. The Forestry Chronicle 2002, 78, 672–679. [Google Scholar]
- Osborne, T.; Kiker, C. Carbon offsets as an economic alternative to large-scale logging: a case study in Guyana. Ecological Economics 2005, 52, 481–496. [Google Scholar]
- de Wit, H.A.; Palosuo, T.; Hylen, G.; Liski, J. A carbon budget of forest biomass and soils in southeast Norway calculated using a widely applicable method. Forest Ecology and Management 2006, 225, 15–26. [Google Scholar]
- Houghton, R.A. Aboveground forest biomass and the global carbon balance. Global Change Biology 2005, 11, 945–958. [Google Scholar]
- Rokityanskiy, D.; Benitez, P.C.; Kraxner, F.; McCallum, I.; Obersteiner, M.; Rametsteiner, E.; Yamagata, Y. Geographically explicit global modeling of land-use change, carbon sequestration, and biomass supply. Technological Forecasting and Social Change 2007, 74, 1057–1082. [Google Scholar]
- Landsberg, J.J.; Waring, R.H. A generalized model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. Forest Ecology and Management 1997, 95, 209–228. [Google Scholar]
- Fournier, R.A.; Luther, J. E.; Guindon, L.; Lambert, M.C.; Piercey, D.; Hall, R.J.; Wulder, M.A. Mapping above-ground tree biomass at the stand level from inventory information: test cases in Newfoundland and Québec. Canadian Journal of Forest Research 2003, 33, 1846–1863. [Google Scholar]
- Feldpausch, T.R.; McDonald, A.J.; Passos, C.A.M.; Lehmann, J.; Riha, S.J. Biomass, harvestable area, and forest structure estimated from commercial timber inventories and remotely sened imagery in southern Amazonia. Forest Ecology and Management 2006, 233, 121–132. [Google Scholar]
- Szwagrzyk, J.; Gazda, A. Above-ground standing biomass and tree species diversity in natural stands of Central Europe. Journal of Vegetation Science 2007, 18, 555–562. [Google Scholar]
- Zhao, M.; Zhou, G. Estimation of biomass and net primary productivity of major planted forest in China based on forest inventory data. Forest Ecology and Management 2005, 207, 295–313. [Google Scholar]
- Feng, X.; Liu, G.; Chen, J.M.; Chen, M.; Liu, J.; Ju, W.M.; Sun, R.; Zhou, W. Net primary productivity of China's terrestrial ecosystems from a process model driven by remote sensing. Journal of Environmental Management 2007, 85, 563–573. [Google Scholar]
- Duursma, R.A.; Marshall, J.D.; Robinson, A.P.; Pangle, R.E. Description and test of a simple process-based model of forest growth for mixed-species stands. Ecological Modelling 2007, 203, 297–311. [Google Scholar]
- Keeling, H.C.; Phillips, O.L. The global relationship between forest productivity and biomass. Global Ecology and Biogeography 2007, 16, 618–631. [Google Scholar]
- Scheller, R.M.; Mladenoff, D.J. A forest growth and biomass module for a landscape simulation model, LANDIS: design, validation, and application. Ecological Modelling 2004, 180, 211–229. [Google Scholar]
- Narayan, C.; Fernandes, P.M.; van Brusselen, J.; Schuck, A. Potential for CO2 emissions mitigation in Europe through prescribed burning in the context of the Kyoto protocol. Forest Ecology and Management 2007, 251, 164–173. [Google Scholar]
- Syphard, A.D.; Yang, J.; Franklin, J.; He, H.S.; Keeley, J.E. Calibrating a forest landscape model to simulate frequent fire in Mediterranean-type shrublands. Environmental Modelling & Software 2007, 22, 1641–1653. [Google Scholar]
- Urquiza-Haas, T.; Dolman, P.M.; Peres, C.A. Regional scale variation in forest structure and biomass in the Yucatan Peninsula, Mexico: Effects of forest disturbance. Forest Ecology and Management 2007, 247, 80–90. [Google Scholar]
- Silversides, C.R. Energy from forest biomass – its effect on forest management practices in Canada. Biomass 1982, 2, 29–41. [Google Scholar]
- Stupak., I.; Clarke, N.; Lunnan, A. Preface. Sustainable use of forest biomass for energy. In Biomass and Bioenergy, Proceedings of the WOOD-EN-MAN Session at the Conference Nordic Bioenergy 2005, Trondheim, Norway, 27 October 2005; 2007; 31, p. 665. [Google Scholar]
- Mikšys, V.; Varnagiryte-Kabasinskiene, I.; Stupak, I.; Armolaitis, K.; Kukkola, M.; Wójcik, J. Above-ground biomass functions for Scots pine in Lithuania. Biomass and Bioenergy 2007, 31, 685–692. [Google Scholar]
- Top, N.; Mizoue, N.; Ito, S.; Kai, S.; Nakao, T.; Ty, S. Re-assessment of woodfuel supply and demand relationships in Kampong Thom Province, Cambodia. Biomass and Bioenergy 2006, 30, 134–143. [Google Scholar]
- IPCC. 2003; Good practice guidance for land use, land-use change and forestry; Hayama, Japan; IPCC National Greenhouse Gase Inventories Programme; p. 295. [Google Scholar]
- Monserud, R.A.; Huang, S.; Yang, Y. Biomass and biomass change in lodgepole pine stands in Alberta. Tree Physiology 2006, 26, 819–831. [Google Scholar]
- Tan, K.; Piao, S.; Peng, C.; Fang, J. Satellite-based estimation of biomass carbon stocks for northeast China's forests between 1982 and 1999. Forest Ecology and Management 2007, 240, 114–121. [Google Scholar]
- Fang, J.; Brown, S.; Tang, Y.; Nabuurs, G.; Wang, X.; Shen, H. Overestimated biomass carbon pools of the northern mid- and high latitude forests. Climatic Change 2006, 74, 355–368. [Google Scholar]
- Saatchi, S.S.; Houghton, R.A.; Dos Santos Alvalá, R.C.; Soares, J.V.; Yu, Y. Distribution of aboveground live biomass in the Amazon basin. Global Change Biology 2007, 13, 816–837. [Google Scholar]
- Sales, M.H.; Souza, C.M., Jr.; Kyriakidis, P.C.; Roberts, D.A.; Vidal, E. Improving spatial distribution estimation of forest biomass with geostatistics: A case study for Rondônia, Brazil. Ecological Modelling 2007, 205, 221–230. [Google Scholar]
- Somogyi, Z.; Cienciala, E.; Mäkipää, R.; Muukkonen, P.; Lehtonen, A.; Weiss, P. European Journal of Forest Research 2007, 126, 197–207.
- Schroeder, P.; Brown, S.; Mo, J.; Birdsey, R.; Cieszewski, C. Biomass estimation for temperate broadleaf forests of the United States using inventory data. Forest Science 1997, 43, 424–434. [Google Scholar]
- Turner, D.P.; Koerper, G.J.; Harmon, M.E.; Lee, J.J. A carbon budget for forests of the conterminous United States. Ecological Applications 1995, 5, 421–436. [Google Scholar]
- Penner, M.; Power, K.; Muhairwe, C.; Tellier, R.; Wang, Y. Canada's forest biomass resources: Deriving estimates from Canada's forest inventory; Pacific Forestry Centre, Canadian Forest Service: Victoria, BC, 1997; Information Report BC-X-370. [Google Scholar]
- Fang, J.; Wang, G.; Liu, G.; Xu, S. Forest biomass of China: An estimate based on the biomass-volume relationship. Ecological Applications 1998, 8, 1084–1091. [Google Scholar]
- Brown, S.L.; Schroeder, P.; Kern, J.S. Spatial distribution of biomass in forests of the eastern USA. Forest Ecological and Management 1999, 123, 81–90. [Google Scholar]
- Hese, S.; Lucht, W.; Schmuillius, C.; Barnsley, M.; Dubayah, R.; Knorr, D.; Neumann, K.; Riedel, T.; Schröter, K. Global biomasss mapping for an improved understanding of the CO2 balance – the Earth observation mission Carbon-3D. Remote Sensing of Environment 2005, 94, 94–104. [Google Scholar]
- Luther, J.E.; Fournier, R.A.; Piercey, D.E.; Guindon, L.; Hall, R.J. Biomass mapping using forest type and structure derived from Landsat TM imagery. International Journal of Applied Earth Observation and Geoinformation 2006, 8, 173–187. [Google Scholar]
- Meng, Q.; Cieszewski, C.J.; Madden, M.; Borders, B. A linear mixed-effects model of biomass and volume of trees using Landsat ETM+ images. Forest Ecology and Management 2007, 244, 93–101. [Google Scholar]
- Zheng, G.; Chen, J.M.; Tian, Q.J.; Ju, W.M.; Xia, X.Q. Combining remote sensing imagery and forest age inventory for biomass mapping. Journal of Environmental Management 2007, 85, 616–623. [Google Scholar]
- Zhou, X.; Peng, C.; Dang, Q.; Chen, J.; Parton, S. A simulation of temporal and spatial variations in carbon at landscape level: a case study for Lake Abitibi model forest in Ontario, Canada. Mitigation and Adaptation Strategies for Global Change 2007, 12, 525–543. [Google Scholar]
- Lu, D. The potential and challenge of remote sensing-based biomass estimation. International Journal of Remote Sensing 2006, 27, 1297–1328. [Google Scholar]
- Jia, S.; Akiyama, T. A precise, unified method for estimating carbon storage in cool-temperate deciduous forest ecosystems. Agriculture and Forest Meteorology 2005, 134, 70–80. [Google Scholar]
- Liddell, M.J.; Nieullet, N.; Campoe, O.C.; Freiberg, M. Assessing the above-ground biomass of a complex tropical rainforest using a canopy crane. Austral Ecology 2007, 32, 43–58. [Google Scholar]
- Montagu, K.D.; Düttmer, K.; Barton, C.V.M.; Cowie, A.L. Developing general allometric relationships for regional estimates of carbon sequestration – an example using Eucalyptus pilularis from seven contrasting sites. Forest Ecology and Management 2005, 204, 115–129. [Google Scholar]
- Fehrmann, L.; Kleinn, C. General considerations about the use of allometric equations for biomass estimation on the example of Norway Spruce in central Europe. Forest Ecology and Management 2006, 236, 412–421. [Google Scholar]
- Muukkonen, P.; Mäkipää, R. Empirical biomass models of understorey vegetation in boreal forests according to stand and site attributes. Boreal Environment Research 2006, 11, 355–369. [Google Scholar]
- Ziannis, D.; Muukkonen, P.; Mäkipää, R.; Mencuccini, M. Biomass and stem volume equations for tree species in Europe. Silva Fennica 2005, 4, 1–63. [Google Scholar]
- Zhang, X.; Kondragunta, S. Estimating forest biomass in the USA using generalized allometric models and MODIS land products. Geophysical Research Letters 2006, 33, 1–5. [Google Scholar]
- Lehtonen, A.; Mäkipää, R.; Heikkinen, J.; Sievänen, R.; Liski, J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 2004, 188, 211–224. [Google Scholar]
- Mani, S.; Parthasarathy, N. Above-ground biomass estimation in ten tropical dry evergreen forest sites of peninsular India. Biomass and Bioenergy 2007, 31, 284–290. [Google Scholar]
- Patenaude, G.; Milne, R.; Dawson, T.P. Synthesis of remote sensing approaches for forest carbon estimation: reporting to the Kyoto Protocol. Environmental Science and Policy 2005, 8, 161–178. [Google Scholar]
- Roy, P.S.; Ravan, S.A. Biomass estimation using satellite remote sensing data – An investigation on possible approaches for natural forest. Journal of Bioscience 1996, 21, 535–561. [Google Scholar]
- Tomppo, E.; Nilsson, M.; Rosengren, M.; Aalto, P.; Kennedy, P. Simultaneous use of Landsat-TM and IRS-1c WiFS data in estimating large area tree stem volume and aboveground biomass. Remote Sensing of Environment 2002, 82, 156–171. [Google Scholar]
- Foody, G.M. Remote sensing of tropical forest environments: towards the monitoring of environmental resources for sustainable development. International Journal of Remote Sensing 2003, 24, 4035–4046. [Google Scholar]
- Hall, R.J.; Skakun, R.S.; Arsenault, E.J.; Case, B.S. Modeling forest stand structure attributes using Landsat ETM+ data: Application to mapping of aboveground biomass and stand volume. Forest Ecology and Management 2006, 225, 378–390. [Google Scholar]
- Suganuma, H.; Abe, Y.; Taniguchi, M.; Tanouchi, H.; Utsugi, H.; Kojima, T.; Yamada, K. Stand biomass estimation method by canopy coverage for application to remote sensing in an arid area of Western Australia. Forest Ecology and Management 2006, 222, 75–87. [Google Scholar]
- Leboeuf, A.; Beaudoin, A.; Fournier, R.A.; Guindon, L.; Luther, J.E.; Lambert, M.-C. A shadow fraction method for mapping biomass of northern boreal black spruce forests using QuickBird imagery. Remote Sensing of Environment 2007, 110, 488–500. [Google Scholar]
- Labrecque, S.; Fournier, R.A.; Luther, J.E.; Piercey, D. A comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfoundland. Forest Ecology and Management 2006, 226, 129–144. [Google Scholar]
- González-Alonso, F.; Merino-De-Miguel, S.; Roldán-Zamarrón, A.; García-Gigorro, S.; Cuevas, J.M. Forest biomass estimation through NDVI composites. The role of remotely sensed data to assess Spanish forests as carbon sinks. International Journal of Remote Sensing 2006, 27, 5409–5415. [Google Scholar]
- Baccini, A.; Friedl, M.A.; Woodcock, C.E.; Warbington, R. Forest biomass estimation over regional scales using multisource data. Geophysical Research Letters 2004, 31, 1–4. [Google Scholar]
- Muukkonen, P.; Heiskanen, J. Biomass estimation over a large area based on standwise forest inventory data and ASTER and MODIS satellite data: A possibility to verify carbon inventories. Remote Sensing of Environment 2007, 107, 617–624. [Google Scholar]
- Blackard, J.; Finco, M.; Helmer, E.; Holden, G.; Hoppus, H.; Jacobs, D.; Lister, A.; Moisen, G.; Nelson, M.; Riemann, R.; Ruefenacht, B.; Salajanu, D.; Weyermann, D.; Winterberger, K.; Brandeis, R.; Czaplewski, R.; McRoberts, R.; Patterson, P.; Tymcio, R. Mapping U.S. forest biomass using nationwide forest inventory data and MODIS-based information. Remote Sensing of Environment. In Press. [CrossRef]
- Häme, T.; Salli, A.; Andersson, K.; Lohi, A. A new methodology for estimation of biomass of conifer-dominated boreal forest using NOAA AVHRR data. International Journal of Remote Sensing 1997, 18, 3211–3243. [Google Scholar]
- Zheng, D.; Heath, L.S.; Ducey, M.J. Forest biomass estimated from MODIS and FIA data in the Lake States: MN, WI, and MI, USA. Forestry 2007, 80, 265–278. [Google Scholar]
- Kalacska, M.; Sanchez-Azofeifa, G.A.; Rivard, B.; Caelli, T.; White, H.P.; Calvo-Alvarado, J.C. Ecological fingerprinting of ecosystem succession: Estimating secondary tropical dry forest structure and diversity using imaging spectroscopy. Remote Sensing of the Environment 2007, 108, 82–96. [Google Scholar]
- Proisy, C.; Couteron, P.; Fromard, F. Predicting and mapping mangrove biomass from canopy grain analysis using Fourier-based textural ordination of IKONOS images. Remote Sensing of Environment 2007, 109, 379–392. [Google Scholar]
- Bortolot, Z.J.; Wynne, R.H. Estimating forest biomass using small footprint LIDAR data: An individual tree-based approach that incorporates training data. ISPRS Journal of Photogrammetry and Remote Sensing 2005, 59, 342–360. [Google Scholar]
- Lefsky, M.A.; Turner, D.P.; Guzy, M.; Cohen, W.B. Combining LIDAR estimates of aboveground biomass and Landsat estimates of stand age for spatially extensive validation of modeled forest productivity. Remote Sensing of Environment 2005, 95, 549–558. [Google Scholar]
- van Aardt, J.A.N.; Wynne, R.H.; Oderwald, R.G. Forest volume and biomass estimation using small-footprint Lidar-distributional parameters on a per-segment basis. Forest Science 2006, 52, 636–649. [Google Scholar]
- Popescu, S.C. Estimating biomass of individual pine trees using airborne lidar. Biomass and Bioenergy 2007, 31, 646–655. [Google Scholar]
- McRoberts, R.E.; Tomppo, E.O. Remote sensing support for national forest inventories. Remote Sensing of Environment 2007, 110, 412–419. [Google Scholar]
- Rauste, Y. Multi-temporal JERS SAR data in boreal forest biomass mapping. Remote Sensing of Environment 2005, 97, 263–275. [Google Scholar]
- Hyde, P.; Nelson, R.; Kimes, D.; Levine, E. Exploring LiDAR-RaDAR synergy – predicting aboveground biomass in a southwestern ponderosa pine forest using LiDAR, SAR, and InSAR. Remote Sensing of Environment 2007, 106, 28–38. [Google Scholar]
- Nelson, R.F.; Hyde, P.; Johnson, P.; Emessiene, B.; Imhoff, M.L.; Campbell, R.; Edwards, W. Investigating RADAR-LIDAR synergy in a North Carolina pine forest. Remote Sensing of Environment 2007, 110, 98–108. [Google Scholar]
- Brown, S.; Iverson, L.R.; Prasad, A.; Liu, D. Geographical distributions of carbon in biomass and soils of tropical Asian forests. Geocarto International 1993, 4, 45–59. [Google Scholar]
- Brown, S.L. Estimating biomass and biomass change in tropical forests: A primer. In FAO Forestry Paper 134; FAO: Rome, 1997; p. 55. [Google Scholar]
- Freeman, E.A.; Moisen, G.G. Evaluating Kriging as a Tool to Improve Moderate Resolution Maps of Forest Biomass. Environmental Monitoring Assessment 2007, 128, 395–410. [Google Scholar]
- Rahman, M.M.; Csaplovics, E.; Koch, B. An efficient regression strategy for extracting forest biomass information from satellite sensor data. International Journal of Remote Sensing 2005, 26, 1511–1519. [Google Scholar]
- Cihlar, J. Quantification of the regional carbon cycle of the biosphere: Policy, science and land-use decisions. Journal of Environmental Management 2007, 85, 785–790. [Google Scholar]
- Birdsey, R. Data gaps for monitoring forest carbon in the United States: An inventory perspective. Environmental Management 2004, 33 supplement 1, S1–S8. [Google Scholar]
- Fazakas, Z.; Nilsson, M.; Olsson, H. Regional forest biomass and wood volume estimation using satellite data and ancillary data. Agricultural and Forest Meterology 1999, 98-99, 417–425. [Google Scholar]
- Tomppo, E.; Goulding, C.; Katila, M. Adapting Finnish multi-source forest inventory techniques to the New Zealand preharvest inventory. Scandinavian Journal of Forest Research 1999, 14, 182–192. [Google Scholar]
- Nelson, R.F.; Kimes, D.S.; Salas, W.A.; Routhier, M. Secondary forest age and tropical forest biomass estimation using Thematic Mapper imagery. Bioscience 2000, 50, 419–431. [Google Scholar]
- Franco-Lopez, H.; Ek, A.R.; Bauer, M.E. Estimation and mapping of forest stand density, volume and cover type using the k-nearest neighbours method. Remote Sensing of Environment 2001, 77, 251–274. [Google Scholar]
- Katila, M.; Tomppo, E. Selecting estimation parameters for the Finnish multisource National Forest Inventory. Remote Sensing of Environment 2001, 76, 16–32. [Google Scholar]
- Natural Resources Canada. The state of Canada's forests 2005-2006; Natural Resources Canada, Canadian Forest Service: Ottawa, Ontario, Canada, 2006; p. 79. [Google Scholar]
- Gillis, M.D.; Leckie, D.G. Forest Inventory Mapping Procedures Across Canada; Forestry Canada, Petawawa National Forestry Institute: Chalk River, ON, 1993; Information Report PI-X-114. [Google Scholar]
- Gillis, M.D. Canada's National Forest Inventory (Responding to current information needs). Environmental Monitoring and Assessment 2001, 67, 121–129. [Google Scholar]
- Gillis, M.D.; Omule, A.Y.; Brierley, T. Monitoring Canada's forests: The National Forest Inventory. The Forestry Chronicle 2005, 81, 214–221. [Google Scholar]
- Power, K.; Gillis, M.D. Canada's forest inventory 2001; Canadian Forest Service: Pacific Forestry Centre, Victoria, BC, 2006; Information Report BC-X-408E; p. 100. [Google Scholar]
- Franklin, S.E.; Wulder, M.A. Remote sensing methods in medium spatial resolution satellite data land cover classification of large areas. Progress in Physical Geography 2002, 26, 173–205. [Google Scholar]
- Wulder, M.A.; Dechka, J.A.; Gillis, M.; Luther, J.E.; Hall, R.J.; Beaudoin, A.; Franklin, S.E. Operational mapping of the land cover of the forested area of Canada with Landsat data: EOSD land cover program. The Forestry Chronicle 2003, 79, 1075–1083. [Google Scholar]
- Tansey, K.J.; Luckman, A.J.; Skinner, L.; Baltzer, H.; Strozzi, T.; Wagner, W. Classification of forest volume resources using ERS tandem coherence and JERS backscatter data. International Journal of Remote Sensing 2004, 25, 751–768. [Google Scholar]
- Gholz, H.L.; Nakane, K.; Shimoda, H. (Eds.) The Use of Remote Sensing in the Modelling of Forest Productivity; Kluwer Academic Publishers: Dordrecht, 1997; p. 336.
- Apps, M.J.; Kurz, W.A.; Beukema, S.J.; Bhatti, J.S. 1999. Carbon budget of the Canadian forest product sector. Environmental Science and Technology 1969, 2, 25–41. [Google Scholar]
- Wulder, M.A.; Kurz, W.A.; Gillis, M. National level forest monitoring and modeling in Canada. Progress in Planning 2004, 61, 365–381. [Google Scholar]
- Lambert, M.-C.; Ung, C.-H.; Raulier, F. Canadian national tree aboveground biomass equations. Canadian Journal of Forest Research 2005, 35, 1996–2018. [Google Scholar]
- Boudewyn, P.A.; Song, X.; Magnussen, S.; Gillis, M.D. Model-based volume-to-biomass conversion for forested and vegetated land in Canada; Natural Resources Canada, Canadian Forest Service: Pacific Forestry Centre: Victoria, BC, 2007; Information Report BC-X-411; p. 112. [Google Scholar]
- Avery, T.E.; Burkart, H.E. Forest measurements; McGraw-Hill: New York, 2002; p. 480p. [Google Scholar]
- Forestry Canada. Glossary of forestry terms; Pacific Forestry Centre: Victoria, British Columbia, 1993. Available online. http://warehouse.pfc.forestry.ca/pfc/2919.pdf (accessed October 25, 2007).
- Sellers, P.; Hall, F.; Margolis, H.; Kelly, B.; Baldocchi, D.; Den Hartog, G.; Cihlar, J.; Ryan, M.; Goodison, B.; Crill, P.; Ranson, K.; Lettenmaier, D.; Wickland, D. The Boreal Ecosystem-Atmosphere Study (BOREAS): An Overview and Early Results from the 1994 Field Year. Bulletin of the American Meteorological Society 1995, 76, 1549–1577. [Google Scholar]
- Gamon, J.A.; Huemmrich, K.F.; Peddle, D.R.; Chen, J.; Fuentes, D.; Hall, F.G.; Kimball, J.S.; Goetz, S.; Gu, J.; Mcdonald, K.C.; Miller, J.R.; Moghaddam, M.; Rahman, A.F.; Roujean, J.-L.; Smith, E.A.; Walthall, C.L.; Zarco-Tejada, P.; Hu, B.; Fernandes, R.; Cihlar, J. Remote sensing in BOREAS: Lessons learned. Remote Sensing of Environment 2004, 89, 139–162. [Google Scholar]
- Rowe, J. Forest regions of Canada; Canadian Forest Service: Ottawa, ON, 1977. [Google Scholar]
- Lowe, J.; Power, K.; Marsan, M. Canada's forest inventory 1991: Summary by terrestrial ecozones and ecoregions; Canadian Forest Service: Pacific Forestry Centre, 1996; Information Report BC-X-364E. [Google Scholar]
- Sellers, P.; Hall, F.; Baldochi, D.; Cihlar, J.; Den Hartog, J.; Goodison, B.; Kelly, R.; Lettenmaier, D.; Margolis, H.; Ranson, J.; Ryan, M. Experiment plan: Boreal ecosystem atmosphere study (BOREAS); Version 3.0; NASA: Greenbelt, Maryland, 1994. [Google Scholar]
- Peng, C.; Apps, M.; Price, D.; Nalder, I.; Halliwell, D. Simulating carbon dynamics along the boreal forest transect case study (BFTCS) in central Canada: 1. Model testing. Global Biogeochemical Cycles 1998, 12, 381–392. [Google Scholar]
- Hogg, T. Climate change and the southern limit of the western Canadian boreal forest. Canadian Journal of Forest Research 1994, 24, 1835–1845. [Google Scholar]
- Halliwell, D.; Apps, M. Boreal Ecosystem-Atmosphere Study (BOREAS) biometry and auxiliary sites: locations and descriptions; Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre: Edmonton, Alberta, 1997a. [Google Scholar]
- Halliwell, D.; Apps, M. Boreal Ecosystem-Atmosphere Study (BOREAS) biometry and auxiliary sites: overstorey and understorey data; Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre: Edmonton, Alberta, 1997b. [Google Scholar]
- Halliwell, D.H.; Apps, M.J.; Price, D.T. A survey of the forest site characteristics in a transect through the central Canadian boreal forest. Water, Air and Soil Pollution 1995, 82, 257–270. [Google Scholar]
- Singh, T. Biomass equations for ten major tree species of the Prairie Provinces; Canadian Forest Service. Northern Forest Research Centre: Environment Canada, Edmonton, AB, 1982; Information Report NOR-X-242; p. 35. [Google Scholar]
- Gillis, M.D.; Leckie, D.G. Forest inventory update in Canada. The Forestry Chronicle 1996, 72, 138–156. [Google Scholar]
- Leckie, D.; Gillis, M. Forest inventory in Canada with an emphasis on map production. The Forestry Chronicle 1995, 71, 74–88. [Google Scholar]
- Wulder, M. Optical remote sensing techniques for the assessment of forest inventory and biophysical parameters. Progress in Physical Geography 1998, 22, 449–476. [Google Scholar]
- Markham, B.; Barker, J. Landsat MSS and TM post calibration dynamic ranges, exoatmospheric reflectances and at-satellite temperature. EOSAT Technical Notes 1986, 1, 3–7. [Google Scholar]
- Wulder, M.A.; Nelson, T. EOSD Legend: Characteristics, Suitability, and Compatibility, Version 2; Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre: Victoria, BC, 2003. [Google Scholar]
- Cihlar, J.; Beaubien, J. Land cover of Canada Version 1.1. Special Publication, NBIOME Project; Canada Centre for Remote Sensing and the Canadian Forest Service, Natural Resources Canada: Ottawa, Ontario, Canada, 1998. [Google Scholar]
- Wulder, M.A.; Boudewyn, P. Remote estimation of forest density using empirical methods on image spectral and textural data. In Remote Sensing and Spatial Data Integration: Measuring, Monitoring and Modelling, Proceedings of the 22nd Symposium of the Canadian Remote Sensing Society, Victoria, British Columbia, August 20th to 25th; 2000; pp. 787–792. [Google Scholar]
- Wulder, M.A.; White, J.C.; Magnussen, S.; McDonald, S. Validation of a large area land cover product using purpose-acquired airborne video. Remote Sensing of Environment 2007, 106, 480–491. [Google Scholar]
- Wulder, M.A.; White, J.C.; Luther, J.E.; Strickland, G.; Remmel, T.K.; Mitchell, S. Use of vector polygons for the accuracy assessment of pixel-based land cover maps. Canadian Journal of Remote Sensing 2006, 32, 268–279. [Google Scholar]
- Wulder, M.A.; Magnussen, S.; Boudewyn, P.; Seemann, D. Spectral variability related to forest inventory polygon stored within a GIS. Proceedings of the IUFRO Conference on Remote Sensing and Forest Monitoring, Rogow, Poland, June 1-3, 1999; 1999; pp. 141–153. [Google Scholar]
- Kozak, A. A variable-exponent taper equation. Canadian Journal of Forestry Research 1998, 18, 1363–1368. [Google Scholar]
- Gál, J.; Bella, I. New stem taper functions for 12 Saskatchewan timber species; Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre: Edmonton, Alberta, 1994; Information Report NOR-X-338. [Google Scholar]
- Husch, B.; Miller, C.; Beers, T. Forest Mensuration; The Ronald Press Company: New York, 1972. [Google Scholar]
- Mickler, R.A.; Earnhardt, T.S.; Moore, J.A. Regional estimation of current and future biomass. Environmental Pollution 2002, 116, S7–S16. [Google Scholar]
- Brown, S.L. Measuring carbon in forests: current status and future challenges. Environmental Pollution 2002, 116, 363–372. [Google Scholar]
- Wulder, M.A.; Franklin, S.E. Polygon decomposition with remotely sensed data: rationale, methods and applications. Geomatica 2001, 55, 11–21. [Google Scholar]
- Waring, R.H.; Way, J.B.; Hunt, E.R.; Morrissey, L.; Ranson, K.J.; Weishammpel, O.R.; Franklin, S.E. Imaging radar for ecosystem studies. Bioscience 1995, 45, 715–723. [Google Scholar]
- Kovda, V.A. The problem of biological and economic productivity of the earth's land areas. Soviet Geography 1976, 12, 6–23. [Google Scholar]
- Bazielvich, N.I.; Ye, L.; Rodziin, L. Y.; Rozov, N. N. Geographical aspects of biological productivity. Soviet Geography 1971, 12, 293–317. [Google Scholar]
COVER TYPE | NUMBER OFINVENTORYPOLYGONS | AREA (HECTARES) |
---|---|---|
Merchantable Forest Inventory Polygons (by leading species) | ||
Black Spruce | 19,483 | 109,850 |
Jack Pine | 17,333 | 158,974 |
Balsam Fir | 3 | 6 |
Tamarack | 573 | 3,682 |
White Spruce | 2,219 | 12,741 |
Trembling Aspen | 10,307 | 78,191 |
Balsam Poplar | 3 | 8 |
Paper Birch | 326 | 2,120 |
SUB-TOTAL | 50,247 | 365,572 |
Non-merchantable Forest Inventory Polygons | ||
SUB-TOTAL | 28,809 | 309,081 |
Non-Inventoried Portion of Study Area | ||
SUB-TOTAL | 0 | 40,199 |
TOTAL STUDY AREA | 79,056 | 714, 852 |
COVER TYPE | AREA (HECTARES) | |
---|---|---|
Forested Cover Types | ||
Coniferous, Dense | 171,604 | |
Coniferous, Open | 99,711 | |
Coniferous, Sparse | 55,911 | |
Deciduous, Dense | 42,357 | |
Deciduous, Open | 20,909 | |
Deciduous, Sparse | 1,762 | |
Mixed, Dense | 99,973 | |
Mixed, Open | 16,393 | |
Mixed, Sparse | 5,569 | |
SUBTOTAL | 514,189 | |
Non-Forested Cover Types | ||
Shrubs | 31,819 | |
Wetland Non-Treed | 70,694 | |
Non-Treed Herbaceous | 16,441 | |
Exposed Land | 21,178 | |
High Biomass Cropland | 32 | |
Low Biomass Cropland | 1,956 | |
Water bodies | 58,543 | |
SUBTOTAL | 200,663 | |
TOTAL | 714,852 |
NFI DENSITY (%) | NFI CLASS | SASKATCHEWAN FOREST INVENTORY DENSITY (%) |
---|---|---|
61 – 100 | Dense | 56 – 80; > 81 |
26 – 60.9 | Open | 31 – 55 |
10 – 25.9 | Sparse | 10 – 30 |
VOLM RANGE (m3/ha) | VOLUME OF SMALL TREES (m3/ha) | VOLM RANGE (m3/ha) | VOLUME OF SMALL TREES (m3/ha) |
---|---|---|---|
0 – 29.9 | 23.8 | 180 – 209.9 | 2.9* |
30 – 59.9 | 29.7 | 210 – 239.9 | 2.6* |
60 – 89.9 | 42.7 | 240 – 269.9 | 2.2 |
90 – 119.9 | 22.1* | 270 – 299.9 | 1.2 |
120 – 149.9 | 12.9* | 300 – 329.9 | 0.6* |
150 – 179.9 | 3.6 | 330 + | 0.0 |
COVER TYPE | EQUATION | R2 | RMSE | SAMPLE SIZE (N) |
---|---|---|---|---|
ICT Models | ||||
Deciduous | BIOM = 25.3247 + 0.4451 • VOLT | 0.947 | 9.094 | 11 |
Coniferous | BIOM = 35.8934 + 0.3529 • VOLT | 0.869 | 14.565 | 26 |
Mixedwood | BIOM = 26.3214 + 0.4617 • VOLT | 0.934 | 18.378 | 15 |
ACT Model | ||||
All | BIOM = 29.2883 + 0.4123 • VOLT | 0.892 | 16.047 | 52 |
COVER TYPE | AGB STANDARD (TONNES/HA) | |
---|---|---|
Forested Cover Types | ||
Coniferous, Dense | 111 | |
Coniferous, Open | 94 | |
Coniferous, Sparse | 89 | |
Deciduous, Dense | 126 | |
Deciduous, Open | 95 | |
Deciduous, Sparse | 94 | |
Mixed, Dense | 118 | |
Mixed, Open | 95 1 | |
Mixed, Sparse | 92 1 | |
Non-Forested Cover Types | ||
Shrubs | 35 2 | |
Wetland Non-Treed | 25 3 | |
Non-Treed Herbaceous | 3 4 | |
Exposed Land | 0 | |
High Biomass Cropland | 6 4 | |
Low Biomass Cropland | 3 4 | |
Water bodies | 0 |
MODEL | MULTIPLE R | R2 | ADJUSTED R2 | RMSE | SAMPLE SIZE (N) |
---|---|---|---|---|---|
ICT Models | |||||
Deciduous | 0.345 | 0.119 | -0.174 | 27.629 | 5 |
Coniferous | 0.639 | 0.408 | 0.372 | 9.643 | 18 |
Mixed | 0.878 | 0.771 | 0.754 | 21.220 | 15 |
ACT Model | |||||
All | 0.803 | 0.645 | 0.636 | 16.949 | 38 |
COVER TYPE | BIOMASS (TONNES) | |
---|---|---|
Merchantable Forest Inventory Polygons (by leading species) | ||
Black Spruce | 12,102,414 | |
Jack Pine | 15,972,510 | |
Balsam Fir | 927 | |
Tamarack | 360,509 | |
White Spruce | 1,846,504 | |
Trembling Aspen | 9,339,950 | |
Balsam Poplar | 499 | |
Paper Birch | 205,901 | |
SUB-TOTAL | 39,829,214 | |
Non-Merchantable Forest Inventory Polygons | ||
SUB-TOTAL | N/A | |
Non-Inventoried Portion of Study Area | ||
SUB-TOTAL | N/A | |
TOTAL STUDY AREA | 39,829,214 |
COVER TYPE | BIOMASS (TONNES) | |
---|---|---|
Forested Cover Types | ||
Coniferous, Dense | 19,048,053 | |
Coniferous, Open | 9,372,792 | |
Coniferous, Sparse | 4,976,068 | |
Deciduous, Dense | 5,337,024 | |
Deciduous, Open | 1,986,396 | |
Deciduous, Sparse | 165,655 | |
Mixed, Dense | 11,796,845 | |
Mixed, Open | 1,557,340 | |
Mixed, Sparse | 512,308 | |
SUB-TOTAL | 54,752,480 | |
Non-Forested Cover Types | ||
Shrubs | 1,113,657 | |
Wetland Non-Treed | 1,767,362 | |
Non-Treed Herbaceous | 49,323 | |
Exposed Land | 0 | |
High Biomass Cropland | 194 | |
Low Biomass Cropland | 5,868 | |
Water bodies | 0 | |
SUB-TOTAL | 2,936,404 | |
TOTAL STUDY AREA | 57,688,884 |
FORESTINVENTORYPOLYGONSTATUS | NUMBER OF INVENTORY POLYGONS | AREA (HECTARES) | METHOD 1FOREST INVENTORY | METHOD 2REMOTELYSENSEDDATA | METHOD 3DATAINTEGRATION |
---|---|---|---|---|---|
AGB (TONNES) | AGB (TONNES) | AGB (TONNES) | |||
Merchantable | 50,247 | 365,572 | 39,829,214 | 37,748,175 | 39,829,214 |
Non-merchantable | 28,809 | 309,081 | N/A | 19,940,709 | 19,940,709 |
Not inventoried | 0 | 40,199 | N/A | 2,593,484 | 2,593,484 |
TOTAL | 79,056 | 714,852 | 39,829,214 | 57,688,884 | 62,363,407 |
© 2008 by MDPI Reproduction is permitted for noncommercial purposes.
Share and Cite
Wulder, M.A.; White, J.C.; Fournier, R.A.; Luther, J.E.; Magnussen, S. Spatially Explicit Large Area Biomass Estimation: Three Approaches Using Forest Inventory and Remotely Sensed Imagery in a GIS. Sensors 2008, 8, 529-560. https://doi.org/10.3390/s8010529
Wulder MA, White JC, Fournier RA, Luther JE, Magnussen S. Spatially Explicit Large Area Biomass Estimation: Three Approaches Using Forest Inventory and Remotely Sensed Imagery in a GIS. Sensors. 2008; 8(1):529-560. https://doi.org/10.3390/s8010529
Chicago/Turabian StyleWulder, Michael A., Joanne C. White, Richard A. Fournier, Joan E. Luther, and Steen Magnussen. 2008. "Spatially Explicit Large Area Biomass Estimation: Three Approaches Using Forest Inventory and Remotely Sensed Imagery in a GIS" Sensors 8, no. 1: 529-560. https://doi.org/10.3390/s8010529
APA StyleWulder, M. A., White, J. C., Fournier, R. A., Luther, J. E., & Magnussen, S. (2008). Spatially Explicit Large Area Biomass Estimation: Three Approaches Using Forest Inventory and Remotely Sensed Imagery in a GIS. Sensors, 8(1), 529-560. https://doi.org/10.3390/s8010529