Conductometric Microbiosensors for Environmental Monitoring
Abstract
:1. Introduction
2. Conductometric measurement methods
3. Transducers for conductometric biosensors
4. Conductometry in enzyme catalysis
5. Conductometric enzyme biosensors
Conductometric biosensors for environmental monitoring
Conductometric biosensors for the detection of organophosphorous pesticides (based on enzyme inhibition)
Conductometric biosensor for the detection of diuron and atrazine (based on tyrosine inhibition)
Conductometric biosensors for the detection of heavy metal ions (based on enzyme inhibition)
Conductometric biosensor for the detection of formaldehyde
Conductometric biosensor for the detection of nitrate
Conductometric biosensor for the detection of Dissolved Organic Carbon (DOC)
Conductometric biosensor based on microalgea
6. Conclusions
Acknowledgments
References
- Patnaik, P. Handbook of Environmental Analysis. Chemical pollutants in air, water, soil, and solid wastes; CRC Press Inc.: Boca Raton, USA, 1997. [Google Scholar]
- Fernandez-Alba, A.R.; Guil, L.H.; Lopez, G.D.; Chisti, Y. Toxicity of pesticides in wastewater: a comparative assessment of rapid bioassays. Anal. Chim. Acta 2001, 426, 289–301. [Google Scholar]
- Dzydevich, S.V.; Shul'ga, A.A.; Soldatkin, A.P.; Nyamsi Hendji, A.M.; Jaffrezic-Renault, N.; Martelet, C. Application of conductometric for sensitive detection of pesticides biosensor based on the cholinesterases. Electroanalysis 1994, 6, 752–758. [Google Scholar]
- Shul'ga, A.A.; Soldatkin, A.P.; El'skaya, A.V.; Dzyadevich, S.V.; Strikha, V.I. Thin-film conductometric biosensor for glucose and urea determination. Biosens. Bioelectron. 1994, 9, 217–223. [Google Scholar]
- Watson, L. D.; Maynard, P.; Cullen, D. C.; Sethi, R. S.; Brettle, J.; Lowe, C. R. A microelectronic conductometric biosensor. Biosensors 1987/88, 3, 101–115. [Google Scholar]
- Dzyadevych, S.V.; Arkhypova, V.N.; Korpan, Y.I.; El'skaya, A.V.; Soldatkin, A.P.; Jaffrezic-Renault, N.; Martelet, C. Conductometric formaldehyde sensitive biosensor with specifically adapted analytical characteristics. Anal. Chim. Acta 2001, 445, 47–55. [Google Scholar]
- Lawrence, A.J.; Moores, G. R. Conductimetry in enzyme studies. Eur. J. Biochem. 1972, 24, 538–546. [Google Scholar]
- Dorokhova, E. N.; Prokhorova, G. V. Analytical chemistry. Phisical-chemical methods of analysis; Vysshaya shkola: Moscow, 1991. [Google Scholar]
- Gopel, W.; Jones, T. A.; Kleitz, M.; Lundstrom, J.; Seiyama, T. Conductometry. In Sensors. A Comprehensive Survey; Gopel, W., Hesse, J., Zemel, J.N., Eds.; VCH Verlagsgesellschaft: Weinheim, 1991; Vol. 2, Part I; pp. 314–337. [Google Scholar]
- Kell, D. B. The principles and potential of electrical admittance spectroscopy: an introduction. In Biosensors: Fundamentals and Applications; Turner, A.P.F., Karube, I., Wilson, G.S., Eds.; Oxford University Press: Oxford, 1987; pp. 427–468. [Google Scholar]
- Dzyadevich, S.V.; Shul'ga, A.A.; Patskovsky, S.V.; Arkhipova V, N.; Soldatkin, A.P.; Strikha, V.I. Thin-film conductometric transducers for enzyme biosensors. Rus. J. Electrochem. 1994, 30, 887–891. [Google Scholar]
- Olthuis, W.; Volanschi, A.; Bomer, J. G.; Bergveld, P. A new probe for measuring electrolytic conductance. Sens. Actuat. B. 1993, 13-14, 230–233. [Google Scholar]
- Olthuis, W.; Smith, A.; Van der Zalm, R. A. J.; Bergveld, P. New operational modes for the Ta2O5-based electrolyte conductance cell. Sens. Actuat. B. 1994, 18-19, 65–68. [Google Scholar]
- Shul'ga, A. A.; Strikha, V. I.; Dzyadevich, S. V.; Patskovsky, S. V.; Gopel, W. Eurosensors VII.; Turner, A. P. F., Ed.; Elseiver Adv. Techn.: Oxford, 1993; p. 321. [Google Scholar]
- Weimar, U.; Gopel, W. A.C. measurements on tin oxide sensors to improve selectivities and sensitivities. Sens. Actuators B. 1995, 26-27, 13–18. [Google Scholar]
- Sheppard, N.F.; Tucker, R.C.; Wu, C. Electrical conductivity measurements using microfabricated interdigitated electrodes. Anal. Chem. 1993, 65, 1199–1202. [Google Scholar]
- Lee, W.Y.; Kim, S.R.; Kim, T.H.; Lee, K.S.; Shin, M.C.; Park, J.K. Sol-gel-derived thick-film conductometric biosensor for urea determination in serum. Anal. Chim. Acta 2000, 404, 195–203. [Google Scholar]
- Jacobs, P.; Suls, J.; Sansen, W. Performance of a planar differential-conductivity sensor for urea. Sens. Actuat. B. 1994, 20, 193–198. [Google Scholar]
- Hintsche, R.; Moller, B.; Dransfeld, I.; Wollenberger, U.; Scheller, F.; Hoffmann, B. Chip biosensors on thin-film metal electrodes. Sens. Actuat. B. 1991, 4, 287–291. [Google Scholar]
- Trebbe, U.; Niggemann, M.; Cammann, K.; Fiaccabrino, G.C.; Koudelka-Hep, M.; Dzyadevich, S.; Shulga, O. A new calcium sensor based on ion-selective conductometric microsensors - membranes and features. Fresen. J. Anal. Chem. 2001, 371, 734–739. [Google Scholar]
- Mikkelsen, S.K.; Rechnitz, G. A. Conductometric transducers for enzyme-based biosensors. Anal. Chem. 1989, 61, 1737–1742. [Google Scholar]
- Bilitewski, U.; Drewes, W.; Schmid, R.D. Thick film biosensors for urea. Sens. Actuat.s B. 1992, 7, 321–326. [Google Scholar]
- Cullen, D.C.; Sethi, R.S.; Lowe, C.R. Multi-analyte miniature conductance biosensor. Anal. Chim. Acta 1990, 231, 33–40. [Google Scholar]
- McNeil, C.J.; Athey, D.; Ball, M.; On Ho, W.; Krause, S.; Armstrong, R.D.; Wright, J.D.; Rawson, K. Electrochemical sensors bbased on impedance measurement of enzyme-catalyzed polymer dissolution: theory and application. Anal. Chem. 1995, 67, 3928–3935. [Google Scholar]
- Sergeeva, T.A.; Lavrik, N.V.; Rachkov, A.E.; Kazantseva, Z.I.; Piletsky, S.A.; El'skaya, A.V. Hydrogen peroxide – sensitive enzyme sensor based on phtalocyanine thin film. Anal. Chim. Acta 1999, 391, 289–297. [Google Scholar]
- Endres, H.-E.; Drost, S. Optimization of the geometry of gas-sensitive interdigital capasitors. Sens. Actuat. B. 1991, 4, 95–98. [Google Scholar]
- Besson, C.; Vessillier, S.; Gonzales, T.; Saulnier, J.; Wallach, J. Conductimetric assay of pyroglutamyl peptidase activity. Anal. Chim. Acta 1994, 294, 305–309. [Google Scholar]
- Dzyadevych, S. V.; Soldatkin, A. P.; Arkhypova, V. N.; Martelet, C.; Jaffrezic-Renault, N.; El'skaya, A. V. Electrochemical enzyme biosensors; IMBG Press: Kyiv, 2006. [Google Scholar]
- On Ho, W.; Krause, S.; McNeil, C.J.; Pritchard, J.A.; Armstrong, R.D.; Athey, D.; Rawson, K. Electrochemical sensor for measurement of urea and creatinine in serum based on ac impedance measurement of enzyme-catalyzed polymer transformation. Anal. Chem. 1999, 71, 1940–1946. [Google Scholar]
- Chin, W.T.; Kroontje, W. Conductivity method for determination of urea. Anal. Chem. 1961, 33, 1757–1760. [Google Scholar]
- Bourrelly, P.; Bourrelly-Durand, V. Methode d'etude par conductometric differentielle de la cinetique de l'hydrolise enzymatique de l'uree. J. Chem. Phys. 1965, 65, 673–677. [Google Scholar]
- Andreeev, V.S.; Rozengart, V.I.; Torubarov, V.A. Registration of kinetics of enzymatic reaction by high-frequency method. Ukr. Biochem. J. 1965, 37, 920–926. [Google Scholar]
- Andreev, V.S.; Bashtanov, A. V. Differential conductometric device fo registration of physical- chemical processes. Zavodskaya laboratoriya 1968, 34, 1546–1548. [Google Scholar]
- Hanss, M.; Rey, A. Application de la conductometrie a l'etude des reactions enzymatiques. Systeme uree-urease. Biochim. Biophys. Acta 1971, 227, 630–638. [Google Scholar]
- Lawrence, A.J. Conductimetric enzyme assays. Eur. J. Biochem. 1971, 18, 221–225. [Google Scholar]
- Dzyadevich, S.V.; Soldatkin, A.P.; Shul'ga, A.A.; Strikha, V.I.; El'skaya, A.V. Conductometric biosensor for organophosphorus pesticides determination. J. Anal. Chem. 1994, 49, 789–792. [Google Scholar]
- Zhylyak, G. A.; Dzyadevich, S. V.; Korpan, Y. I.; Soldatkin, A. P.; El'skaya, A. V. Application of urease conductometric biosensor for heavy-metal ion determination. Sens. Actuat. B. 1995, 24-25, 145–148. [Google Scholar]
- Dzyadevich, S.V.; Korpan, Y.I.; Soldatkin, A.P.; Shul'ga, A.A.; Strikha, V.I.; El'skaya, A.V. Conductometric biosensor for ethanol detection based on whole yeast cells. Ukr. Biochem. J. 1993, 65, 47–54. [Google Scholar]
- Soldatkin, A.P.; Dzyadevich, S.V.; Korpan, Y.I.; Arkhipova, V.N.; Zhylyak, G.A.; Piletsky, S.A.; Sergeeva, T.A.; Panasyuk, T.L.; El'skaya, A.V. Biosensors based on conductometric detection. Biopolymers Cell 1998, 14, 268–277. [Google Scholar]
- Arkhypova, V.N.; Dzyadevych, S.V.; Schuvaylo, O.N.; Soldatkin, A.P.; El'skaya, A.V.; Jaffrezic-Renault, N.; Martelet, C. Concept of multibiosensors for determination of different toxic compounds based on enzyme inhibitor analysis. Biopolymers Cell 2001, 17, 70–77. [Google Scholar]
- Arkhypova, V.N.; Dzyadevych, S.V.; Soldatkin, A.P.; El'skaya, A.V.; Jaffrezic-Renault, N.; Jaffrezic, H.; Martelet, C. Multibiosensor based on enzyme inhibition analysis for determination of different toxic substances. Talanta 2001, 55, 919–927. [Google Scholar]
- Dzyadevych, S.V.; Arkhypova, V.N.; El'skaya, A.V.; Jaffrezic-Renault, N.; Martelet, C.; Soldatkin, A.P. Conductometric enzyme biosensors for substrates or inhibitors analysis. Curr. Top. Anal. Chem. 2001, 2, 179–186. [Google Scholar]
- Dzyadevych, S.V.; Soldatkin, A.P.; Chovelon, J.-M. Assessment of the toxicity of parathion and its photodegradation products in water samples using conductometric enzyme biosensors. Anal. Chim. Acta 2002, 459, 33–41. [Google Scholar]
- Dzyadevych, S.V.; Chovelon, J.-M. A comparative photodegradation studies of methyl parathion by using Lumistox test and conductometric biosensor technique. Mater. Sci. Engineer.C. 2002, 21, 55–60. [Google Scholar]
- Mai Anh, T.; Dzyadevych, S.V.; Chau Van, M.; Jaffrezic-Renault, N.; Duc Chien, N.; Chovelon, J.-M. Conductometric tyrosinase biosensor for the detection of diuron, atrazine and its main metabolites. Talanta 2004, 63, 365–370. [Google Scholar]
- Dzyadevych, S.V.; Soldatkin, A.P.; Arkhypova, V.N.; El'skaya, A.V.; Chovelon, J.-M.; Georgiou, C.; Martelet, C.; Jaffrezic-Renault, N. Early-warning electrochemical biosensor system for the environmental monitoring based on enzyme inhibition effect. Sens. Actuat. B. 2005, 55, 81–87. [Google Scholar]
- Chouteau, C.; Dzyadevych, S.V.; Durrieu, C.; Chovelon, J.-M. A bi-enzymatic whole cell conductometric biosensor for heavy metal ions and pesticides detection in water samples. Biosens. Bioelectron. 2005, 21, 273–281. [Google Scholar]
- Chouteau, C.; Dzyadevych, S.V.; Durrieu, C.; Chovelon, J.-M. Development of novel conductometric biosensors based on immobilised whole cell Chlorella vulgaris microalgae. Biosensors Bioelectron. 2004, 19, 1089–1096. [Google Scholar]
- Mai Anh, T.; Dzyadevych, S.V.; Prieur, N.; Nguen Duc, C.; Pham, T.D.; Jaffrezic-Renault, N.; Chovelon, J.-M. Detection of toxic compounds in real water samples using a conductometric tyrosinase biosensor. Mater. Sci. Engineer. C. 2006, 26, 453–456. [Google Scholar]
- Wang, X.; Dzyadevych, S.V.; Chovelon, J.-M.; Jaffrezic-Renault, N.; Ling, C.; Siqing, X. Development of conductometric nitrate biosensor based on Methyl viologen/Nafion® composite film. Electrochem. Comm. 2006, 8, 201–205. [Google Scholar]
- Wang, X.; Dzyadevych, S.V.; Chovelon, J.-M.; Jaffrezic-Renault, N.; Ling, C.; Siqing, X. Conductometric nitrate biosensor based on Methyl viologen/Nafion®/Nitrate reductase interdigitated electrodes. Talanta 2006, 69, 450–455. [Google Scholar]
- Marrakchi, M.; Dzyadevych, S. V.; Namour, Ph.; Martelet, C.; Jaffrezic-Renault, N. A novel proteinase K biosensor based on interdigitated conductometric electrodes for proteins determination in rivers and sewers water. Sens. Actuat. B. 2005, 111-112, 390–395. [Google Scholar]
- Marrakchi, M.; Dzyadevych, S.V.; Namour, Ph.; Martelet, C.; Jaffrezic-Renault, N. An enzyme biosensor based on gold interdigitated thin film electrodes for water quality control. Anal. Lett. 2007, 40, 1307–1316. [Google Scholar]
- Rp = 5 κ Ohm, Rsol = 1 κOhm, Cdl = 5 nF,
- Rp = 10 κOhm, Rsol = 1 κOhm, Cdl = 50 nF,
- Rp = 10 κOhm, Rsol = 1 κOhm, Cdl = 5 nF, Cox = 1000 μF,
- Rp = 10 κOhm, Rsol = 1 κOhm, Cdl = 5 nF, Cox = 1000 μF,
- Rp = 10 κOhm, Rsol = 1 κOhm, Cdl = 5 nF, Cox = 100 μF,
- Rp = 10 κOhm, Rsol = 1 κOhm, Cdl = 5 nF, Cox = 10 μF
- Rp = 5 κ Ohm, Rsol = 1 κOhm, Cdl = 5 nF,
- Rp = 10 κOhm, Rsol = 1 κOhm, Cdl = 50 nF,
- Rp = 10 κOhm, Rsol = 1 κOhm, Cdl = 5 nF, Cox = 1000 μF,
- Rp = 10 κOhm, Rsol = 1 κOhm, Cdl = 5 nF, Cox = 1000 μF,
- Rp = 10 κOhm, Rsol = 1 κOhm, Cdl = 5 nF, Cox = 100 μF,
- Rp = 10 κOhm, Rsol = 1 κOhm, Cdl = 5 nF, Cox = 10 μF
Cation | S, Ohm-1cm2 | Anion | S, Ohm-1cm2 |
---|---|---|---|
H+ | 349.8 | OH- | 198.3 |
Co(NH3)63+ | 102.3 | C2O42- | 111.0 |
NH4+ | 73.6 | [Fe(CN)6] - | 110.5 |
K+ | 73.5 | [Fe(CN)6] - | 100.9 |
Pb2+ | 70.0 | [Co(CN)6] 3- | 98.9 |
La3+ | 69.7 | CrO42- | 85.0 |
Fe3+ | 68.0 | SO4- | 80.0 |
Ba2+ | 63.6 | I- | 78.8 |
Al3+ | 63.0 | Br- | 78.1 |
Ag+ | 61.9 | CN- | 78.0 |
Ca2+ | 59.5 | Cl- | 76.4 |
Sr2+ | 59,5 | NO3- | 71,5 |
CH3NH3+ | 58.7 | C2O42- | 74.2 |
Cu2+ | 56.6 | CO32- | 69.3 |
Zn2+ | 56.6 | ClO4- | 67.3 |
Cd2+ | 54.0 | ClO3- | 65.0 |
Fe2+ | 53.5 | 2-O4 | 57.0 |
Mn2+ | 53.5 | F- | 55.4 |
Mg2+ | 53.1 | CHOO- | 54.6 |
Co2+ | 52.8 | HCO3- | 44.5 |
(CH3)2NH2+ | 51.9 | CH3CO2- | 40.9 |
Na+ | 50.1 | HC2O4- | 40.2 |
(CH3)3NH+ | 47.3 | H2PO4- | 36.0 |
Li+ | 38.7 | C2H5CO2- | 35.8 |
C3H7CO2- | 32.6 | ||
C6H5CO2- | 32.4 |
No | Source of changes in conductivity | Enzymes |
---|---|---|
1 | Generation of ion groups | Amidases |
2 | Separation of different charges | Dehydrogenases and decarboxylases |
3 | Ion migration | Esterases |
4 | Change in level of ion particles association | Kinases |
5 | Change in size of charged groups | Phosphatases and sulfatases |
No | Substance | Enzyme | References |
---|---|---|---|
1 | Organophosphorous pesticides | Acetylcholinesterase, Butyrylcholinesterase | [3, 36, 38-40, 41-44, 46, 47] |
2 | Heavy metal ions | Urease | [37, 39-42,46] |
Alkaline phosphatase | [47, 48] | ||
3 | Formaldehyde | Alcoholoxidase | [6, 39, 42] |
4 | 4-Chlorophenol | Tyrosinase | [45, 46] |
5 | Triazine herbicides | Tyrosinase | [45, 46, 49] |
6 | Carbamate pesticides | Acetylcholinesterase | [46] |
7 | Nitrate | Nitrate reductase | [50, 51] |
8 | Proteins as marker of DOC | Proteinase K | [52, 53] |
© 2008 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.
Share and Cite
Jaffrezic-Renault, N.; Dzyadevych, S.V. Conductometric Microbiosensors for Environmental Monitoring. Sensors 2008, 8, 2569-2588. https://doi.org/10.3390/s8042569
Jaffrezic-Renault N, Dzyadevych SV. Conductometric Microbiosensors for Environmental Monitoring. Sensors. 2008; 8(4):2569-2588. https://doi.org/10.3390/s8042569
Chicago/Turabian StyleJaffrezic-Renault, Nicole, and Sergei V. Dzyadevych. 2008. "Conductometric Microbiosensors for Environmental Monitoring" Sensors 8, no. 4: 2569-2588. https://doi.org/10.3390/s8042569
APA StyleJaffrezic-Renault, N., & Dzyadevych, S. V. (2008). Conductometric Microbiosensors for Environmental Monitoring. Sensors, 8(4), 2569-2588. https://doi.org/10.3390/s8042569