Developments and Applications of Electrogenerated Chemiluminescence Sensors Based on Micro- and Nanomaterials
Abstract
:1. Introduction
2. Sensing Methods and Materials
2.1. Thin Films
2.1.1. Sol-gels
2.1.2. Metallopolymers
2.2. Electrode Arrays
2.3. Microfluidics
2.4. Nanomaterials used in recent ECL sensors
2.4.1. Nanoparticles
Gold Nanoparticles
Platinum Nanoparticles
Magnetic Nanoparticles
Silica Nanoparticles
Quantum Dots
2.4.2. Carbon Nanotubes
3. Sensing Applications of ECL
3.1. Label-Free Sensors
3.1.1. Luminol/Hydrogen Peroxide
3.1.2. [Ru(bpy)3]2+/Amines
3.2. ECL Labels
3.2.1. Molecular Labels
3.2.2. Micro- and Nanoparticle Labels
Conclusions
Acknowledgments
References and Notes
- Electrogenerated Chemiluminescence.; Bard, A.J. (Ed.) Marcel Dekker: New York, 2004.
- Richter, M.M. Electrochemiluminescence (ECL). Chem. Rev. 2004, 104, 3003–3036. [Google Scholar]
- Pittet, P.; Lu, G.N.; Galvan, J.M.; Ferrigno, R.; Stephan, K.; Blum, L.J.; Leca-Bouvier, B.A. Novel Low-Cost Approach of Implementing Electrochemiluminescence Detection for Microfluidic Analytical Systems. Mater. Sci. Eng. C 2008. [Google Scholar] [CrossRef]
- Choi, H.N.; Cho, S.H.; Lee, W.Y. Electrogenerated Chemiluminescence from Tris(2,2′-bipyridyl) ruthenium(II) Immobilized in Titania-Perfluorosulfonated Ionomer Composite Films. Anal. Chem. 2003, 75, 4250–4256. [Google Scholar]
- Armelao, L.; Bertoncello, R.; Gross, S.; Badocco, D.; Pastore, P. Construction and Characterization of Ru(II)Tris(bipyridine)-Based Silica Thin Film Electrochemiluminescent Sensors. Electroanalysis 2003, 15, 803–811. [Google Scholar]
- Guo, Z.; Dong, S. Electrogenerated Chemiluminescence from Ru(bpy)32+ Ion-Exchange in Carbon Nanotube/Perfluorosulfonated Ionomer Composite Films. Anal. Chem. 2004, 76, 2683–2688. [Google Scholar]
- Wang, H.; Xu, G.; Dong, S. Electrochemiluminescence Sensor using Tris(2,2′-bipyridyl)ruthenium(II) Immobilized in Eastman-AQ55D-silica Composite Thin-films. Anal. Chim. Acta 2003, 480, 285–290. [Google Scholar]
- Gao, W.; Xia, X.H.; Xu, J.J.; Chen, H.Y. Three-Dimensionally Ordered Macroporous Gold Structure as an Efficient Matrix for Solid-State Electrochemiluminescence of Ru(bpy)32+/TPA System with High Sensitivity. J. Phys. Chem. C 2007, 111, 12213–12219. [Google Scholar]
- Choi, H.N.; Lyu, Y.K.; Lee, W.Y. Tris(2,2′-bipyridyl)ruthenium(II) Electrogenerated Chemiluminescence Sensor Based on Sol-gel-Derived V2O5/Nafion Composite Films. Electroanalysis 2006, 18, 275–281. [Google Scholar]
- Dennany, L.; Hogan, C.F.; Keyes, T.E.; Forster, R.J. Effect of Surface Immobilization on the Electrochemiluminescence of Ruthenium-Containing Metallopolymers. Anal. Chem. 2006, 78, 1412–1417. [Google Scholar]
- Lee, J.K.; Lee, S.H.; Kim, M.; Kim, H.; Kim, D.H.; Lee, W.Y. Organosilicate Thin Film Containing Ru(bpy)32+for an Electrogenerated Chemiluminescence (ECL) Sensor. Chem. Commun. 2003, 1602–1603. [Google Scholar]
- Chovin, A.; Garrigue, P.; Sojic, N. Electrochemiluminescent Detection of Hydrogen Peroxide with an Imaging Sensor Array. Electrochim. Acta 2004, 49, 3751–3757. [Google Scholar]
- Marquette, C.A.; Degiuli, A.; Blum, L.J. Electrochemiluminescent Biosensors Array for the Concomitant Detection of Choline, Glucose, Glutamate, Lactate, Lysine, and Urate. Biosens. Bioelectron. 2003, 19, 433–439. [Google Scholar]
- Chovin, A.; Garrigue, P.; Vinatier, P.; Sojic, N. Development of an Ordered Array of Optoelectrochemical Individually Readable Sensors with Submicrometer Dimensions: Application to Remote Electrochemiluminescence Imaging. Anal. Chem. 2004, 76, 357–364. [Google Scholar]
- Marquette, C.A.; Blum, L.J. Self-Containing Reactant Biochips for the Electrochemiluminescent Determination of Glucose, Lactate and Choline. Sens. Actuators B 2003, 90, 112–117. [Google Scholar]
- Corgier, B.P.; Marquette, C.A.; Blum, L.J. Screen-Printed Electrode Microarray for Electrochemiluminescent Measurements. Anal. Chim. Acta 2005, 538, 1–7. [Google Scholar]
- Zhan, W.; Alvarez, J.; Crooks, R.M. A Two-Channel Microfluidic Sensor That Uses Anodic Electrogenerated Chemiluminescence as a Photonic Reporter of Cathodic Redox Reactions. Anal. Chem. 2003, 75, 313–318. [Google Scholar]
- Zhan, W.; Alvarez, J.; Sun, L.; Crooks, R.M. A Multichannel Microfluidic Sensor That Detects Anodic Redox Reactions Indirectly Using Anodic Electrogenerated Chemiluminescence. Anal. Chem. 2003, 75, 1233–1238. [Google Scholar]
- Mamalis, A.G. Recent Advances in Nanotechnology. J. Mater. Process. Tech. 2007, 181, 52–58. [Google Scholar]
- Guo, Z.; Shen, Y.; Wang, M.; Zhao, F.; Dong, S. Electrochemistry and Electrogenerated Chemiluminescence of SiO2 Nanoparticles/Tris(2,2′-bipyridyl)ruthenium(II) Multilayer Films on Indium Tin Oxide Electrodes. Anal. Chem. 2004, 76, 184–191. [Google Scholar]
- Du, Y.; Qi, B.; Yang, X.; Wang, E. Synthesis of PtNPs/AQ/Ru(bpy)32+ Colloid and Its Application as a Sensitive Solid-State Electrochemiluminescence Sensor Material. J. Phys. Chem. B 2006, 110, 21662–21666. [Google Scholar]
- Chang, Z.; Zhou, J.; Zhao, K.; Zhu, N.; He, P.; Fang, Y. Ru(bpy)32+-doped Silica Nanoparticle DNA Probe for the Electrogenerated Chemiluminescence Detection of DNA Hybridization. Electrochim.Acta 2006, 52, 575–580. [Google Scholar]
- Ding, Z.; Quinn, B.M.; Haran, S.K.; Pell, L.E.; Korgel, B.A.; Bard, A.J. Electrochemistry and Electrogenerated Chemiluminescence from Silicon Nanocrystal Quantum Dots. Science 2002, 296, 1293–1297. [Google Scholar]
- Cui, H.; Wang, W.; Duan, C.F.; Dong, Y.P.; Guo, J.Z. Synthesis, Characterization, and Electrochemiluminescence of Luminol-Reduced Gold Nanoparticles and Their Applications in a Hydrogen Peroxide Sensor. Chem. Eur. J. 2007, 13, 6975–6984. [Google Scholar]
- Zhang, L.; Xu, Z.; Sun, X.; Dong, S. A Novel Alcohol Dehydrogenase Biosensor Based on Solid-State Electrogenerated Chemiluminescence by Assembling Dehydrogenase to Ru(bpy)32+-Au Nanoparticle Aggregates. Biosens. Bioelectron. 2007, 22, 1097–1100. [Google Scholar]
- Zhang, L.; Liu, B.; Dong, S. Bifunctional Nanostructure of Magnetic Core Luminescent Shell and Its Application as Solid-State Electrochemiluminescent Sensor Material. J. Phys. Chem. B 2007, 111, 10448–10452. [Google Scholar]
- Kim, D.J.; Lyu, Y.K.; Choi, H.N.; Min, I.H.; Lee, W.Y. Nafion-Stabilized Magnetic Nanoparticles (Fe3O4) for [Ru(bpy)3]2+(bpy = bipyridine) Electrogenerated Chemiluminescence Sensor. Chem. Commun. 2005, 2966–2968. [Google Scholar]
- Zhang, L.; Dong, S. Electrogenerated Chemiluminescence Sensors Using Ru(bpy)32+ Doped in Silica Nanoparticles. Anal. Chem. 2006, 78, 5119–5123. [Google Scholar]
- Zhang, L.; Dong, S. Electrogenerated Chemiluminescence Sensing Platform using Ru(bpy)32+ Doped Silica Nanoparticles and Carbon Nanotubes. Electrochem. Commun. 2006, 8, 1687–1691. [Google Scholar]
- Zhang, L.; Zheng, X. A Novel Electrogenerated Chemiluminescence Sensor for Pyrogallol with Core-Shell Luminol-Doped Silica Nanoparticles Modified Electrode by the Self-Assembled Technique. Anal. Chim. Acta 2006, 570, 207–213. [Google Scholar]
- Wang, X.; Zhou, J.; Yun, W.; Xiao, S.; Chang, Z.; He, P.; Fang, Y. Detection of Thrombin using Electrogenerated Chemiluminescence Based on Ru(bpy)32+-doped Silica Nanoparticle Aptasensor via Target Protein-Induced Strand Displacement. Anal. Chim. Acta 2007, 598, 242–248. [Google Scholar]
- Bae, Y.; Myung, N.; Bard, A.J. Electrochemistry and Electrogenerated Chemiluminescence of CdTe Nanoparticles. Nano. Lett. 2004, 4, 1153–1161. [Google Scholar]
- Jie, G.F.; Liu, B.; Miao, J.J.; Zhu, J.J. Electrogenerated Chemiluminescence from CdSe Nanotubes and Its Sensing Application in Aqueous Solution. Talanta 2007, 71, 1476–1480. [Google Scholar]
- Shi, C.G.; Xu, J.J.; Chen, H.Y. Electrogenerated Chemiluminescence and Electrochemical Bi-functional Sensors for H2O2 Based on CdSe Nanocrystals/Hemoglobin Multilayers. J. Electroanal. Chem. 2007, 610, 186–192. [Google Scholar]
- Ding, S.N.; Xu, J.J.; Chen, H.Y. Enhanced Solid-State Electrochemiluminescence of CdSe Nanocrystals Composited with Carbon Nanotubes in H2O2Solution. Chem. Commun. 2006, 3631–3633. [Google Scholar]
- Zou, G.; Ju, H. Electrogenerated Chemiluminescence from a CdSe Nanocrystal Film and Its Sensing Application in Aqueous Solution. Anal. Chem. 2004, 76, 6871–6876. [Google Scholar]
- Jiang, H.; Ju, H. Electrochemiluminescence Sensors for Scavengers of Hydroxyl Radical Based on Its Annihilation in CdSe Quantum Dots Film/Peroxide System. Anal. Chem. 2007, 79, 6690–6696. [Google Scholar]
- Li, J.; Xu, Y.; Wei, H.; Huo, T.; Wang, E. Electrochemiluminescence Sensor Based on Partial Sulfonation of Polystyrene with Carbon Nanotubes. Anal. Chem. 2007, 79, 5439–5443. [Google Scholar]
- Choi, H.N.; Lee, J.Y.; Lyu, Y.K.; Lee, W.Y. Tris(2,2′-bipyridyl)ruthenium(II) Electrogenerated Chemiluminescence Sensor Based on Carbon Nanotube Dispersed in Sol-gel Derived Titania-Nafion Composite Films. Anal. Chim. Acta 2006, 565, 48–55. [Google Scholar]
- Tao, Y.; Lin, Z.J.; Chen, X.M.; Chen, X.; Wang, X.R. Tris(2,2′-bipyridyl)ruthenium(II) Electrochemiluminescence Sensor Based on Carbon Nanotube/Organically Modified Silicate Films. Anal. Chim. Acta 2007, 594, 169–174. [Google Scholar]
- Chen, J.; Lin, Z.; Chen, G. An Electrochemiluminescent Sensor for Glucose Employing a Modified Carbon Nanotube Paste Electrode. Anal. Bioanal. Chem. 2007, 388, 399–407. [Google Scholar]
- Luo, L.; Zhang, Z. Sensors Based on Galvanic Cell Generated Electrochemiluminescence and Its Application. Anal. Chim. Acta 2006, 580, 14–17. [Google Scholar]
- Dennany, L.; Forster, R.J.; Rusling, J.F. Simultaneous Direct Electrochemiluminescence and Catalytic Voltammetry Detection of DNA in Ultrathin Films. J. Am. Chem. Soc. 2003, 125, 5213–5218. [Google Scholar]
- Wei, H.; Du, Y.; Kang, J.; Wang, E. Label Free Electrochemiluminescence Protocol for Sensitive DNA Detection with a Tris(2,2′-bipyridyl)ruthenium(II) Modified Electrode Based on Nucleic Acid Oxidation. Electrochem. Commun. 2007, 9, 1474–1479. [Google Scholar]
- Choi, H.N.; Cho, S.H.; Park, Y.J.; Lee, D.W.; Lee, W.Y. Sol-gel-Immobilized Tris(2,2′-bipyridyl) ruthenium(II) Electrogenerated Chemiluminescence Sensor for High-Performance Liquid Chromatography. Anal. Chim. Acta 2005, 541, 49–56. [Google Scholar]
- Hun, X.; Zhang, Z. Electrogenerated Chemiluminescence Sensor for Itopride With Ru(bpy)32+-doped Silica Nanoparticles/Chitosan Composite Films Modified Electrode. Sens. Actuators B 2008. [Google Scholar] [CrossRef]
- Kuwabara, T.; Noda, T.; Ohtake, H.; Ohtake, T.; Toyama, S.; Ikariyama, Y. Classification of DNA-Binding Mode of Antitumor and Antiviral Agents by the Electrochemiluminescence of Ruthenium Complex. Anal. Biochem. 2003, 314, 30–37. [Google Scholar]
- Miao, W.; Bard, A.J. Electrogenerated Chemiluminescence. 72. Determination of Immobilized DNA and C-Reactive Protein on Au(111) Electrodes Using Tris(2,2′-bipyridyl)ruthenium(II) Labels. Anal. Chem. 2003, 75, 5825–5834. [Google Scholar]
- Li, Y.; Qi, H.; Peng, Y.; Yang, J.; Zhang, C. Electrogenerated Chemiluminescence Aptamer-Based Biosensor for the Determination of Cocaine. Electrochem. Commun. 2007, 9, 2571–2575. [Google Scholar]
- Calvo-Muñoz, M.L.; Dupont-Filliard, A.; Billon, M.; Guillerez, S.; Bidan, G.; Marquette, C.; Blum, L. Detection of DNA Hybridization by ABEI Electrochemiluminescence in DNA-Chip Compatible Assembly. Bioelectrochem. 2005, 66, 139–143. [Google Scholar]
- Miao, W.; Bard, A.J. Electrogenerated Chemiluminescence. 77. DNA Hybridization Detection at High Amplification with [Ru(bpy)3]2+-Containing Microspheres. Anal. Chem. 2004, 76, 5379–5386. [Google Scholar]
- Miao, W.; Bard, A.J. Electrogenerated Chemiluminescence. 80. C-Reactive Protein Determination at High Amplification with [Ru(bpy)3]2+-Containing Microspheres. Anal. Chem. 2004, 76, 7109–7113. [Google Scholar]
- Zhan, W.; Bard, A.J. Electrogenerated Chemiluminescence. 83. Immunoassy of Human C-Reactive Protein by Using Ru(bpy)32+-Encapsulated Liposomes as Labels. Anal. Chem. 2007, 79, 459–463. [Google Scholar]
Sensor Platform | LOD, M | Linear Range, M | RSD, % | Ref. |
---|---|---|---|---|
Silica/Eastman-AQ55D/ [Ru(bpy)3]2+ | 1 × 10-7 | 2 × 10-5 – 1 × 10-3 | 1.9 | 5 |
TiO2/Nafion/[Ru(bpy)3]2+ | 1 × 10-7 | 1 × 10-7 – 1 × 10-3 | 3.9 | 4 |
V2O5/Nafion/[Ru(bpy)3]2+ | 1 × 10-8 | 5 × 10-8 – 1 × 10-3 | 2.5 | 9 |
ZrO2/Nafion (on 3D Au structure)/ [Ru(bpy)3]2+ | 5 × 10-10 | 1 × 10-9 – 1 × 10-5 | 0.74 | 8 |
Pt NPs/Eastman-AQ55D / [Ru(bpy)3]2+ | 1 × 10-15 | – | 0.6 | 21 |
Fe3O4 NPs/Nafion/[Ru(bpy)3]2+ | 5 × 10-8 | 1 × 10-7 – 1 × 10-3 | 3.9 | 27 |
Fe3O4 NPs/Silica/[Ru(bpy)3]2+ | 6.5 × 10-9 | 6.9 × 10-8 – 7.3 × 10-4 | 0.5 | 26 |
SNPs/[Ru(bpy)3]2+ | 1 × 10-8 | 2.6 × 10-8 – 1.3 × 10-3 | 5.2 | 20 |
[Ru(bpy)3]2+ SNPs/chitosan | 2.8 × 10-9 | 8.5 × 10-9 – 8.1 × 10-5 | – | 28 |
[Ru(bpy)3]2+ SNPs/CNTs | 2.8 × 10-9 | 8.5 × 10-9 – 7.9 × 10-4 | – | 29 |
Nafion/CNTs/[Ru(bpy)3]2+ | 1 × 10-9 | 3 × 10-9 – 1 × 10-4 | <10 | 6 |
PSP/CNTs/[Ru(bpy)3]2+ | 6 × 10-9 | – | – | 38 |
Nafion/CNTs/TiO2/[Ru(bpy)3]2+ | 1 × 10-8 | 5 × 10-8 – 1 × 10-3 | <4 | 39 |
>© 2008 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Hazelton, S.G.; Zheng, X.; Zhao, J.X.; Pierce, D.T. Developments and Applications of Electrogenerated Chemiluminescence Sensors Based on Micro- and Nanomaterials. Sensors 2008, 8, 5942-5960. https://doi.org/10.3390/s8095942
Hazelton SG, Zheng X, Zhao JX, Pierce DT. Developments and Applications of Electrogenerated Chemiluminescence Sensors Based on Micro- and Nanomaterials. Sensors. 2008; 8(9):5942-5960. https://doi.org/10.3390/s8095942
Chicago/Turabian StyleHazelton, Sandra G., Xingwang Zheng, Julia Xiaojun Zhao, and David T. Pierce. 2008. "Developments and Applications of Electrogenerated Chemiluminescence Sensors Based on Micro- and Nanomaterials" Sensors 8, no. 9: 5942-5960. https://doi.org/10.3390/s8095942
APA StyleHazelton, S. G., Zheng, X., Zhao, J. X., & Pierce, D. T. (2008). Developments and Applications of Electrogenerated Chemiluminescence Sensors Based on Micro- and Nanomaterials. Sensors, 8(9), 5942-5960. https://doi.org/10.3390/s8095942