Identification of Tea Storage Times by Linear Discrimination Analysis and Back-Propagation Neural Network Techniques Based on the Eigenvalues of Principal Components Analysis of E-Nose Sensor Signals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electronic Nose and Data Acquisition
2.2. Experimental Samples and Storage of the Tea
2.3. Experimental Method
2.3.1. Tea Leaves Testing Sample Preparation
2.3.2. Tea Beverage and the Tea Residue Testing Sample Preparation
2.4. Data Analysis
3. Results and Discussion
3.1. The Extraction of the Original Feature Vector
- where x1–x10: response signals of each sensor at 7 s (presenting the ascending stage of the response curves),
- x11……x20 : Response signals of each sensor at 15 s (presenting the rapidly descending stage of the response curve),
- x21……x30 : Response signals of each sensor at 30 s (presenting the slowly descending stage of the response curve),
- x31……x40 : Response signals of each sensor at 60 s (presenting the stable stage of the response curve),
- x41……x50 : The maximum response signals of each sensor (the peak of each response curve),
- x51……x60 : The average values of each response curve from the 45 s to 60 s,
- x61……x70 : The integral values of each response curve in 60 seconds,
- x71……x80 : The response signals with the maximum variance.
3.2. Principal Component Analysis (PCA)
3.3. Linear Discrimination Analysis (LDA)
3.4. Back-Propagation Neural Network (BPNN)
4. Conclusions
Acknowledgments
References
- Chen, Q.S.; Zhao, J.W.; Fang, C.H.; Wang, D.M. Feasibility study on identification of green, black and oolong teas using near-infrared spectroscopy based on support vector machine (SVM). Spectrochim. Acta, Part A 2006, 66, 568–574. [Google Scholar]
- Zhang, H.; Wang, J.; Ye, S. Predictions of acidity, soluble solids and firmness of pears using electronic nose technique. J. Food Eng. 2008, 86, 370–378. [Google Scholar]
- Zhang, H.M.; Wang, J.; Tian, X.J.; Yu, H.; Yu, Y. Optimization of sensor array and detection of stored duration of wheat by electronic nose. J. Food Eng. 2007, 82, 403–408. [Google Scholar]
- Gomez, A.H.; Wang, J.; Hu, G.; Pereira, A.G. Monitoring storage shelf live of tomato using electronic nose technique. J. Food Eng. 2008, 85, 625–631. [Google Scholar]
- Rajamaki, T.; Alakomi, H.L.; Ritvanen, T.; Skytta, E.; Smolander, M.; Ahvenainen, R. Application of an electronic nose for quality assessment of modified atmosphere packaged poultry meat. Food Ctrl. 2006, 17, 5–13. [Google Scholar]
- Panigrahi, S.; Balasubramanian, S.; Gu, H.; Logue, C.; Marchello, M. Neuralnetwork-integrated electronic nose system for identification of spoiled beef. LWT-Food Sci. Tec. 2006, 39, 135–145. [Google Scholar]
- Olafsdottir, G.; Nesvadba, P.; Natale, C.D.; Careche, M. Multisensor for fish quality determination. Trends Food Sci Tech. 2004, 15, 86–93. [Google Scholar]
- Laberche, S.; Bazzo, S.; Cade, S.; Chanie, E. Shelf life determination by electronic nose: Application to milk. Sens. Actuat. B 2005, 106, 199–206. [Google Scholar]
- Parpinello, G.P.; Fabbri, A.; Domenichelli, S.; Mesisca, V.; Cavicchi, L.; Versari, A. Discrimination of apricot cultivars by gasmultisensor array using an artificial neural network. Biosyst. Eng. 2007, 97, 371–378. [Google Scholar]
- Garcıa, M.; Aleixandre, M.; Gutierrez, J.; Horrillo, M.C. Electronic nose for wine discrimination. Sens. Actuat. B 2006, 113, 911–916. [Google Scholar]
- Santos, P.J.; Fernandez, M.J.; Fontecha, J.L.; Lozano, J.; Aleixandre, M.; Garcıa, M.; Gutierrez, J.; Horrillo, M.C. SAW sensor array for wine discrimination. Sens. Actuat. B 2005, 107, 291–295. [Google Scholar]
- Dutta, R.; Hines, E.L.; Gardner, J.W.; Ksahwan, K.R.; Bhuyan, M. Tea quality prediction using a tin oxide-based electronic nose: An artificial intelligence approach. Sens. Actuat. B 2003, 94, 228–237. [Google Scholar]
- Dutta, R.; Kashwan, K.R.; Bhuyan, M.; Hines, E.L.; Gardner, J.W. Electronic nose based tea quality standardization. Neural Net. 2003, 16, 846–853. [Google Scholar]
- Bhattacharyya, N.; Seth, S.; Tudu, B. Detection of optimum fermentation time for black tea manufacturing using electronic nose. Sens. Actuat. B 2007a, 122, 627–634. [Google Scholar]
- Bhattacharyya, N.; Seth, S.; Tudu, B. Monitoring of black tea fermentation process using electronic nose. J. Food Eng. 2007b, 80, 1146–1156. [Google Scholar]
- Yu, H.C.; Wang, J. Discrimination of Longjing green-tea grade by electronic nose. Sens. Actuat. B 2007, 122, 134–140. [Google Scholar]
- Yu, H.C.; Wang, J.; Yao, C.; Zhang, H.; Yu, Y. Quality grade identification of green tea using E-nose by CA and ANN. LWT-Food Sci. Tec. 2008, 41, 1268–1273. [Google Scholar]
- Yu, H.C.; Wang, J.; Xiao, H.; Liu, M. Quality grade identification of green tea using the eigenvalues of PCA based on the E-nose signals. Sens. Actuat. B 2009, 140, 378–382. [Google Scholar]
- The Criteria of the Sensory Panel Assessment, (SB/T 10157-93). Standard of Agricultural Administration of China. 1993.
No. | eigenvalues | Contribution rate % | Accumulated contribution rate % | |
---|---|---|---|---|
Tea leaf sample | 1 | 49.25 | 48.93 | 48.93 |
2 | 27.54 | 27.36 | 76.29 | |
3 | 11.25 | 11.18 | 87.47 | |
4 | 3.18 | 3.16 | 90.63 | |
5 | 2.27 | 2.26 | 92.89 | |
Tea beverage sample | 1 | 38.10 | 42.76 | 42.76 |
2 | 18.34 | 20.58 | 63.34 | |
3 | 7.72 | 8.66 | 72.00 | |
4 | 4.86 | 5.45 | 77.45 | |
5 | 2.57 | 2.88 | 80.34 | |
Tea residue sample | 1 | 52.59 | 36.79 | 36.79 |
2 | 29.01 | 20.29 | 57.08 | |
3 | 21.26 | 14.87 | 71.95 | |
4 | 9.47 | 6.62 | 78.57 | |
5 | 4.51 | 3.15 | 81.73 |
X̄i | 0 (day) | 60 (day) | 120 (day) | 180 (day) | 240 (day) |
---|---|---|---|---|---|
Tea leaves | 9 | 2.73 | 3.93 | 6.33 | 6.8 |
Tea beverage | 8 | 10.69 | 11.92 | 10.56 | 14.2 |
Tea residue | 5.8 | 9.56 | 11.57 | 10.51 | 9.29 |
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Yu, H.; Wang, Y.; Wang, J. Identification of Tea Storage Times by Linear Discrimination Analysis and Back-Propagation Neural Network Techniques Based on the Eigenvalues of Principal Components Analysis of E-Nose Sensor Signals. Sensors 2009, 9, 8073-8082. https://doi.org/10.3390/s91008073
Yu H, Wang Y, Wang J. Identification of Tea Storage Times by Linear Discrimination Analysis and Back-Propagation Neural Network Techniques Based on the Eigenvalues of Principal Components Analysis of E-Nose Sensor Signals. Sensors. 2009; 9(10):8073-8082. https://doi.org/10.3390/s91008073
Chicago/Turabian StyleYu, Huichun, Yongwei Wang, and Jun Wang. 2009. "Identification of Tea Storage Times by Linear Discrimination Analysis and Back-Propagation Neural Network Techniques Based on the Eigenvalues of Principal Components Analysis of E-Nose Sensor Signals" Sensors 9, no. 10: 8073-8082. https://doi.org/10.3390/s91008073
APA StyleYu, H., Wang, Y., & Wang, J. (2009). Identification of Tea Storage Times by Linear Discrimination Analysis and Back-Propagation Neural Network Techniques Based on the Eigenvalues of Principal Components Analysis of E-Nose Sensor Signals. Sensors, 9(10), 8073-8082. https://doi.org/10.3390/s91008073