Electrochemical Sensors Based on Carbon Nanotubes
Abstract
:1. Introduction
2. Electrochemistry of Carbon Nanotubes
3. Carbon Nanotube-Based Electrochemical Sensors
4. Carbon Nanotube-Based Electrochemical Biosensors
5. Application of CNTs-Based Sensors to Real Sample Analysis
6. Conclusions
Acknowledgments
References
- Padigi, S.K.; Reddy, R.K.K.; Prasad, S. Carbon nanotube based aliphatic hydrocarbon sensor. Biosens. Bioelectron 2007, 22, 829–837. [Google Scholar]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar]
- Sun, G.; Liu, S.; Hua, K.; Lv, X.; Huang, L.; Wang, Y. Electrochemical chlorine sensor with multi-walled carbon nanotubes as electrocatalysts. Electrochem. Commun 2007, 9, 2436–2440. [Google Scholar]
- Zhu, L.; Yang, R.; Zhai, J.; Tian, C. Bienzymatic glucose biosensor based on co-immobilization of peroxidase and glucose oxidase on a carbon nanotubes electrode. Biosens. Bioelectron 2007, 23, 528–535. [Google Scholar]
- Santhosh, P.; Manesh, K.M.; Gopalan, A.; Lee, K.P. Novel amperometric carbon monoxide sensor based on multi-wall carbon nanotubes grafted with polydiphenylamine—fabrication and performance. Sens. Actuat. B-Chem 2007, 125, 92–99. [Google Scholar]
- Du, P.; Liu, S.; Wu, P.; Cai, C. Preparation and characterization of room temperature ionic liquid/single-walled carbon nanotube nanocomposites and their application to the direct electrochemistry of heme-containing proteins/enzymes. Electrochim. Acta 2007, 52, 6534–6547. [Google Scholar]
- Sato, N.; Okuma, H. Development of single-wall carbon nanotubes modified screen-printed electrode using a ferrocene-modified cationic surfactant for amperometric glucose biosensor applications. Sens. Actuat. B-Chem 2008, 129, 188–194. [Google Scholar]
- Banks, C.E.; Compton, R.G. New electrodes for old: from carbon nanotubes to edge plane pyrolytic graphite. Analyst 2006, 131, 15–21. [Google Scholar]
- Moore, R.R.; Banks, C.E.; Compton, R.G. Basal plane pyrolytic graphite modified electrodes: comparison of carbon nanotubes and graphite powder as electrocatalysts. Anal. Chem 2004, 76, 2677–2682. [Google Scholar]
- Banks, C.E.; Moore, R.R.; Davies, T.J.; Compton, R.G. Investigation of modified basal plane pyrolytic graphite electrodes:definitive evidence for the electrocatalytic properties of the ends of carbon nanotubes. Chem. Commun 2004, 1804–1805. [Google Scholar]
- Banks, C.E.; Davies, T.J.; Wildgoose, G.G.; Compton, R.G. Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites. Chem. Commun 2005, 829–841. [Google Scholar]
- Holloway, A.F.; Wildgoose, G.G.; Compton, R.G.; Shao, L.; Green, M.L.H. The influence of edge-plane defects and oxygen-containing surface groups on the voltammetry of acid-treated, annealed and “super-annealed” multiwalled carbon nanotubes. J. Solid State Electrochem. 2008, 12, 1337–1348. [Google Scholar]
- Chou, A.; Böcking, T.; Singh, N.K.; Gooding, J.J. Demonstration of the importance of oxygenated species at the ends of carbon nanotubes for their favourable electrochemical properties. Chem. Commun 2005, 842–844. [Google Scholar]
- Liu, J.; Chou, A.; Rahmat, W.; Paddon-Row, M.N.; Gooding, J.J. Achieving direct electrical connection to glucose oxidase using aligned single walled carbon nanotube arrays. Electroanal 2005, 17, 38–46. [Google Scholar]
- Gooding, J.J.; Chou, A.; Liu, J.; Losic, D.; Shapter, J.G.; Hibbert, D.B. The effects of the lengths and orientations of single-walled carbon nanotubes on the electrochemistry of nanotube-modified electrodes. Electrochem. Commun 2007, 9, 1677–1683. [Google Scholar]
- Chou, A.; Böcking, T.; Liu, R.; Singh, N.K.; Moran, G.; Gooding, J.J. Effect of dialysis on the electrochemical properties of acid-oxidized single-walled carbon nanotubes. J. Phys. Chem. C 2008, 112, 14131–14138. [Google Scholar]
- Pumera, M. Carbon nanotubes contain residual metal catalyst nanoparticles even after washing with nitric acid at elevated temperature because these metal nanoparticles are sheathed by several graphene sheets. Langmuir 2007, 23, 6453–6458. [Google Scholar]
- Kolodiazhnyi, T.; Pumera, M. Towards an ultrasensitive method for the determination of metal impurities in carbon nanotubes. Small 2008, 9, 1476–1484. [Google Scholar]
- Gong, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760–764. [Google Scholar]
- Lawrence, N.S.; Deo, R.P.; Wang, J. Comparison of the electrochemical reactivity of electrodes modified with carbon nanotubes from different sources. Electroanalysis 2005, 17, 65–72. [Google Scholar]
- Musameh, M.; Lawrence, N.S.; Wang, J. Electrochemical activation of carbon nanotubes. Electrochem. Commun 2005, 7, 14–18. [Google Scholar]
- Rahman, M.A.; Kumar, P.; Park, D.S.; Shim, Y.B. Electrochemical sensors based on organic conjugated polymers. Sensors 2008, 8, 118–141. [Google Scholar]
- Wang, H.S.; Li, T.H.; Jia, W.L.; Xu, H.Y. Highly selective and sensitive determination of dopamine using a Nafion/carbon nanotubes coated poly (3-methylthiophene) modified electrode. Biosens. Bioelectron 2006, 22, 664–669. [Google Scholar]
- Zhang, Y.; Cai, Y.; Su, S. Determination of dopamine in the presence of ascorbic acid by poly (styrene sulfonic acid) sodium salt/single-wall carbon nanotube modified glassy carbon electrode. Anal. Biochem 2006, 350, 285–291. [Google Scholar]
- Yin, T.; Wei, W.; Zeng, J. Selective detection of dopamine in the presence of ascorbic acid by use of glassy-carbon electrodes modified with both polyaniline film and multi-walled carbon nanotubes with incorporated β-cyclodextrin. Anal. Bioanal. Chem 2006, 386, 2087–2094. [Google Scholar]
- Angeles, G.A.; López, B.P.; Pardave, M.P.; Silva, M.T.R.; Alegret, S.; Merkoci, A. Enhanced host–guest electrochemical recognition of dopamine using cyclodextrin in the presence of carbon nanotubes. Carbon 2008, 46, 898–906. [Google Scholar]
- Li, Y.; Wang, P.; Wang, L.; Lin, X. Overoxidized polypyrrole film directed single-walled carbon nanotubes immobilization on glassy carbon electrode and its sensing applications. Biosens. Bioelectron 2007, 22, 3120–3125. [Google Scholar]
- Liu, A.; Honma, I.; Zhou, H. Simultaneous voltammetric detection of dopamine and uric acid at their physiological level in the presence of ascorbic acid using poly (acrylic acid)-multiwalled carbon-nanotube composite-covered glassy-carbon electrode. Biosens. Bioelectron 2007, 23, 74–80. [Google Scholar]
- Yogeswaran, U.; Chen, S.M. Separation and concentration effect of f-MWCNTs on electrocatalytic responses of ascorbic acid, dopamine and uric acid at f-MWCNTs incorporated with poly (neutral red) composite films. Electrochim. Acta 2007, 52, 5985–5996. [Google Scholar]
- Yogeswaran, U.; Thiagarajan, S.; Chen, S.M. Nanocomposite of functionalized multiwall carbon nanotubes with nafion, nano platinum, and nano gold biosensing film for simultaneous determination of ascorbic acid, epinephrine, and uric acid. Anal. Biochem 2007, 365, 122–131. [Google Scholar]
- Yi, H.; Zheng, D.; Hu, C.; Hu, S. Functionalized multiwalled carbon nanotubes through in situ electropolymerization of brilliant cresyl blue for determination of epinephrine. Electroanalysis 2008, 20, 1143–1146. [Google Scholar]
- Valentini, F.; Palleschi, G.; Morales, E.L.; Orlanducci, S.; Tamburri, E.; Terranova, M.L. Functionalized single-walled carbon nanotubes modified microsensors for the selective response of epinephrine in presence of ascorbic acid. Electroanal 2007, 19, 859–869. [Google Scholar]
- Zhai, X.; Wei, W.; Zeng, J.; Gong, S.; Yin, J. Layer-by-layer assembled film based on chitosan/carbon nanotubes, and its application to electrocatalytic oxidation of NADH. Microchim. Acta 2006, 154, 315–320. [Google Scholar]
- Wang, Q.; Tang, H.; Xie, Q.; Tan, L.; Zhang, Y.; Li, B.; Yao, S. Room-temperature ionic liquids/multi-walled carbon nanotubes/chitosan composite electrode for electrochemical analysis of NADH. Electrochim. Acta 2007, 52, 6630–6637. [Google Scholar]
- Radoi, A.; Compagnone, D.; Valcarcel, M.A.; Placidi, P.; Materazzi, S.; Moscone, D.; Palleschi, G. Detection of NADH via electrocatalytic oxidation at single-walled carbon nanotubes modified with Variamine blue. Electrochim. Acta 2008, 53, 2161–2169. [Google Scholar]
- Liu, A.; Watanabe, T.; Honma, I.; Wang, J.; Zhou, H. Effect of solution pH and ionic strength on the stability of poly(acrylic acid)-encapsulated multiwalled carbon nanotubes aqueous dispersion and its application for NADH sensor. Biosens. Bioelectron 2006, 22, 694–699. [Google Scholar]
- Zeng, J.; Gao, X.; Wei, W.; Zhai, X.; Yin, J.; Wu, L.; Liu, X.; Liu, K.; Gong, S. Fabrication of carbon nanotubes/poly(1,2-diaminobenzene) nanoporous composite via multipulse chronoamperometric electropolymerization process and its electrocatalytic property toward oxidation of NADH. Sens. Actuat. B-Chem 2007, 120, 595–602. [Google Scholar]
- Tu, X.; Xie, Q.; Huang, Z.; Yang, Q.; Yao, S. Synthesis and characterization of novel quinone-amine polymer/carbon nanotubes composite for sensitive electrocatalytic detection of NADH. Electroanalysis 2007, 19, 1815–1821. [Google Scholar]
- Agüí, L.; Farfal, C.P.; Sedeñno, P.Y.; Pingarrón, J.M. Poly-(3-methylthiophene)/carbon nanotubes hybrid composite-modified electrodes. Electrochim. Acta 2007, 52, 7946–7952. [Google Scholar]
- Tkac, J.; Ruzgas, T. Dispersion of single walled carbon nanotubes. Comparison of different dispersing strategies for preparation of modified electrodes toward hydrogen peroxide detection. Electrochem. Commun 2006, 8, 899–903. [Google Scholar]
- Sun, N.; Guan, L.; Shi, Z.; Li, N.; Gu, Z.; Zhu, Z.; Li, M.; Shao, Y. Ferrocene peapod modified electrodes: preparation, characterization, and mediation of H2O2. Anal. Chem 2006, 78, 6050–6057. [Google Scholar]
- Yuan, S.; He, Q.; Yao, S.; Hu, S. Mercury-free detection of europium (III) at a glassy carbon electrode modified with carbon nanotubes by adsorptive stripping voltammetry. Anal. Lett 2006, 39, 373–385. [Google Scholar]
- Suna, D.; Xie, X.; Cai, Y.; Zhang, H.; Wu, K. Voltammetric determination of Cd2+ based on the bifunctionality of single-walled carbon nanotubes-Nafion film. Anal. Chim. Acta 2007, 581, 27–31. [Google Scholar]
- Profumo, A.; Fagnoni, M.; Merli, D.; Quartarone, E.; Protti, S.; Dondi, D.; Albini, A. Multiwalled carbon nanotube chemically modified gold electrode for inorganic as speciation and Bi(III) determination. Anal. Chem 2006, 78, 4194–4199. [Google Scholar]
- Jo, S.; Jeong, H.; Bae, S.R.; Jeon, S. Modified platinum electrode with phytic acid and single-walled carbon nanotube: Application to the selective determination of dopamine in the presence of ascorbic and uric acids. Microchem. J 2008, 88, 1–6. [Google Scholar]
- Li, Z.; Chen, J.; Pan, D.; Tao, W.; Nie, L.; Yao, S. A sensitive amperometric bromate sensor based on multi-walled carbon nanotubes/phosphomolybdic acid composite film. Electrochim. Acta 2006, 51, 4255–4261. [Google Scholar]
- Wu, Y.; Ye, S.; Hu, S. Electrochemical study of lincomycin on a multi-wall carbon nanotubes modified glassy carbon electrode and its determination in tablets. J. Pharm. Biomed. Anal 2006, 41, 820–824. [Google Scholar]
- Ming, L.; Xi, X.; Chen, T.; Liu, J. Electrochemical determination of trace sudan I contamination in chili powder at carbon nanotube modified electrodes. Sensors 2008, 8, 1890–1900. [Google Scholar]
- Wang, F.; Chen, L.; Chen, X.; Hu, S. Studies on electrochemical behaviors of acyclovir and its voltammetric determination with nano-structured film electrode. Anal. Chim. Acta 2006, 576, 17–22. [Google Scholar]
- Li, C. Voltammetric determination of 2-chlorophenol using a glassy carbon electrode coated with multi-wall carbon nanotube-dicetyl phosphate film. Microchim. Acta 2007, 157, 21–26. [Google Scholar]
- Huang, K.J.; Luo, D.F.; Xie, W.Z.; Yu, Y.S. Sensitive voltammetric determination of tyrosine using multi-walled carbon nanotubes/4-aminobenzeresulfonic acid film-coated glassy carbon electrode. Colloid Surf. B 2008, 61, 176–181. [Google Scholar]
- Wu, K.; Wang, H.; Chen, F.; Hu, S. Electrochemistry and voltammetry of procaine using a carbon nanotube film coated electrode. Bioelectrochemistry 2006, 68, 144–149. [Google Scholar]
- Zhua, Y.; Zhang, Z.; Zhao, W.; Pang, D. Voltammetric behavior and determination of phenylephrine at a glassy carbon electrode modified with multi-wall carbon nanotubes. Sens. Actuat. B-Chem 2006, 119, 308–314. [Google Scholar]
- Zeng, B.; Wei, S.; Xiao, F.; Zhao, F. Voltammetric behavior and determination of rutin at a single-walled carbon nanotubes modified gold electrode. Sens. Actuat. B-Chem 2006, 115, 240–246. [Google Scholar]
- He, J.L.; Yang, Y.; Yang, X.; Liu, Y.L.; Liu, Z.H.; Shen, G.L.; Yu, R.Q. β-Cyclodextrin incorporated carbon nanotube-modified electrode as an electrochemical sensor for rutin. Sens. Actuat. B-Chem 2006, 114, 94–100. [Google Scholar]
- Wang, G.; Hu, N.; Wang, W.; Li, P.; Gu, H.; Fang, B. Preparation of carbon nanotubes/neutral red composite film modified electrode and its catalysis on rutin. Electroanalysis 2007, 19, 2329–2334. [Google Scholar]
- Zare, H.R.; Sobhani, Z.; Ardakani, M.M. Electrocatalytic oxidation of hydroxylamine at a rutin multi-wall carbon nanotubes modified glassy carbon electrode: Improvement of the catalytic activity. Sens. Actuat. B-Chem 2007, 126, 641–647. [Google Scholar]
- Hrapovic, S.; Majid, E.; Liu, Y.; Male, K.; Luong, J.H.T. Metallic nanoparticle-carbon nanotube composites for electrochemical determination of explosive nitroaromatic compounds. Anal. Chem 2006, 78, 5504–5512. [Google Scholar]
- Xiao, F.; Zhao, F.; Li, J.; Yan, R.; Yu, J.; Zeng, B. Sensitive voltammetric determination of chloramphenicol by using single-wall carbon nanotube–gold nanoparticle–ionic liquid composite film modified glassy carbon electrodes. Anal. Chim. Acta 2007, 596, 79–85. [Google Scholar]
- Lin, X.; Li, Y. A sensitive determination of estrogens with a Pt nano-clusters/multi-walled carbon nanotubes modified glassy carbon electrode. Biosens. Bioelectron 2006, 22, 253–259. [Google Scholar]
- Yang, P.; Wei, W.; Tao, C. Determination of trace thiocyanate with nano-silver coated multi-walled carbon nanotubes modified glassy carbon electrode. Anal. Chim. Acta 2007, 585, 331–336. [Google Scholar]
- Liu, H.; Wang, G.; Chen, D.; Zhang, W.; Li, C.; Fang, B. Fabrication of polythionine/NPAu/MWNTs modified electrode for simultaneous determination of adenine and guanine in DNA. Sens. Actuat. B-Chem 2008, 128, 414–421. [Google Scholar]
- Zhuang, Q.; Chen, J.; Chen, J.; Lin, X. Electrocatalytical properties of bergenin on a multi-wall carbon nanotubes modified carbon paste electrode and its determination in tablets. Sens. Actuat. B-Chem 2008, 128, 500–506. [Google Scholar]
- Shahrokhian, S.; Fotouhi, L. Carbon paste electrode incorporating multi-walled carbon nanotube/cobalt salophen for sensitive voltammetric determination of tryptophan. Sens. Actuat. B-Chem 2007, 123, 942–949. [Google Scholar]
- Shahrokhian, S.; Mehrjardi, H.R.Z. Simultaneous voltammetric determination of uric acid and ascorbic acid using a carbon-paste electrode modified with multi-walled carbon nanotubes/nafion and cobalt (II)-nitrosalophen. Electroanalysis 2007, 19, 2234–2242. [Google Scholar]
- Shahrokhian, S.; Mehrjardi, H.R.Z. Application of thionine-nafion supported on multi-walled carbon nanotube for preparation of a modified electrode in simultaneous voltammetric detection of dopamine and ascorbic acid. Electrochim. Acta 2007, 52, 6310–6317. [Google Scholar]
- Fan, S.; Xiao, F.; Liu, L.; Zhao, F.; Zeng, B. Sensitive voltammetric response of methylparathion on single-walled carbon nanotube paste coated electrodes using ionic liquid as binder. Sens. Actuat. B-Chem 2008, 132, 34–39. [Google Scholar]
- Xiao, F.; Ruan, C.; Li, J.; Liu, L.; Zhao, F.; Zeng, B. Voltammetric determination of xanthine with a single-walled carbon nanotube-ionic liquid paste modified glassy carbon electrode. Electroanalysis 2008, 20, 361–366. [Google Scholar]
- Yan, Q.; Zhao, F.; Li, G.; Zeng, B. Voltammetric determination of uric acid with a glassy carbon electrode coated by paste of multiwalled carbon nanotubes and ionic liquid. Electroanalysis 2006, 18, 1075–1080. [Google Scholar]
- Abbaspour, A.; Mirzajani, R. Electrochemical monitoring of piroxicam in different pharmaceutical forms with multi-walled carbon nanotubes paste electrode. J. Pharm. Biomed. Anal 2007, 44, 41–48. [Google Scholar]
- Li, Z.; Junfeng, S. Voltammetric behavior of urapidil and its determination at multi-wall carbon nanotube paste electrode. Talanta 2007, 73, 943–947. [Google Scholar]
- Xiao, P.; Zhao, F.; Zeng, B. Voltammetric determination of quercetin at a multi-walled carbon nanotubes paste electrode. Microchem. J 2007, 85, 244–249. [Google Scholar]
- Yang, P.; Wei1, W.; Yang, L. Simultaneous voltammetric determination of dihydroxybenzene isomers using a poly (acid chrome blue K)/carbon nanotube composite electrode. Microchim. Acta 2007, 157, 229–235. [Google Scholar]
- Wang, C.; Mao, Y.; Wang, D.; Yang, G.; Qu, Q.; Hu, X. Voltammetric determination of terbinafine in biological fluid at glassy carbon electrode modified by cysteic acid/carbon nanotubes composite film. Bioelectrochemistry 2008, 72, 107–115. [Google Scholar]
- Zhu, L.; Tian, C.; Zhai, J.; Yang, R. Sol–gel derived carbon nanotubes ceramic composite electrodes for electrochemical sensing. Sens. Actuat. B-Chem 2007, 125, 254–261. [Google Scholar]
- Wang, J.; Tangkuaram, T.; Loyprasert, S.; Alvarez, T.V.; Veerasai, W.; Kanatharana, P.; Thavarungkul, P. Electrocatalytic detection of insulin at RuOx/carbon nanotube-modified carbon electrodes. Anal. Chim. Acta 2007, 581, 1–6. [Google Scholar]
- Snider, R. M.; Ciobanu, M.; Rue, A.E.; Cliffel, D.E. A multiwalled carbon nanotube/dihydropyran composite film electrode for insulin detection in a microphysiometer chamber. Anal. Chim. Acta 2008, 609, 44–52. [Google Scholar]
- Vega, D.; Agüí, L.; Cortés, A.G.; Sedeño, P.Y.; Pingarrón, J. M. Voltammetry and amperometric detection of tetracyclines at multi-wall carbon nanotube modified electrodes. Anal. Bioanal. Chem 2007, 389, 951–958. [Google Scholar]
- Rezaei, B.; Zare, S.Z.M. Modified glassy carbon electrode with multiwall carbon nanotubes as a voltammetric sensor for determination of noscapine in biological and pharmaceutical samples. Sens. Actuat. B-Chem 2008, 134, 292–299. [Google Scholar]
- Rezaei, B.; Damiri, S. Voltammetric behavior of multi-walled carbon nanotubes modified electrode-hexacyanoferrate (II) electrocatalyst system as a sensor for determination of captopril. Sens. Actuat. B-Chem 2008, 134, 324–331. [Google Scholar]
- Buratti, S.; Brunetti, B.; Mannino, S. Amperometric detection of carbohydrates and thiols by using a glassy carbon electrode coated with Co oxide/multi-wall carbon nanotubes catalytic system. Talanta 2008, 76, 454–457. [Google Scholar]
- Wang, J. Electrochemical glucose biosensors. Chem. Rev 2008, 108, 814–825. [Google Scholar]
- Heller, A.; Feldman, B. Electrochemical glucose sensors and their applications in diabetes management. Chem. Rev 2008, 108, 2482–2505. [Google Scholar]
- Tsai, Y.C.; Li, S.C.; Liao, S.W. Electrodeposition of polypyrrole–multiwalled carbon nanotube–glucose oxidase nanobiocomposite film for the detection of glucose. Biosens. Bioelectron 2006, 22, 495–500. [Google Scholar]
- Huang, J.; Yang, Y.; Shi, H.; Song, Z.; Zhao, Z.; Anzai, J.; Osa, T.; Chen, Q. Multi-walled carbon nanotubes-based glucose biosensor prepared by a layer-by-layer technique. Mater. Sci. Eng. C 2006, 26, 113–117. [Google Scholar]
- Liu, G.; Lin, Y. Amperometric glucose biosensor based on self-assembling glucose oxidase on carbon nanotubes. Electrochem. Commun 2006, 8, 251–256. [Google Scholar]
- Zhao, H.; Ju, H. Multilayer membranes for glucose biosensing via layer-by-layer assembly of multiwall carbon nanotubes and glucose oxidase. Anal. Biochem 2006, 350, 138–144. [Google Scholar]
- Liu, Y.; Wu, S.; Ju, H.; Xu, Li. Amperometric glucose biosensing of gold nanoparticles and carbon nanotube multilayer membranes. Electroanalysis 2007, 19, 986–992. [Google Scholar]
- Xu, L.; Zhu, Y.; Tang, L.; Yang, X.; Li, C. Biosensor based on self-assembling glucose oxidase and dendrimer-encapsulated Pt nanoparticles on carbon nanotubes for glucose detection. Electroanalysis 2007, 19, 717–722. [Google Scholar]
- Shirsat, M.D.; Too, C.O.; Wallace, G.G. Amperometric glucose biosensor on layer by layer assembled carbon nanotube and polypyrrole multilayer film. Electroanalysis 2008, 20, 150–156. [Google Scholar]
- Qu, F.; Yang, M.; Chen, J.; Shen, G.; Yu, R. Amperometric biosensors for glucose based on layer-by-layer assembled functionalized carbon nanotube and poly (neutral red) multilayer film. Anal. Lett 2006, 39, 1785–1799. [Google Scholar]
- Yao, Y.L.; Shiu, K.K. Low potential detection of glucose at carbon nanotube modified glassy carbon electrode with electropolymerized poly(toluidine blue O) film. Anal. Chim. Acta 2007, 53, 278–284. [Google Scholar]
- Zhu, L.; Zhai, J.; Guo, Y.; Tian, C.; Yang, R. Amperometric glucose biosensors based on integration of glucose oxidase onto prussian blue/carbon nanotubes nanocomposite electrodes. Electroanalysis 2006, 18, 1842–1846. [Google Scholar]
- Zoua, Y.; Xiang, C.; Suna, L.; Xu, F. Amperometric glucose biosensor prepared with biocompatible material and carbon nanotube by layer-by-layer self-assembly technique. Anal. Chim. Acta 2008, 53, 4089–4095. [Google Scholar]
- Zeng, J.; Wei, W.; Liu, X.; Wang, Y.; Luo, G. A simple method to fabricate a Prussian Blue nanoparticles/carbon nanotubes/poly (1,2-diaminobenzene) based glucose biosensor. Microchim. Acta 2008, 160, 261–267. [Google Scholar]
- Manesh, K.M.; Kim, H.T.; Santhosh, P.; Gopalan, A.I.; Lee, K. A novel glucose biosensor based on immobilization of glucose oxidase into multiwall carbon nanotubes–polyelectrolyte-loaded electrospun nanofibrous membrane. Biosens. Bioelectron 2008, 23, 771–779. [Google Scholar]
- Choi, H.N.; Han, J.H.; Park, J.A.; Lee, J.M.; Lee, W.Y. Amperometric glucose biosensor based on glucose oxidase encapsulated in carbon nanotube-titania-Nafion composite film on platinized glassy carbon electrode. Electroanalysis 2007, 19, 1757–1763. [Google Scholar]
- Manso, J.; Mena, M.L.; Sedeño, P.Y.; Pingarrón, J. Electrochemical biosensors based on colloidal gold–carbon nanotubes composite electrodes. J. Electroanal. Chem 2007, 603, 1–7. [Google Scholar]
- Manso, J.; Mena, M.L.; Sedeño, P.Y.; Pingarrón, J.M. Alcohol dehydrogenase amperometric biosensor based on a colloidal gold–carbon nanotubes composite electrode. Electrochim. Acta 2008, 53, 4007–4012. [Google Scholar]
- Chu, X.; Duan, D.; Shen, G.; Yu, R. Amperometric glucose biosensor based on electrodeposition of platinum nanoparticles onto covalently immobilized carbon nanotube electrode. Talanta 2007, 71, 2040–2047. [Google Scholar]
- Zou, Y.; Xiang, C.; Suna, L.X.; Xu, F. Glucose biosensor based on electrodeposition of platinum nanoparticles onto carbon nanotubes and immobilizing enzyme with chitosan-SiO2 sol–gel. Biosens. Bioelectron 2008, 23, 1010–1016. [Google Scholar]
- Zhao, K.; Zhuang, S.; Chang, Z.; Songm, H.; Dai, L.; He, P.; Fang, Y. Amperometric glucose biosensor based on platinum nanoparticles combined aligned carbon nanotubes electrode. Electroanalysis 2007, 19, 1069–1074. [Google Scholar]
- Kang, X.; Mai, Z.; Zou, X.; Cai, P.; Mo, J. A novel glucose biosensor based on immobilization of glucose oxidase in chitosan on a glassy carbon electrode modified with gold–platinum alloy nanoparticles/multiwall carbon nanotubes. Anal. Biochem 2007, 369, 71–79. [Google Scholar]
- Yang, M.; Yang, Y.; Liu, Y.; Shen, G. Yu, R. Platinum nanoparticles-doped sol–gel/carbon nanotubes composite electrochemical sensors and biosensors. Biosens. Bioelectron 2006, 21, 1125–1131. [Google Scholar]
- Luque, G.L.; Ferreyra, N.F.; Rivas, G.A. Glucose biosensor based on the use of a carbon nanotube paste electrode modified with metallic particles. Microchim. Acta 2006, 152, 277–283. [Google Scholar]
- Yao, Y.; Shiu, K.K. Electron-transfer properties of different carbon nanotube materials, and their use in glucose biosensors. Anal. Bioanal. Chem 2007, 387, 303–309. [Google Scholar]
- Jia, J.; Guan, W.; Sim, M.; Li, Y.; Li, H. Carbon nanotubes based glucose needle-type Biosensor. Sensors 2008, 8, 1712–1718. [Google Scholar]
- Zhu, L.; Yang, R.; Zhai, J.; Tian, C. Bienzymatic glucose biosensor based on co-immobilization of peroxidase and glucose oxidase on a carbon nanotubes electrode. Biosens. Bioelectron 2007, 23, 528–535. [Google Scholar]
- Chen, L.; Lu, G. Novel amperometric biosensor based on composite film assembled by polyelectrolyte-surfactant polymer, carbon nanotubes and hemoglobin. Biosens. Bioelectron 2007, 121, 423–429. [Google Scholar]
- Chen, S.; Yuan, R.; Chai, Y.; Zhang, L.; Wang, N.; Li, X. Amperometric third-generation hydrogen peroxide biosensor based on the immobilization of hemoglobin on multiwall carbon nanotubes and gold colloidal nanoparticles. Biosens. Bioelectron 2007, 22, 1268–1274. [Google Scholar]
- Tripathi, V.S.; Kandimalla, V.B.; Ju, H. Amperometric biosensor for hydrogen peroxide based on ferrocene-bovine serum albumin and multiwall carbon nanotube modified ormosil composite. Biosens. Bioelectron 2006, 21, 1529–1535. [Google Scholar]
- Luo, X.; Killard, A.J.; Morrin, A.; Smyth, M.R. Enhancement of a conducting polymer-based biosensor using carbon nanotube-doped polyaniline. Anal. Chim. Acta 2006, 575, 39–44. [Google Scholar]
- Liu, Y.; Lei, J.; Ju, H. Amperometric sensor for hydrogen peroxide based on electric wire composed of horseradish peroxidase and toluidine blue-multiwalled carbon nanotubes nanocomposite. Talanta 2008, 74, 965–970. [Google Scholar]
- Qian, L.; Yang, X. Composite film of carbon nanotubes and chitosan for preparation of amperometric hydrogen peroxide biosensor. Talanta 2006, 68, 721–727. [Google Scholar]
- Sánchez, S.; Pumera, M.; Cabruja, E.; Fàbregas, E. Carbon nanotube/polysulfone composite screen-printed electrochemical enzyme biosensors. Analyst 2007, 132, 142–147. [Google Scholar]
- Qu, S.; Wang, J.; Kong, J.; Yang, P.; Chen, G. Magnetic loading of carbon nanotube/nano-Fe3O4 composite for electrochemical sensing. Talanta 2007, 71, 1096–1102. [Google Scholar]
- Choi, H. N.; Lyu, Y.K.; Han, J. H.; Lee, W.Y. Amperometric ethanol biosensor based on carbon nanotubes dispersed in sol – gel-derived titania – nafion composite film. Electroanalysis 2007, 19, 1524–1530. [Google Scholar]
- Santos, A.S.; Pereira, A.C.; Durán, N.; Kubota, L.T. Amperometric biosensor for ethanol based on co-immobilization of alcohol dehydrogenase and Meldola’s Blue on multi-wall carbon nanotube. Electrochim. Acta 2006, 52, 215–220. [Google Scholar]
- Du, P.; Liu, S.; Wu, P.; Cai, C. Single-walled carbon nanotubes functionalized with poly(nile blue A) and their application to dehydrogenase-based biosensors. Electrochim. Acta 2007, 53, 1811–1823. [Google Scholar]
- Liu, S.; Cai, C. Immobilization and characterization of alcohol dehydrogenase on single-walled carbon nanotubes and its application in sensing ethanol. J. Electroanal. Chem 2007, 602, 103–114. [Google Scholar]
- Yang, M.; Yang, Y.; Yang, H.; Shen, G.; Yu, R. Layer-by-layer self-assembled multilayer films of carbon nanotubes and platinum nanoparticles withpolyelectrolyte for the fabrication of biosensors. Biomaterials 2006, 27, 246–255. [Google Scholar]
- Tang, L.; Zhu, Y.; Xu, L.; Yang, X.; Li, C. Amperometric glutamate biosensor based on self-assembling glutamate dehydrogenase and dendrimer-encapsulated platinum nanoparticles onto carbon nanotubes. Talanta 2007, 73, 438–443. [Google Scholar]
- Wang, J.; Liu, G.; Lin, Y. Amperometric choline biosensor fabricated through electrostatic assembly of bienzyme/polyelectrolyte hybrid layers on carbon nanotubes. Analyst 2006, 131, 477–483. [Google Scholar]
- Song, Z.; Huang, J.D.; Wu, B.Y.; Shi, H.B.; Anzai, J.I.; Chen, Q. Amperometric aqueous sol–gel biosensor for low-potential stable choline detection at multi-wall carbon nanotube modified platinum electrode. Sens. Actuat. B-Chem 2006, 115, 626–633. [Google Scholar]
- Du, D.; Huang, X.; Cai, J.; Zhang, A.; Ding, J.; Chen, S. An amperometric acetylthiocholine sensor based on immobilization of acetylcholinesterase on a multiwall carbon nanotube–cross-linked chitosan composite. Anal. Bioanal. Chem 2007, 387, 1059–1065. [Google Scholar]
- Lee, Y.J.; Lyu, Y.K.; Choi, H.N.; Lee, W.Y. Amperometric tyrosinase biosensor based on carbon nanotube – titania – nafion composite film. Electroanalysis 2007, 19, 1048–1054. [Google Scholar]
- Santos, A.S.; Pereira, A.C.; Sotomayor, M.D.P.T.; Tarley, C.R.T.; Durán, N.; Kubota, L.T. Determination of phenolic compounds based on co-immobilization of methylene blue and HRP on multi-wall carbon nanotubes. Electroanalysis 2007, 19, 549–554. [Google Scholar]
- López, P.B.; Sola, J.; Alegret, S.; MerkoÅi, A. A carbon nanotube PVC based matrix modified with glutaraldehyde suitable for biosensor applications. Electroanalysis 2008, 20, 603–610. [Google Scholar]
- Male, K.B.; Hrapovic, S.; Santini, J.M.; Luong, J.H.T. Biosensor for arsenite using arsenite oxidase and multiwalled carbon nanotube modified electrodes. Anal. Chem 2007, 79, 7831–7837. [Google Scholar]
- Mita, D.G.; Attanasio, A.; Arduini, F.; Diano, N.; Grano, V.; Bencivenga, U.; Rossi, S.; Aminee, A.; Moscone, D. Enzymatic determination of BPA by means of tyrosinase immobilized on different carbon carriers. Biosens. Bioelectron 2007, 23, 60–65. [Google Scholar]
- Liu, G.; Lin, Y. Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve Agents. Anal. Chem 2006, 78, 835–843. [Google Scholar]
- Rahman, M.M.; Shiddiky, M.J.A.; Rahman, M.A.; Shim, Y.B. A lactate biosensor based on lactate dehydrogenase/nictotinamide adenine dinucleotide (oxidized form) immobilized on a conducting polymer/multiwall carbon nanotube composite film. Anal. Biochem 2009, 384, 159–165. [Google Scholar]
- Williams, K.A.; Veenhuizen, P.T.M.; Torre, B.G.; Eritja, R.; Dekker, C. Carbon nanotubes with DNA recognition. Nature 2002, 420, 761. [Google Scholar]
- Baker, S.E.; Cai, W.; Lasseter, T.L.; Weidkamp, K.P.; Hamers, R.J. Covalently bonded adducts of deoxyribonucleic acid (DNA) oligonucleotides with single-wall carbon nanotubes: synthesis and hybridization. Nano Lett 2002, 2, 1413–1417. [Google Scholar]
- Yang, Y.; Wang, Z.; Yang, M.; Li, J.; Zheng, F.; Shen, G.; Yu, R. Electrical detection of deoxyribonucleic acid hybridization based on carbon-nanotubes/nano zirconium dioxide/chitosan-modified electrodes. Anal. Chim. Acta 2007, 584, 268–274. [Google Scholar]
- Zhang, W.; Yang, T.; Huang, D. M.; Jiao, K. Electrochemical sensing of DNA immobilization and hybridization based on carbon nanotubes/nano zinc oxide/chitosan composite film. Chin. Chem. Lett 2008, 19, 589–591. [Google Scholar]
- Ma, H.; Zhang, L.; Pan, Y.; Zhang, K.; Zhang, Y. A Novel electrochemical DNA biosensor fabricated with layer-by-layer covalent attachment of multiwalled carbon nanotubes and gold nanoparticles. Electroanalysis 2008, 20, 1220–1226. [Google Scholar]
- Niu, S.; Zhao, M.; Hu, L.; Zhang, S. Carbon nanotube-enhanced DNA biosensor for DNA hybridization detection using rutin-Mn as electrochemical indicator. Sens. Actuat. B-Chem 2008, 135, 200–205. [Google Scholar]
- Erdem, A.; Papakonstantinou, P.; Murphy, H. Direct DNA hybridization at disposable graphite electrodes modified with carbon nanotubes. Anal. Chem 2006, 78, 6656–6659. [Google Scholar]
- Xu, Y.; Ye, X.; Yang, L.; He, P.; Fang, Y. Impedance DNA Biosensor using electropolymerized polypyrrole/multiwalled carbon nanotubes modified electrode. Electroanalysis 2006, 18, 1471–1478. [Google Scholar]
- Qi, H.; Li, X.; Chen; Pei Zhang, C. Electrochemical detection of DNA hybridization based on polypyrrole/ss-DNA/multi-wall carbon nanotubes paste electrode. Talanta 2007, 72, 1030–1035. [Google Scholar]
- Chang, Z.; Fan, H.; Zhao, K.; Chen, M.; He, P.; Fang, Y. Electrochemical DNA biosensors based on palladium nanoparticles combined with carbon nanotubes. Electroanalysis 2008, 20, 131–136. [Google Scholar]
- Yun, Y.H.; Bange, A.; Heineman, W.R.; Halsall, H.B.; Shanov, V.N.; Dong, Z.; Pixley, S.; Behbehani, M.; Jazieh, A.; Tu, Y.; Wong, D.K.Y.; Bhattacharya, A.; Schulz, M.J. A nanotube array immunosensor for direct electrochemical detection of antigen–antibody binding. Sens. Actuat. B-Chem 2007, 123, 177–182. [Google Scholar]
- Okuno, J.; Maehashi, K.; Kerman, K.; Takamura, Y.; Matsumoto, K.; Tamiya, E. Label-free immunosensor for prostate-specific antigen based on single-walled carbon nanotube array-modified microelectrodes. Biosens. Bioelectron 2007, 22, 2377–2381. [Google Scholar]
- Yu, X.; Munge, B.; Patel, V.; Jensen, G.; Bhirde, A.; Gong, J.D.; Kim, S.N.; Gillespie, J.; Gutkind, J.S.; Papadimitrakopoulos, F.; Rusling, J.F. Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer Biomarkers. J. Am. Chem. Soc 2006, 128, 11199–11205. [Google Scholar]
- Cataldo, V.; Vaze, A.; Rusling, J.F. Improved detection limit and stability of amperometric carbon nanotube-based immunosensors by crosslinking antibodies with polylysine. Electroanalysis 2008, 20, 115–122. [Google Scholar]
- Viswanathan, S.; Wu, L.; Huang, M.R.; Ho, J.A. Electrochemical immunosensor for cholera toxin using liposomes and poly (3,4-ethylenedioxythiophene)-coated carbon nanotubes. Anal. Chem 2006, 78, 1115–1121. [Google Scholar]
- Sánchez, S.; Pumera, M.; Fàbregas, E. Carbon nanotube/polysulfone screen-printed electrochemical immunosensor. Biosens. Bioelectron 2007, 23, 332–340. [Google Scholar]
- Li, N.; Yuan, R.; Chai, Y.; Chen, S.; An, H. Sensitive immunoassay of human chorionic gonadotrophin based on multi-walled carbon nanotube–chitosan matrix. Bioprocess Biosyst. Eng 2008, 31, 551–558. [Google Scholar]
- Ou, C.; Yuan, R.; Chai, Y.; Tang, M.; Chai, R.; He, X. A novel amperometric immunosensor based on layer-by-layer assembly of gold nanoparticles–multi-walled carbon nanotubes-thionine multilayer films on polyelectrolyte surface. Anal. Chim. Acta 2007, 603, 205–213. [Google Scholar]
- Aziz, M.A.; Park, S.; Jon, S.; Yang, H. Amperometric immunosensing using an indium tin oxide electrode modified with multi-walled carbon nanotube and poly (ethylene glycol)–silane copolymer. Chem. Commun 2007, 25, 2610–2612. [Google Scholar]
- Aziz, M.A.; Yang, H. Electrochemical immunosensor using the modification of an amine-functionalized indium tin oxide electrode with carboxylated single-walled carbon nanotubes. Bull. Kor. Chem. Soc 2007, 28, 1171–1174. [Google Scholar]
Electrode | Analyte | Real sample | Detection limit | Reference |
---|---|---|---|---|
GCE/P3MT/SWNTs/Nafion | dopamine | serum | 5.00 nM | [23] |
GCE/ PANI /MWNTs /β-CD | dopamine | injection | 12.0 nM | [25] |
Au/SWNTs | rutin | tablet (drug) | 10.0 nM | [54] |
GCE/ MWNTs /β-CD | rutin | urine | 0.20 μM | [55] |
GCE/ MWNTs / PtNC | estrogen | serum | 0.18 μM | [60] |
CPE/ MWCNTs/CoSal | tryptophan | serum | 0.10 μM | [64] |
GCE /SWNTs /BMIMPF6 | methylparathion | lake water /apple | 1.00 nM | [67] |
GCE /SWNTs /BMIMPF6 | xanthine | serum / urine | 2.00 nM | [68] |
GCE/ MWNTs / poly-ACBK | dihydroxybenzene | water | 0.10 μM | [73] |
GCE/ MWNTs | noscapine | drug/blood | 80.0 nM | [79] |
GCE/ MWNTs | captopril | drug/urine | 0.20 μM | [80] |
ITO/ MWCNTs/GOx/NFE | glucose | serum | 1.00 μM | [96] |
Teflon/MWCNTs/Aucoll/GOx | glucose | beverage | 17.0 μM | [98] |
Teflon/MWCNTs/Aucol/ADH | ethanol | beer | 4.70 μM | [99] |
GCE/CS/CNTs/ Au–PtNPs | glucose | blood/urine | 0.20 μM | [103] |
GCE/MWNTs/ FMC–BSA | hydrogen peroxide | milk | 0.20 μM | [111] |
CPE/MB/MWCNTs/ADH | ethanol | beverage | 5.00 μM | [118] |
Pt/MWCNTs/ChOx | choline | serum | 0.10 μM | [124] |
Au/pTTCA/MWNTs/LDH | lactate | milk/serum | 1.00 μM | [132] |
© 2009 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ahammad, A.J.S.; Lee, J.-J.; Rahman, M.A. Electrochemical Sensors Based on Carbon Nanotubes. Sensors 2009, 9, 2289-2319. https://doi.org/10.3390/s90402289
Ahammad AJS, Lee J-J, Rahman MA. Electrochemical Sensors Based on Carbon Nanotubes. Sensors. 2009; 9(4):2289-2319. https://doi.org/10.3390/s90402289
Chicago/Turabian StyleAhammad, A. J. Saleh, Jae-Joon Lee, and Md. Aminur Rahman. 2009. "Electrochemical Sensors Based on Carbon Nanotubes" Sensors 9, no. 4: 2289-2319. https://doi.org/10.3390/s90402289
APA StyleAhammad, A. J. S., Lee, J. -J., & Rahman, M. A. (2009). Electrochemical Sensors Based on Carbon Nanotubes. Sensors, 9(4), 2289-2319. https://doi.org/10.3390/s90402289