Fabrication and Characterization of a Ruthenium Nitride Membrane for Electrochemical pH Sensors
Abstract
:1. Introduction
2. Experimental
2.1. Materials and regents
2.2. Fabrication of RuN sensing membranes
2.3. Morphology of ruthenium nitride analysis
2.4. Measurement systems
3. Results and Discussion
3.1. Materials analysis of ruthenium nitride thin films
3.2. Characteristics of ruthenium nitride membrane pH sensor
3.2.1. I–V characteristic and pH sensitivity
3.3. Nonideal characteristics of ruthenium nitride membrane pH sensor
3.3.1 Temperature coefficient
- E is total potential (in mV) developed between the sensing and reference electrode;
- E0 is standard potential of the electrode at = 1 mol/L;
- R is Gas constant;
- T is temperature;
- n is valency of ion;
- F is Faraday constant;
- is activity of the hydrogen ion in solution.
3.3.2. Drift with light influence
3.3.3 Drift effect
3.3.4. Hysteresis effect
4. Conclusions
Acknowledgments
References
- Bergveld, P. Development of an ion sensitive solid-state device for neurophysiological measurements. IEEE Trans. Biomed. Eng 1970, BME-17, 70–71. [Google Scholar]
- Chou, J.C.; Hsiao, C.N. The hysteresis and drift effect of hydrogenated amorphous silicon for ISFET. Sens. Actuat. B 2000, 66, 181–183. [Google Scholar]
- Chou, J.C.; Hsiao, C.N. Drift behavior of ISFET with a-Si: H-SiO2 gate insulator. Mater. Chem. Phys 2000, 63, 270–273. [Google Scholar]
- Matsuo, T.; Esashi, M. Method of ISFET fabrication. Sens. Actuat. B 1981, 1, 77–96. [Google Scholar]
- Chiang, J.L.; Jan, S.S.; Chou, J.C.; Chen, Y.C. Study on the temperature effect, hysteresis and drift of pH-ISFET devices based on amorphous tungsten oxide. Sens. Actuat. B 2001, 76, 624–628. [Google Scholar]
- Chou, J.C.; Wang, Y.F. Preparation and study on the drift and hysteresis properties of the tin oxide gate ISFET by the sol-gel method. Sens. Actuat. B 2002, 86, 58–62. [Google Scholar]
- Jan, S.S.; Chen, Y.C.; Chou, J.C. Effect of Mg2+-dopant on the characteristics of lead titanate sensing membrane for ion-sensitive field-effect transistors. Sens. Actuat. B 2005, 108, 883–887. [Google Scholar]
- Yin, L.T.; Chou, J.C.; Chung, W.Y.; Sun, T.P.; Hsiung, S.K. Analysis of nanocrystalline coatings of tin oxides on glass by atomic force microscopy. Sens. Actuat. B 2000, 71, 106–111. [Google Scholar]
- Jakobson, C.G.; Feinsod, M.; Nemirovsky, Y. Low frequency noise and drift in Ion Sensitive Field Effect Transistors. Sens. Actuat. B 2000, 68, 134–139. [Google Scholar]
- Chou, J.C.; Wang, Y.F. Temperature characteristics of a-Si:H gate. ISFET,. Mater. Chem. Phys 2001, 70, 107–111. [Google Scholar]
- Van der Spiegel, J.; Lauks, I.; Chan, D.; Babic, P. Study on extended gate field effect transistor with tin oxide sensing membrane. Sens. Actuat. B 1983, 4, 291–298. [Google Scholar]
- Meng, L.J.; Azevedo, A.; dos Santos, M.P. Deposition and properties of titanium nitride films produced by dc reactive magnetron sputtering. Vacuum 1995, 46, 233–239. [Google Scholar]
- Sánchez, O.; Hernández-Vélez, M.; Navas, D.; Auger, M.A.; Baldonedo, J.L.; Sanz, R.; Pirota, K.R.; Vázquez, M. Functional nanostructured titanium nitride films obtained by sputtering magnetron. Thin Solid Films 2006, 495, 149–153. [Google Scholar]
- Berg, G.; Friedrich, C.; Broszeit, E.; Kloos, K.H. Comparison of foundational properties of r.f.-sputtered TiNx and HfNx coating on steel substrates. Surf. Coat. Technol 1995, 74–75, 135–142. [Google Scholar]
- Lei, Z.C.; Chou, J.C.; Chin, Y.L.; Chung, W.Y.; Sun, T.P.; Hsiung, S.K. A novel pH-sensitive material based on titanium nitride for extended gate ISFET. The 2000 Annual Conference of the Chinese Society for Material Science, I-Shou University, Kaohsiung, Taiwan, November 24–25, 2000.
- Chin, Y.L.; Chou, J.C.; Lei, Z.C.; Sun, T.P.; Chung, W.Y.; Hsiung, S.K. Titanium nitride membrane application to extended gate field effect transistor pH sensor. Jpn. J. Appl. Phys 2001, 40, 6311–6315. [Google Scholar]
- Chiang, J.L.; Chou, J.C.; Chen, Y.C.; Liau, G.S.; Cheng, C.C. Drift and hysteresis effects on AlN/SiO2 gate pH ion-sensitive field-effect transistor. Jpn. J. Appl. Phys 2003, 42, 4973–4977. [Google Scholar]
- Lin, Y.R.; Wu, S.T. Growth of aluminum nitride films at low temperature. J. Cryst. Growth 2003, 252, 433–439. [Google Scholar]
- Chiang, J.L.; Chen, Y.C.; Chou, J.C.; Cheng, C.C. Temperature effect on AlN/SiO2 gate pH-ion-sensitive field-effect transistor devices. Jpn. J. Appl. Phys 2002, 41, 541–545. [Google Scholar]
- Kishi, K.; Ooishi, Y.; Noma, H.; Ushijima, E.; Ueno, N.; Akiyama, M.; Tabaru, T. Measurement of output voltage of aluminum nitride thin film as a pressure sensor at high temperature. J. Eur. Ceram. Soc 2006, 26, 3425–3430. [Google Scholar]
- Vacandio, F.; Massiani, Y.; Gravier, P.; Rossi, S.; Bonora, P.L.; Fedrizzi, L. Improvement of the electrochemical behaviour of AlN films produced by reactive sputtering using various under-layers. Electrochem. Acta 2001, 46, 3827–3834. [Google Scholar]
- Jain, A.; Raghavan, S.; Redwing, J.M. Evolution of surface morphology and film stress during MOCVD growth of InN on sapphire substrates. J. Cryst. Growth 2004, 269, 128–133. [Google Scholar]
- Engel, P.; Schwarz, G.; Wolf, G.K. Characterization of chromium nitride films prepared by ion-beam-assisted deposition. Surf. Coat. Technol 1999, 112, 286–290. [Google Scholar]
- Gruss, K.A.; Zheleva, T.; Davis, R.F.; Watkins, T.R. Characterization of zirconium nitride coatings deposited by cathodic arc sputtering. Surf. Coat. Technol 1998, 107, 115–124. [Google Scholar]
- Tripathy, S.; Wang, L.S.; Chua, S.J. Characterization of GaN layers grown on silicon-on-insulator substrates. Appl. Surf. Sci 2006, 253, 236–240. [Google Scholar]
- Chou, J.C.; Liu, S.I.; Chen, S.H. Sensing characteristics of ruthenium films fabricated by radio frequency sputtering. Jpn. J. Appl. Phys 2005, 44, 1403–1408. [Google Scholar]
- Moreno-Armenta, M.G.; Diaz, J.; Martinez-Ruiz, A.; Soto, G. Synthesis of cubic ruthenium nitride by reactive pulsed laser ablation. J. Phys. Chem. Solids 2007, 68, 1989–1994. [Google Scholar]
- Woias, P.; Meixner, L.; Fröistl, P. Slow pH response effects of silicon nitride ISFET sensors. Sens. Actuat. B 1998, 48, 501–504. [Google Scholar]
- Garde, A.; Alderman, J.; Lane, W. Development of a pH-sensitive ISFET suitable for fabrication in a volume production environment. Sens. Actuat. B 1995, 26–27, 341–344. [Google Scholar]
- Ito, Y. Stability of ISFET and its new measurement protocol. Sens. Actuat. B 2000, 66, 53–55. [Google Scholar]
- Van Den Vlekkert, H.; Bousse, L.; De Rooij, N.F. The temperature dependence of the surface potential at the Al2O3/electrolyte interface. J. Colloid Interface Sci 1998, 122, 336–345. [Google Scholar]
- Bousse, L.; Van Den Vlekkert, H.; De Rooij, N.F. Hysteresis in Al2O3-gate ISFETs. Sens. Actuat. B 1990, 2, 103–110. [Google Scholar]
- Voorthuyzen, J.A.; Bergveld, P. Photoelectric effects in Ta2O5-SiO2-Si structures. Sens. Actuat. B 1990, 1, 350–353. [Google Scholar]
- Shin, P.K. The pH-sensing and light-induced drift properties of titanium dioxide thin films deposited by MOCVD. Appl. Surf. Sci 2003, 214, 214–221. [Google Scholar]
- Chou, J.C.; Tseng, Y.N. The temperature effect of Si3N4 gate for the commercial Beckman Φ™110 pH ISFET. Proceedings of the 1999 Annual Conference of the Chinese Society for Materials Science, Industrial Technology Research Institute, Hsinchu, Taiwan, R.O.C., December 26–27, 1999.
- Chou, J.C.; Kwan, P.K.; Chen, Z.J. SnO2separative structure extended gate H+-ion sensitive field effect transistor by sol-gel technology and the readout circuit developed by source follower. Jpan. J. Appl. Phys 2003, 42, 6790–6794. [Google Scholar]
- Zhong, Y.; Ohao, S.; Lin, T. Drift characteristics of pH-ISFET output. Chin. J. Semicond 1994, 12, 838–843. [Google Scholar]
- Liu, S.I. Study on the preparation, measurement and readout circuit of the bio-medicine sensor by the sputtering of ruthenium, M. S. Dissertation,; Institute of Electronic Engineering at National Yunlin University of Science and Technology: Yunlin, Taiwan, 2004.
- Bousse, L.; Mostarshed, S.; Van Der Schoot, B.; De Rooij, N.F. Comparison of the hysteresis of Ta2O5 and Si3N4 pH-sensing insulators. Sens. Actuat. B 1994, 17, 157–164. [Google Scholar]
Thin film | Preparation method | Drift rate (mV/h) | Device structure | pH range | Sensitivity (mV/pH) | Ref. |
---|---|---|---|---|---|---|
RuN | Sputtering | 2.15 | SEGFET | pH1-13 | 58.03 | This study |
Si3N4 | PECVD | 1.0 | ISFET | pH1-13 | 46–56 | [4] |
AlN | Sputtering | 2.43 | ISFET | pH1-11 | 48–57.25 | [17] |
TiN | Sputtering | - | EGFET | pH2-10 | 57.27 | [16] |
a-WO3 | Sputtering | 15.7 | ISFET | pH1-7 | 45–56 | [5] |
SnO2 | Sputtering | 9.1 | EGFET | pH2-12 | 58 | [10] |
SnO2 | Thermal Evaporation | 28 | ISFET | pH2-12 | 58 | [8] |
SnO2 | Sol-gel | 6.73 | ISFET | pH1-9 | 57.36 | [6] |
PMT | Sol-gel | 0.4 | ISFET | pH2-12 | 58–59 | [7] |
a-Si:H | PE-LPCVD | 6.53 | ISFET | pH1-7 | 52.3 | [3] |
Ta2O5 | PECVD | 0.5 | ISFET | pH2-12 | 56–57 | [4] |
Al2O3 | PECVD | 0.1–0.2 | ISFET | pH1-13 | 53–57 | [4] |
TiO2 | MOCVD | 11.9 | TiO2/SiO2/Si | pH3-11 | 57.2 | [34] |
Temperature (°C) | 5 | 15 | 25 | 35 | 45 | 55 |
---|---|---|---|---|---|---|
Sensitivity (mV/pH) | 55.51 | 57.47 | 58.03 | 60.52 | 62.35 | 64.04 |
pH | pH 1 | pH 4 | pH 7 | pH 10 | pH 13 |
---|---|---|---|---|---|
Drift rate (mV/h) | 1.09±0.5% | 1.69 ± 0.8% | 2.15± 1.4% | 2.51± 3.9% | 3.17± 4.2% |
Thin film | Hysteresis width (mV) | Loop path | Loop time (min) | Ref. |
---|---|---|---|---|
RuN | 2.7 | pH 7-4-7-10-7 | 10 | In this study |
9.1 | pH 7-10-7-4-7 | 10 | ||
TiN | 0.5 | pH 7-4-7-10-7 | 10 | [16] |
AlN | 1.0 | pH 7-3-7-11-7 | 16 | [17] |
Si3N4 | 2.0 | pH 7-3-7-11-7 | 1024 | [39] |
a-Si:H | 17.9 | pH 3-1-3-5-3 | - | [2] |
1.5 | pH 3-5-3-1-3 | - | ||
a-WO3 | 1.5 | pH 3-5-3-1-3 | - | [5] |
26.0 | pH 4-7-4-1-4 | 10 | ||
SnO2 | 1.3 | pH 4-1-4-7-4 | 13 | [6] |
3.74 | pH 5-1-5-9-5 | 17 | ||
PMT | 1.0 | pH 7-4-7-10-7 | 25 | [7] |
SnO2 | 9.8 | PH 7-4-7-10-7 | 10 | [10] |
© 2009 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Liao, Y.-H.; Chou, J.-C. Fabrication and Characterization of a Ruthenium Nitride Membrane for Electrochemical pH Sensors. Sensors 2009, 9, 2478-2490. https://doi.org/10.3390/s90402478
Liao Y-H, Chou J-C. Fabrication and Characterization of a Ruthenium Nitride Membrane for Electrochemical pH Sensors. Sensors. 2009; 9(4):2478-2490. https://doi.org/10.3390/s90402478
Chicago/Turabian StyleLiao, Yi-Hung, and Jung-Chuan Chou. 2009. "Fabrication and Characterization of a Ruthenium Nitride Membrane for Electrochemical pH Sensors" Sensors 9, no. 4: 2478-2490. https://doi.org/10.3390/s90402478
APA StyleLiao, Y.-H., & Chou, J.-C. (2009). Fabrication and Characterization of a Ruthenium Nitride Membrane for Electrochemical pH Sensors. Sensors, 9(4), 2478-2490. https://doi.org/10.3390/s90402478