Mid-Infrared Sensing of Organic Pollutants in Aqueous Environments
Abstract
:1. Introduction
2. Principles of Attenuated Total Reflectance (ATR)
2.1. Sensor Design Criteria
2.2. Factors Influencing Sensor Response
3. Environmental Water Monitoring
3.1. Aromatic Hydrocarbons
3.2. Halogenated Hydrocarbons
3.3. Other Organic Compounds
4. Future Work
5. Conclusions
Acknowledgments
References
- Vo-Dinh, T.; Fetzer, J.; Campiglia, A.D. Monitoring and characterization of polyaromatic compounds in the environment. Talanta 1998, 47, 943–969. [Google Scholar]
- Hwang, H.M.; Foster, G.D. Characterization of polycyclic aromatic hydrocarbons in urban stormwater runoff flowing into the tidal Anacostia River, Washington, DC, USA. Environ. Pollut 2006, 140, 416–426. [Google Scholar]
- Muir, D.C.G.; Howard, P.H. Are there other persistent organic pollutants? A challenge for environmental chemists. Environ. Sci. & Technol 2006, 40, 7157–7166. [Google Scholar]
- National Academy of Sciences. Oil in the Sea III. Available on line: http://books.nap.edu/html/oil_in_the_sea/reportbrief.pdf; (accessed June 2009).
- Koester, C.J.; Moulik, A. Trends in environmental analysis. Anal. Chem 2005, 77, 3737–3754. [Google Scholar]
- Johnson, K.S.; Needoba, J.A.; Riser, S.C.; Showers, W.J. Chemical sensor networks for the aquatic environment. Chem. Rev 2007, 107, 623–640. [Google Scholar]
- Prien, R.D. The future of chemical in situ sensors. Mar. Chem 2007, 107, 422–432. [Google Scholar]
- Pejcic, B.; Eadington, P.; Ross, A. Environmental monitoring of hydrocarbons: a chemical sensor perspective. Environ. Sci. & Technol 2007, 41, 6333–6342. [Google Scholar]
- Bryant, C.K.; LaPuma, P.T.; Hook, G.L.; Houser, E.J. Chemical agent identification by field-based attenuated total reflectance infrared detection and solid-phase microextraction. Anal. Chem 2007, 79, 2334–2340. [Google Scholar]
- Acha, V.; Meurens, M.; Naveau, H.; Agathos, S.N. ATR-FTIR sensor development for continuous on-line monitoring of chlorinated aliphatic hydrocarbons in a fixed-bed bioreactor. Biotechnol. Bioeng 2000, 68, 473–487. [Google Scholar]
- Gunzler, H.; Gremlich, H.U. IR Spectroscopy: An Introduction; Wiley-VCH: Weinheim, Germany, 2002. [Google Scholar]
- Hind, A.R.; Bhargava, S.K.; McKinnon, A. At the solid/liquid interface: FTIR/ATR—the tool of choice. Adv. Colloid Interface Sci 2001, 93, 91–114. [Google Scholar]
- Harrick, N.J. Internal Reflection Spectroscopy; Interscience Publishers: New York, NY, USA, 1967. [Google Scholar]
- Vigano, C.; Ruyssehaert, J.M.; Goormaghtigh, E. Sensor applications of attenuated total reflection infrared spectroscopy. Talanta 2005, 65, 1132–1142. [Google Scholar]
- Roy, G.; Mielczarski, J.A. Infrared detection of chlorinated hydrocarbons in water at ppb levels of concentrations. Water Res 2002, 36, 1902–1908. [Google Scholar]
- Flavin, K.; Hughes, H.; McLoughlin, P. The development of a novel smart mid-infrared sensing methodology for residual solvents. Int. J. Environ. Anal. Chem 2007, 87, 29–42. [Google Scholar]
- Gobel, R.; Krska, R.; Kellner, R.; Kastner, J.; Lambrecht, A.; Tacke, M.; Katzir, A. Enhancing the sensitivity of chemical sensors for chlorinated hydrocarbons in water by the use of tapered silver-halide fibers and tunable diode-lasers. Appl. Spectrosc 1995, 49, 1174–1177. [Google Scholar]
- Mizaikoff, B. Mid-IR fiber-optic sensors. Anal. Chem 2003, 75, 258A–267A. [Google Scholar]
- Raichlin, Y.; Katzir, A. Fiber-optic evanescent wave spectroscopy in the middle infrared. Appl. Spectrosc 2008, 62, 55A–72A. [Google Scholar]
- Karlowatz, M.; Kraft, M.; Mizalkoff, B. Simultaneous quantitative determination of benzene, toluene, and xylenes in water using mid-infrared evanescent field spectroscopy. Anal. Chem 2004, 76, 2643–2648. [Google Scholar]
- Hahn, P.; Tacke, M.; Jakusch, M.; Mizaikoff, B.; Spector, O.; Katzir, A. Detection of hydrocarbons in water by MIR evanescent-wave spectroscopy with flattened silver halide fibers. Appl. Spectrosc 2001, 55, 39–43. [Google Scholar]
- Silva, A.M.S.; Pimentel, M.F.; Raimundo, L.M.; Almeida, Y.M.B. A PVC sensing phase for determination of BTEX in water employing mid-infrared spectroscopy. Vib. Spectrosc 2008, 46, 39–44. [Google Scholar]
- Lima, K.M.G.; Raimundo, I.M.; Pimentel, M.F. Improving the detection limits of near infrared spectroscopy in the determination of aromatic hydrocarbons in water employing a silicone sensing phase. Sens. Actuat. B-Chem 2007, 125, 229–233. [Google Scholar]
- Lee, M.R.; Chang, C.M.; Dou, J.P. Determination of benzene, toluene, ethylbenzene, xylenes in water at sub-ng l−1 levels by solid-phase microextraction coupled to cryo-trap gas chromatography-mass spectrometry. Chemosphere 2007, 69, 1381–1387. [Google Scholar]
- Langenfeld, J.J.; Hawthorne, S.B.; Miller, D.J. Quantitative analysis of fuel-related hydrocarbons in surface water and wastewater samples by solid-phase microextraction. Anal. Chem 1996, 68, 144–155. [Google Scholar]
- Erbil, H.Y.; Demirel, A.L.; Avci, Y.; Mert, O. Transformation of a simple plastic into a superhydrophobic surface. Science 2003, 299, 1377–1380. [Google Scholar]
- Tan, S.X.; Xie, Q.D.; Lu, X.Y.; Zhao, N.; Zhang, X.L.; Xu, J. One step preparation of superhydrophobic polymeric surface with polystyrene under ambient atmosphere. J. Colloid Interf. Sci 2008, 322, 1–5. [Google Scholar]
- Gobel, R.; Krska, R.; Kellner, R.; Seitz, R.W.; Tomellini, S.A. Investigation of different polymers as coating materials for IR/ATR spectroscopic trace analysis of chlorinated hydrocarbons in water. Appl. Spectrosc 1994, 48, 678–683. [Google Scholar]
- Flavin, K.; Hughes, H.; Dobbyn, V.; Kirwan, P.; Murphy, K.; Steiner, H.; Mizaikoff, B.; McLoughlin, P. A comparison of polymeric materials as pre-concentrating media for use with ATR/FTIR sensing. Int. J. Environ. Anal. Chem 2006, 8, 401–415. [Google Scholar]
- Yang, J.; Tsai, S.S. Cooled internal reflection element for infrared chemical sensing of volatile to semi-volatile organic compounds in the headspace of aqueous solutions. Anal. Chim. Acta 2002, 462, 235–244. [Google Scholar]
- Grate, J.W.; Abraham, M.H. Solubility interactions and the design of chemically selective sorbent coatings for chemical sensors and arrays. Sens. Actuat. B-Chem 1991, 3, 85–111. [Google Scholar]
- Jakusch, M.; Mizaikoff, B. Selective polymer materials: Absolute determination of their sorption properties. Adv. Environ. Chem. Sensing Technol 2001, 4205, 93–98. [Google Scholar]
- Jones, Y.K.; Li, Z.H.; Johnson, M.M.; Josse, F.; Hossenlopp, J.M. ATR-FTIR spectroscopic analysis of sorption of aqueous analytes into polymer coatings used with guided SH-SAW sensors. IEEE Sens. J 2005, 5, 1175–1184. [Google Scholar]
- Gavara, R.; Hernandez, R.J.; Giacin, J. Methods to determine partition coefficient of organic compounds in water/polystyrene systems. J. Food Sci 1996, 61, 947–952. [Google Scholar]
- Howley, R.; MacCraith, B.D.; O’Dwyer, K.; Kirwan, P.; McLoughlin, P. A study of the factors affecting the diffusion of chlorinated hydrocarbons into polyisobutylene and polyethylene-co-propylene for evanescent wave sensing. Vib. Spectrosc 2003, 31, 271–278. [Google Scholar]
- Murphy, B.; Kirwan, P.; McLoughlin, P. Study of the impact of penetrant characteristics upon diffusion into Teflon membranes to further assess the performance of an ATR/FTIR sensor. Anal. Bioanal. Chem 2003, 377, 195–202. [Google Scholar]
- Gobel, R.; Seitz, R.W.; Tomellini, S.A.; Krska, R.; Kellner, R. Infrared attenuated total-reflection spectroscopic investigations of the diffusion behavior of chlorinated hydrocarbons into polymer membranes. Vib. Spectrosc 1995, 8, 141–149. [Google Scholar]
- Dobbyn, V.; Howley, R.; Kirwan, P.; McLoughlin, P. Measurement of the rates of diffusion of halomethanes into polymer films using ATR-FTIR spectroscopy. Int. J. Environ. Anal. Chem 2003, 83, 643–652. [Google Scholar]
- McLoughlin, P.; Flavin, K.; Kirwan, P.; Murphy, B.; Murphy, K. Modelling of Fickian diffusion to enhance polymer-modified sensor performance. Sens. Actuat. B-Chem 2005, 107, 170–177. [Google Scholar]
- Clement, R.; Jonquieres, A.; Sarti, I.; Sposata, M.F.; Teixidor, M.A.C.; Lochon, P. Original structure-property relationships derived from a new modeling of diffusion of pure solvents through polymer membranes. J. Membrane Sci 2004, 232, 141–152. [Google Scholar]
- McGill, R.A.; Abraham, M.H.; Grate, J.W. Choosing polymer coatings for chemical sensors. Chemtech 1994, 24, 27–37. [Google Scholar]
- Heinrich, P.; Wyzgol, R.; Schrader, B.; Hatzilazaru, A.; Lubbers, D.W. Determination of organic compounds by IR/ATR spectroscopy with polymer-coated internal reflection elements. Appl. Spectrosc 1990, 44, 1641–1646. [Google Scholar]
- Yang, J.; Huang, Y.S. IR chemical sensor for detection of aromatic compounds in aqueous solutions using alkylated polystyrene-coated ATR waveguides. Appl. Spectrosc 2000, 54, 202–208. [Google Scholar]
- Verschueren, K. Handbook of Environmental Data on Organic Chemicals; John Wiley & Sons: New York, NY, USA, 1996. [Google Scholar]
- Mizaikoff, B. Infrared optical sensors for water quality monitoring. Water Sci. Technol 2003, 47, 35–42. [Google Scholar]
- World Health Organization. Guidelines for Drinking Water Quality. Available on line: http://www.who.int/water_sanitation_health/dwq/gdwq3rev/en/; (accessed June 2009).
- Lide, D.R. (Ed.) CRC Handbook of Chemistry & Physics; Taylor & Francis: Boca Raton, FL, USA, 2006.
- Regan, F.; Walsh, F.; Walsh, J. Development of plasticised PVC sensing films for the determination of BTEX compounds in aqueous samples. Int. J. Environ. Anal. Chem 2003, 83, 621–631. [Google Scholar]
- Hylland, K.; Beyer, J.; Berntssen, M.; Klungsoyr, J.; Lang, T.; Balk, L. May organic pollutants affect fish populations in the North Sea? J. Toxicol. Environ. Health, Part A 2006, 69, 125–138. [Google Scholar]
- Zhang, Y.X.; Tao, S.; Cao, J.; Coveney, R.M., Jr. Emission of polycyclic aromatic hydrocarbons in China by county. Environ. Sci. & Technol 2007, 41, 683–687. [Google Scholar]
- Fernandez-Sanchez, J.F.; Carretero, A.S.; Cruces-Blanco, C.; Fernandez-Gutierrez, A. Highly sensitive and selective fluorescence optosensor to detect and quantify benzo[a]pyrene in water samples. Anal. Chim. Acta 2004, 506, 1–7. [Google Scholar]
- Nieuwenhuijsen, M.J.; Toledano, M.B.; Eaton, N.E.; Fawell, J.; Elliott, P. Chlorination disinfection byproducts in water and their association with adverse reproductive outcomes: a review. Occup. Environ. Med 2000, 57, 73–85. [Google Scholar]
- Kraft, M.; Mizaikoff, B. A mid-infrared sensor for monitoring of chlorinated hydrocarbons in the marine environment. Int. J. Environ. Anal. Chem 2000, 78, 367–383. [Google Scholar]
- Yang, J.; Hon, H.H. Infrared chemical sensor for detection of chlorinated phenols in aqueous solutions based on a ATR waveguide coated with structural designed polymers. J. Chinese Chem. Soc 2001, 48, 159–166. [Google Scholar]
- Yang, J.; Cheng, M.L. Development of an SPME/ATR-IR chemical sensor for detection of phenol type compounds in aqueous solutions. Analyst 2001, 126, 881–886. [Google Scholar]
- Flavin, K.; Mullowney, J.; Murphy, B.; Owens, E.; Kirwan, P.; Murphy, K.; Hughes, H.; McLoughlin, P. The development of novel organically modified sol-gel media for use with ATR/FTIR sensing. Analyst 2007, 132, 224–229. [Google Scholar]
- Yang, J.S.; Lin, H.J.; Huang, H.Y. Characterization of cyclodextrin modified infrared chemical sensors: Part II Selective and quantitative determination of aromatic acids. Anal. Chim. Acta 2005, 530, 213–220. [Google Scholar]
- Kim, S.S.; Young, C.; Mizaikoff, B. Miniaturized mid-infrared sensor technologies. Anal. Bioanal. Chem 2008, 390, 231–237. [Google Scholar]
- Kraft, M.; Jakusch, M.; Karlowatz, M.; Katzir, A.; Mizaikoff, B. New frontiers for mid-infrared sensors: Towards deep sea monitoring with a submarine FT-IR sensor system. Appl. Spectrosc 2003, 57, 591–599. [Google Scholar]
- Smith, M.J.; Kerr, A; Cowling, M.J. Effects of marine biofouling on gas sensor membrane materials. J. Environ. Monitor 2007, 9, 1378–1386. [Google Scholar]
- Scardino, A.J.; Guenther, J.; de Nys, R. Attachment point theory revisited: the fouling response to a microtextured matrix. Biofouling 2008, 24, 45–53. [Google Scholar]
- Genzer, J.; Efimenko, K. Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review. Biofouling 2006, 22, 339–360. [Google Scholar]
- Pichette, C.; Zhang, H.; Davison, W; Sauve, S. Preventing biofilm development on DGT devices using metals and antibiotics. Talanta 2007, 72, 716–722. [Google Scholar]
Method | IR Region | Detection Limit | Reference |
---|---|---|---|
ATR | Middle | 80 ppb | [20] |
Fiber optic | Middle | 1.3 ppm | [21] |
Transmittance | Middle | 6.9 ppm | [22] |
Transmittance | Near | 1.8 ppm | [23] |
Polymer | Coating Method | Film Thickness | Detection Limit | Reference |
---|---|---|---|---|
Ethylene-propylene copolymer | Drop cast followed by heating at 150°C | 4.2 μm | 80 ppb | [20] |
Poly(acrylonitrile-co-butadiene) | Spin coated | 5.1 μm | 10 ppb | [29] |
Teflon | Spin coated | 5.1 μm | 27 ppb | [16,29] |
Polyisobutylene | Drop cast | NA | 337 ppb | [30] |
Halogenated hydrocarbon | Guideline value [46] (μg/L) | Solubility [47] (g/L) |
---|---|---|
Carbon tetrachloride | 4 | 0.65 (25°C) |
1,2-Dibromo-3-chloropropane | 1 | 1.23 (20°C) |
1,2-Dibromoethane | 4 | 3.1 (20°C) |
1,2-Dichloroethane | 30 | 8.6 (25°C) |
1,2-Dichloroethene | 50 | 6.4 (cis) (25°C) 4.5 (trans) (25°C) |
Dichloromethane | 20 | 17.6 (25°C) |
1,2-Dichloropropane | 40 | 2.74 (25°C) |
1,3-Dichloropropene | 20 | 2.7 (cis) (20°C) 2.8 (trans) (20°C) |
Tetrachloroethene | 40 | 0.21 (20°C) |
Trichloroethene | 20 | 0.128 (25°C) |
Chloroform | 300 | 8.0 (25°C) |
Bromoform | 100 | 3.0 (25°C) |
© 2009 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Pejcic, B.; Myers, M.; Ross, A. Mid-Infrared Sensing of Organic Pollutants in Aqueous Environments. Sensors 2009, 9, 6232-6253. https://doi.org/10.3390/s90806232
Pejcic B, Myers M, Ross A. Mid-Infrared Sensing of Organic Pollutants in Aqueous Environments. Sensors. 2009; 9(8):6232-6253. https://doi.org/10.3390/s90806232
Chicago/Turabian StylePejcic, Bobby, Matthew Myers, and Andrew Ross. 2009. "Mid-Infrared Sensing of Organic Pollutants in Aqueous Environments" Sensors 9, no. 8: 6232-6253. https://doi.org/10.3390/s90806232
APA StylePejcic, B., Myers, M., & Ross, A. (2009). Mid-Infrared Sensing of Organic Pollutants in Aqueous Environments. Sensors, 9(8), 6232-6253. https://doi.org/10.3390/s90806232