Design and Optimize the Performance of Self-Powered Photodetector Based on PbS/TiS3 Heterostructure by SCAPS-1D
Abstract
:1. Introduction
2. Numerical Simulation and Device Structure
3. Results and Discussion
3.1. Influence of p-PbS and n-TiS3 Layer Thickness on Device Performance
3.2. Influence of Doping Concentration of p-PbS Layer and n-TiS3 Layer
3.3. Influence of the Concentration of Defect Density
3.4. Self-Powered n-TiS3/p-PbS Heterostructure Photodetector
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wu, Z.; Zhai, C.; Kim, H.; Azoulay, D.; Ng, N. Emerging Design and Characterization Guidelines for Polymer-Based Infrared Photodetectors. Acc. Chem. Res. 2018, 51, 3144–3153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Tian, J.; Wu, S.; Zhang, W.; Luo, M. A bioinspired broadband self-powered photodetector based on photo-pyroelectric-thermoelectric effect able to detect human radiation. Nano Energy 2021, 93, 106812. [Google Scholar] [CrossRef]
- Jiao, Y.; Lu, G.; Feng, Y.; Zhang, C.; Wang, W.; Wu, Y.; Chen, M.; Ma, M.; Li, J.; Yang, L.; et al. Towards high sensitivity infrared detector using Cu2CdxZn1-xSnSe4 thin film by SCAPS simulation. Sol. Energy 2021, 225, 375–381. [Google Scholar] [CrossRef]
- Clark, J.; Lanzani, G. Organic photonics for communications. Nat. Photon. 2010, 4, 438–446. [Google Scholar] [CrossRef]
- Zhang, J.; Itzler, M.A.; Zbinden, H.; Pan, J.-W. Advances in InGaAs/InP single-photon detector systems for quantum communication. Light Sci. Appl. 2015, 4, e286. [Google Scholar] [CrossRef] [Green Version]
- Tan, L.; Mohseni, H. Emerging technologies for high performance infrared detectors. Nanophotonics 2018, 7, 169–197. [Google Scholar] [CrossRef] [Green Version]
- Tian, W.; Wang, D.; Chen, L.; Li, L. Self-Powered Nanoscale Photodetectors. Small 2017, 13, 1701848. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Zhang, W.; Wei, Z.; Jiang, Q.; Deng, M.; Chai, W.; Zhu, D.; Zhang, F.; You, L.; Zhang, J. Dipole-templated homogeneous grain growth of CsPbIBr2 films for efficient self-powered, all-inorganic photodetectors. Sol. Energy 2020, 209, 371–378. [Google Scholar] [CrossRef]
- Long, M.; Wang, P.; Fang, H.; Hu, W. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 2019, 29, 1803807. [Google Scholar] [CrossRef]
- Finkman, E.; Fisher, B. Electrical transport measurements in TiS3. Solid State Commun. 1984, 50, 25–28. [Google Scholar] [CrossRef]
- Ferrer, J.; Ares, R.; Clamagirand, M.; Barawi, M.; Sánchez, C. Optical properties of titanium trisulphide (TiS3) thin films. Thin Solid Film. 2013, 535, 398–401. [Google Scholar] [CrossRef]
- Dai, J.; Zeng, X. Titanium trisulfide monolayer: Theoretical prediction of a new direct-gap semiconductor with high and anisotropic carrier mobility. Angew. Chem. 2015, 127, 7682–7686. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, N.; Pavelyev, V.; Sharma, P.; Kumar, S.; Rymzhina, A.; Mishra, P. Review of titanium trisulfide (TiS3): A novel material for next generation electronic and optical devices. Mater. Sci. Semicon. Proc. 2021, 127, 105699. [Google Scholar] [CrossRef]
- Li, L.; Lu, Y.; Zhang, Q.; Zhao, S.; Hu, Z.; Chou, S.L. Recent progress on layered cathode materials for nonaqueous rechargeable magnesium batteries. Small 2021, 17, 1902767. [Google Scholar] [CrossRef]
- Holleck, L.; Driscoll, R. Transition metal sulfides as cathodes for secondary lithium batteries—II. titanium sulfides. Electrochim. Acta 1977, 22, 647–655. [Google Scholar] [CrossRef]
- Ferrer, J.; Maciá, D.; Carcelén, V.; Ares, R.; Sánchez, C. On the photoelectrochemical properties of TiS3 films. Energy Procedia 2012, 22, 48–52. [Google Scholar] [CrossRef] [Green Version]
- Barawi, M.; Flores, E.; Ferrer, I.J.; Ares, J.R.; Sánchez, C. Titanium trisulphide (TiS3) nanoribbons for easy hydrogen photogeneration under visible light. J. Mater. Chem. A 2015, 3, 7959–7965. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, X.; Wen, Y.; Shi, L.; Chen, R.; Liu, H.; Shan, B. Titanium trisulfide monolayer as a potential thermoelectric material: A first-principles-based boltzmann transport study. ACS Appl. Mater. Interfaces 2017, 9, 2509–2515. [Google Scholar] [CrossRef]
- Morozova, V.; Korobeinikov, V.; Kurochka, V.; Titov, N.; Ovsyannikov, V. Thermoelectric properties of compressed titanium and zirconium trichalcogenides. J. Phys. Chem. C 2018, 122, 14362–14372. [Google Scholar] [CrossRef]
- Molina-Mendoza, A.J.; Barawi, M.; Biele, R.; Flores, E.; Ares, J.R.; Sánchez, C.; Rubio-Bollinger, G.; Agraït, N.; D’Agosta, R.; Ferrer, I.J. Electronic bandgap and exciton binding energy of layered semiconductor TiS3. Adv. Electron. Mater. 2015, 1, 1500126. [Google Scholar] [CrossRef] [Green Version]
- Island, O.; Buscema, M.; Barawi, M.; Clamagirand, M.; Ares, R.; Sánchez, C.; Ferrer, J.; Steele, A.; Zant, J.; Castellanos-Gomez, A. Ultrahigh photoresponse of few-layer TiS3 nanoribbon transistors. Adv. Opt. Mater. 2014, 2, 641–645. [Google Scholar] [CrossRef] [Green Version]
- Silva-Guillén, J.A.; Canadell, E.; Guinea, F.; Roldán, R. Strain tuning of the anisotropy in the optoelectronic properties of TiS3. ACS Photon. 2018, 5, 3231–3237. [Google Scholar] [CrossRef]
- Liu, L.; Cheng, Z.; Jiang, B.; Liu, Y.; Zhang, Y.; Yang, F.; Wang, H.; Yu, F.; Chu, K.; Ye, C. Optoelectronic Artificial Synapses Based on Two-Dimensional Transitional-Metal Trichalcogenide. ACS Appl. Mater. Interfaces 2021, 13, 30797–30805. [Google Scholar] [CrossRef] [PubMed]
- Talib, M.; Tabassum, R.; Abid; Islam, S.S.; Mishra, P. Improvements in the performance of a visible–NIR photodetector using horizontally aligned TiS3 nanoribbons. ACS Omega 2019, 4, 6180–6191. [Google Scholar] [CrossRef] [Green Version]
- Niu, Y.; Frisenda, R.; Flores, E.; Ares, J.R.; Jiao, W.; Perez de Lara, D.; Sánchez, C.; Wang, G.; Ferrer, J.; Castellanos-Gomez, A. Polarization-Sensitive and Broadband Photodetection Based on a Mixed-Dimensionality TiS3/Si p–n Junction. Adv. Opt. Mater. 2018, 6, 1800351. [Google Scholar] [CrossRef] [Green Version]
- Lipatov, A.; Wilson, P.M.; Shekhirev, M.; Teeter, J.D.; Netusil, R.; Sinitskii, A. Few-layered titanium trisulfide (TiS3) field-effect transistors. Nanoscale 2015, 7, 12291–12296. [Google Scholar] [CrossRef] [Green Version]
- Tian, Z.; Guo, X.; Wang, D.; Sun, D.; Zhang, S.; Bu, K.; Zhao, W.; Huang, F. Enhanced charge carrier lifetime of TiS3 photoanode by introduction of S22− vacancies for efficient photoelectrochemical hydrogen evolution. Adv. Funct. Mater. 2020, 30, 2001286. [Google Scholar] [CrossRef]
- Soedergren, S.; Hagfeldt, A.; Olsson, J.; Lindquist, S.-E. Theoretical models for theaction spectrum and the current-voltage characteristics of microporous semiconductor films in photoelectrochemical cells. J. Phys. Chem. 1994, 98, 5552–5556. [Google Scholar] [CrossRef]
- Burgelman, M.; Nollet, P.; Degrave, S. Modelling polycrystalline semiconductor solar cells. Thin Solid Films 2000, 361, 527–532. [Google Scholar] [CrossRef]
- Huang, L.; Sun, X.; Li, C.; Xu, R.; Xu, J.; Du, Y.; Wu, X.; Ni, J.; Cai, K.; Li, J.; et al. Electron transport layer-free planar perovskite solar cells: Further performance enhancement perspective from device simulation. Sol. Energy Mater. Sol. Cells 2016, 157, 1038–1047. [Google Scholar] [CrossRef]
- Decock, K.; Zabierowski, P.; Burgelman, M. Modeling metastabilities in chalcopyrite-based thin film solar cells. J. Appl. Phys. 2012, 111, 43703. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Xu, L.; Yang, C.; Guo, X.; Li, S. Design and Numerical Investigation of a Lead-Free Inorganic Layered Double Perovskite Cs4CuSb2Cl12 Nanocrystal Solar Cell by SCAPS-1D. Nanomaterials 2021, 11, 2321. [Google Scholar] [CrossRef] [PubMed]
- Karthick, S.; Velumani, S.; Bouclé, J. Experimental and SCAPS simulated formamidinium perovskite solar cells: A comparison of device performance. Sol. Energy 2020, 205, 349–357. [Google Scholar] [CrossRef]
- Huang, C.H.; Chuang, W.J. Dependence of performance parameters of CdTe solar cells on semiconductor properties studied by using SCAPS-1D. Vacuum 2015, 118, 32–37. [Google Scholar] [CrossRef]
- Basak, A.; Singh, U.P. Numerical modelling and analysis of earth abundant Sb2S3 and Sb2Se3 based solar cells using SCAPS-1D. Sol. Energy Mater. Sol. Cells 2021, 230, 111184. [Google Scholar] [CrossRef]
- Islam, S.; Sobayel, K.; Al-Kahtani, A.; Islam, M.A.; Muhammad, G.; Amin, N.; Shahiduzzaman, M.; Akhtaruzzaman, M. Defect Study and Modelling of SnX3-Based Perovskite Solar Cells with SCAPS-1D. Nanomaterials 2021, 11, 1218. [Google Scholar] [CrossRef]
- Kanoun, A.; Kanoun, B.; Merad, E.; Goumri-Said, S. Toward development of high-performance perovskite solar cells based on CH3NH3GeI3 using computational approach. Sol. Energy 2019, 182, 237–244. [Google Scholar] [CrossRef]
- Sobayel, K.; Shahinuzzaman, M.; Amin, N.; Karim, M.R.; Dar, M.A.; Gul, R.; Alghoulg, M.A.; Sopiana, K.; Hasan, A.K.M.; Akhtaruzzaman, M. Efficiency enhancement of CIGS solar cell by WS2 as window layer through numerical modelling tool. Sol. Energy 2020, 207, 479–485. [Google Scholar] [CrossRef]
- Minbashi, M.; Ghobadi, A.; Ehsani, M.H.; Dizaji, H.R.; Memarian, N. Simulation of high efficiency SnS-based solar cells with SCAPS. Sol. Energy 2018, 176, 520–525. [Google Scholar] [CrossRef]
- Buffière, M.; Harel, S.; Guillot-Deudon, C.; Arzel, L.; Barreau, N.; Kessler, J. Effect of the chemical composition of co-sputtered Zn (O, S) buffer layers on Cu (In, Ga) Se2 solar cell performance. Phys. Stat. Solidi 2015, 212, 282–290. [Google Scholar] [CrossRef]
- Agarwal, A.; Qin, Y.; Chen, B.; Blei, M.; Wu, K.; Liu, L.; Shen, X.; Wright, D.D.; Green, M.D.; Zhuang, L.; et al. Anomalous isoelectronic chalcogen rejection in 2D anisotropic vdW TiS3(1−x)Se3x trichalcogenides. Nanoscale 2018, 10, 15654–15660. [Google Scholar] [CrossRef]
- Torun, E.; Sahin, H.; Chaves, A.; Wirtz, L.; Peeters, F.M. Ab initio and semiempirical modeling of excitons and trions in monolayer TiS3. Phys. Rev. B 2018, 98, 075419. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Wang, L.; Gao, L.; Nam, D.; Li, D.; Li, K.; Zhao, Y.; Ge, C.; Cheong, H.; Song, H.; et al. 6.5% certified efficiency Sb2Se3 solar cells using PbS colloidal quantum dot film as hole-transporting layer. ACS Energy Lett. 2017, 2, 2125–2132. [Google Scholar] [CrossRef]
- Choi, W.; Cho, M.Y.; Konar, A.; Lee, J.H.; Cha, G.B.; Hong, S.C.; Kim, S.; Kim, Y.; Jena, D.; Joo, J.; et al. High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv. Mater. 2012, 24, 5832–5836. [Google Scholar] [CrossRef]
- Binda, M.; Iacchetti, A.; Natali, D.; Beverina, L.; Sassi, M.; Sampietro, M. High detectivity squaraine-based near infrared photodetector with nA/cm2 dark current. Appl. Phys. Lett. 2011, 98, 073303. [Google Scholar] [CrossRef]
- Yu, H.; Shu, S.; Xiong, X.; Xie, Q. Simulation design and performance study of Graphene/Mg2Si/Si heterojunction photodetector. Appl. Phys. A 2021, 127, 548. [Google Scholar] [CrossRef]
- Wu, E.; Wu, D.; Jia, C.; Wang, Y.; Yuan, H.; Zeng, L.; Xu, T.; Shi, Z.; Tian, Y.; Li, X. In situ fabrication of 2D WS2/Si type-II heterojunction for self-powered broadband photodetector with response up to mid-infrared. ACS Photon. 2019, 6, 565–572. [Google Scholar] [CrossRef] [Green Version]
Properties | FTO | PbS | TiS3 |
---|---|---|---|
Thickness (nm) | 300 | 200 | 500 |
Band gap (eV) | 3.6 | 1.4 | 1.0 |
Electron affinity (eV) | 4.0 | 4.35 | 4.8 |
Dielectric permittivity (relative) | 9.0 | 10 | 9.98 |
Electron thermal velocity (cm/s) | 1 × 107 | 1 × 107 | 1 × 107 |
Hole thermal velocity (cm/s) | 1 × 107 | 1 × 107 | 1 × 107 |
CB effective DOS (cm−3) | 2.2 × 1018 | 1 × 1018 | 1 × 1018 |
VB effective DOS (cm−3) | 1.8 × 1019 | 1 × 1018 | 1.8 × 1019 |
Donor density ND (cm−3) | 1 × 1017 | 0 | 1 × 1018 |
Acceptor density NA (cm−3) | 0 | 1 × 1017 | 0 |
Electron Mobility (cm2/Vs) | 100 | 50 | 200 |
Hole mobility (cm2/Vs) | 25 | 10 | 94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, H.; Liu, L. Design and Optimize the Performance of Self-Powered Photodetector Based on PbS/TiS3 Heterostructure by SCAPS-1D. Nanomaterials 2022, 12, 325. https://doi.org/10.3390/nano12030325
Yao H, Liu L. Design and Optimize the Performance of Self-Powered Photodetector Based on PbS/TiS3 Heterostructure by SCAPS-1D. Nanomaterials. 2022; 12(3):325. https://doi.org/10.3390/nano12030325
Chicago/Turabian StyleYao, Huizhen, and Lai Liu. 2022. "Design and Optimize the Performance of Self-Powered Photodetector Based on PbS/TiS3 Heterostructure by SCAPS-1D" Nanomaterials 12, no. 3: 325. https://doi.org/10.3390/nano12030325
APA StyleYao, H., & Liu, L. (2022). Design and Optimize the Performance of Self-Powered Photodetector Based on PbS/TiS3 Heterostructure by SCAPS-1D. Nanomaterials, 12(3), 325. https://doi.org/10.3390/nano12030325