Liquid Metal Based Nano-Composites for Printable Stretchable Electronics
Abstract
:1. Introduction
2. Liquid Metal-Based Nano-Composites
2.1. Liquid Metal-Oxide/Metal Composites
2.2. Liquid Metal-Ligand Molecule Composites
3. The Printable Stretchable Electronics of LM-Based Nano-Composites
3.1. The Printing of LM-Based Nano-Composites
3.2. The Application of Printable LM-Based Stretchable Electronics
4. Summary and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Wu, Y.; Zhou, Y.; Asghar, W.; Liu, Y.; Li, F.; Sun, D.; Hu, C.; Wu, Z.; Shang, J.; Yu, Z.; et al. Liquid Metal-Based Strain Sensor with Ultralow Detection Limit for Human—Machine Interface Applications. Adv. Intell. Syst. 2021, 3, 2000235. [Google Scholar] [CrossRef]
- Dickey, M.D. Stretchable and Soft Electronics using Liquid Metals. Adv. Mater. 2017, 29, 1606425. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Shang, J.; Niu, X.; Liu, Y.; Liu, G.; Dhanapal, P.; Zheng, Y.; Yang, H.; Wu, Y.; Zhou, Y.; et al. A Composite Elastic Conductor with High Dynamic Stability Based on 3D-Calabash Bunch Conductive Network Structure for Wearable Devices. Adv. Electron. Mater. 2018, 4, 1800137. [Google Scholar] [CrossRef]
- Liu, T.; Sen, P.; Kim, C.-J. Characterization of Nontoxic Liquid-Metal Alloy Galinstan for Applications in Microdevices. J. Microelectromech. Syst. 2012, 21, 443–450. [Google Scholar] [CrossRef] [Green Version]
- Ren, L.; Xu, X.; Du, Y.; Kalantar-Zadeh, K.; Dou, S.X. Liquid metals and their hybrids as stimulus–responsive smart materials. Mater. Today 2020, 34, 92–114. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, J.; Luo, Z.; Zhang, J.; Li, L.; Su, Y.; Gao, X.; Li, Y.; Tang, W.; Cao, C.; et al. Superelastic, Sensitive, and Low Hysteresis Flexible Strain Sensor Based on Wave-Patterned Liquid Metal for Human Activity Monitoring. ACS Appl. Mater. Interfaces 2020, 12, 22200–22211. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, L.; Deng, W.; Jin, L.; Chun, F.; Pan, H.; Gu, B.; Zhang, H.; Lv, Z.; Yang, W.; et al. Self-Powered Acceleration Sensor Based on Liquid Metal Triboelectric Nanogenerator for Vibration Monitoring. ACS Nano 2017, 11, 7440–7446. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, B.; Handschuh-Wang, S.; Zhou, X. Liquid Metal-Based Soft Microfluidics. Small 2020, 16, 1903841. [Google Scholar] [CrossRef]
- Ma, Z.; Huang, Q.; Xu, Q.; Zhuang, Q.; Zhao, X.; Yang, Y.; Qiu, H.; Yang, Z.; Wang, C.; Chai, Y.; et al. Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics. Nat. Mater. 2021, 20, 859–868. [Google Scholar] [CrossRef]
- Tang, D.; Yu, Z.; He, Y.; Asghar, W.; Zheng, Y.N.; Li, F.; Shi, C.; Zarei, R.; Liu, Y.; Shang, J.; et al. Strain-Insensitive Elastic Surface Electromyographic (sEMG) Electrode for Efficient Recognition of Exercise Intensities. Micromachines 2020, 11, 239. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Li, M.; Xu, J.; You, J.; Yang, Z.; Li, C. Evaporation-induced sintering of liquid metal droplets with biological nanofibrils for flexible conductivity and responsive actuation. Nat. Commun. 2019, 10, 3514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shu, J.; Ge, D.A.; Wang, E.; Ren, H.; Cole, T.; Tang, S.Y.; Li, X.; Zhou, X.; Li, R.; Jin, H.; et al. A Liquid Metal Artificial Muscle. Adv. Mater. 2021, 33, 2103062. [Google Scholar] [CrossRef] [PubMed]
- Bark, H.; Tan, M.W.M.; Thangavel, G.; Lee, P.S. Deformable High Loading Liquid Metal Nanoparticles Composites for Thermal Energy Management. Adv. Energy Mater. 2021, 11, 2101387. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, L.; Ding, Y.; Goodenough, J.B.; Yu, G. Room-temperature liquid metal and alloy systems for energy storage applications. Energy Environ. Sci. 2019, 12, 2605–2619. [Google Scholar] [CrossRef]
- Li, S.; Cao, P.; Li, F.; Asghar, W.; Wu, Y.; Xiao, H.; Liu, Y.; Zhou, Y.; Yang, H.; Zhang, Y.; et al. Self-powered stretchable strain sensors for motion monitoring and wireless control. Nano Energy 2022, 92, 106754. [Google Scholar] [CrossRef]
- Chen, S.; Liu, J. Pervasive liquid metal printed electronics: From concept incubation to industry. iScience 2021, 24, 102026. [Google Scholar] [CrossRef]
- Handschuh-Wang, S.; Zhu, L.; Gan, T.; Wang, T. Is There a Relationship between Surface Wettability of Structured Surfaces and Lyophobicity toward Liquid Metals? Materials 2020, 13, 2283. [Google Scholar] [CrossRef]
- Silva, A.F.; Paisana, H.; Fernandes, T.; Góis, J.; Serra, A.; Coelho, J.F.J.; Almeida, A.T.; Majidi, C.; Tavakoli, M. High Resolution Soft and Stretchable Circuits with PVA/Liquid-Metal Mediated Printing. Adv. Mater. Technol. 2020, 5, 2000343. [Google Scholar] [CrossRef]
- Watson, A.M.; Cook, A.B.; Tabor, C.E. Electrowetting-Assisted Selective Printing of Liquid Metal. Adv. Eng. Mater. 2019, 21, 1900397. [Google Scholar] [CrossRef]
- Malakooti, M.H.; Bockstaller, M.R.; Matyjaszewski, K.; Majidi, C. Liquid metal nanocomposites. Nanoscale Adv. 2020, 2, 2668–2677. [Google Scholar] [CrossRef]
- Sutter, P.W.; Sutter, E.A. Dispensing and surface-induced crystallization of zeptolitre liquid metal-alloy drops. Nat. Mater. 2007, 6, 363–366. [Google Scholar] [CrossRef] [PubMed]
- Yun, G.; Tang, S.Y.; Sun, S.; Yuan, D.; Zhao, Q.; Deng, L.; Yan, S.; Du, H.; Dickey, M.D.; Li, W. Liquid metal-filled magnetorheological elastomer with positive piezoconductivity. Nat. Commun. 2019, 10, 1300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markvicka, E.J.; Bartlett, M.D.; Huang, X.; Majidi, C. An autonomously electrically self-healing liquid metal-elastomer composite for robust soft-matter robotics and electronics. Nat. Mater. 2018, 17, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Ghasemian, M.B.; Zavabeti, A.; Mousavi, M.; Murdoch, B.J.; Christofferson, A.J.; Meftahi, N.; Tang, J.; Han, J.; Jalili, R.; Allioux, F.M.; et al. Doping Process of 2D Materials Based on the Selective Migration of Dopants to the Interface of Liquid Metals. Adv. Mater. 2021, 33, 2104793. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Phongpreecha, T.; Nicholas, J.D.; Qi, Y. Enhanced liquid metal wetting on oxide surfaces via patterned particles. Acta Mater. 2020, 199, 551–560. [Google Scholar] [CrossRef]
- Zheng, R.; Peng, Z.; Fu, Y.; Deng, Z.; Liu, S.; Xing, S.; Wu, Y.; Li, J.; Liu, L. A Novel Conductive Core–Shell Particle Based on Liquid Metal for Fabricating Real-Time Self-Repairing Flexible Circuits. Adv. Funct. Mater. 2020, 30, 1910524. [Google Scholar] [CrossRef]
- David, R.; Miki, N. Synthesis of sub-micrometer biphasic Au-AuGa2/liquid metal frameworks. Nanoscale 2019, 11, 21419–21432. [Google Scholar] [CrossRef]
- Li, H.; Abbasi, R.; Wang, Y.; Allioux, F.M.; Koshy, P.; Idrus-Saidi, S.A.; Rahim, M.A.; Yang, J.; Mousavi, M.; Tang, J.; et al. Liquid metal-supported synthesis of cupric oxide. J. Mater. Chem. C 2020, 8, 1656–1665. [Google Scholar] [CrossRef]
- Guo, R.; Sun, X.; Yuan, B.; Wang, H.; Liu, J. Magnetic Liquid Metal (Fe-EGaIn) Based Multifunctional Electronics for Remote Self-Healing Materials, Degradable Electronics, and Thermal Transfer Printing. Adv. Sci. 2019, 6, 1901478. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.-H.; Deng, Z.; Peng, Z.; Zheng, R.; Liu, S.; Xing, S.; Li, J.; Huang, D.; Liu, L. A Novel Strategy for Preparing Stretchable and Reliable Biphasic Liquid Metal. Adv. Funct. Mater. 2019, 29, 1903840. [Google Scholar] [CrossRef]
- Chang, H.; Zhang, P.; Guo, R.; Cui, Y.; Hou, Y.; Sun, Z.; Rao, W. Recoverable Liquid Metal Paste with Reversible Rheological Characteristic for Electronics Printing. ACS Appl. Mater. Interfaces 2020, 12, 14125–14135. [Google Scholar] [CrossRef] [PubMed]
- Farrell, Z.J.; Tabor, C. Control of Gallium Oxide Growth on Liquid Metal Eutectic Gallium/Indium Nanoparticles via Thiolation. Langmuir 2018, 34, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ji, X.; Liang, J. Rupture stress of liquid metal nanoparticles and their applications in stretchable conductors and dielectrics. npj Flex. Electron. 2021, 5, 11. [Google Scholar] [CrossRef]
- Uppal, A.; Ralphs, M.; Kong, W.; Hart, M.; Rykaczewski, K.; Wang, R.Y. Pressure-Activated Thermal Transport via Oxide Shell Rupture in Liquid Metal Capsule Beds. ACS Appl. Mater. Interfaces 2020, 12, 2625–2633. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Wang, S.; Zhang, M.; Li, T.; Hu, G.; Kong, D. Fully solution processed liquid metal features as highly conductive and ultrastretchable conductors. npj Flex. Electron. 2021, 5, 25. [Google Scholar] [CrossRef]
- Gan, T.; Handschuh-Wang, S.; Shang, W.; Shen, J.; Zhu, L.; Xiao, Q.; Hu, S.; Zhou, X. Liquid Metal-Mediated Mechanochemical Polymerization. Macromol. Rapid Commun. 2019, 40, 1900537. [Google Scholar] [CrossRef]
- Hohman, J.N.; Kim, M.; Wadsworth, G.A.; Bednar, H.R.; Jiang, J.; LeThai, M.A.; Weiss, P.S. Directing substrate morphology via self-assembly: Ligand-mediated scission of gallium-indium microspheres to the nanoscale. Nano Lett. 2011, 11, 5104–5110. [Google Scholar] [CrossRef]
- Yan, J.; Malakooti, M.H.; Lu, Z.; Wang, Z.; Kazem, N.; Pan, C.; Bockstaller, M.R.; Majidi, C.; Matyjaszewski, K. Solution processable liquid metal nanodroplets by surface-initiated atom transfer radical polymerization. Nat. Nanotechnol. 2019, 14, 684–690. [Google Scholar] [CrossRef]
- Zhang, Z.; Tang, L.; Chen, C.; Yu, H.; Bai, H.; Wang, L.; Qin, M.; Feng, Y.; Feng, W. Liquid metal-created macroporous composite hydrogels with self-healing ability and multiple sensations as artificial flexible sensors. J. Mater. Chem. A 2021, 9, 875–883. [Google Scholar] [CrossRef]
- Oh, J.; Kim, S.; Lee, S.; Jeong, S.; Ko, S.H.; Bae, J. A Liquid Metal Based Multimodal Sensor and Haptic Feedback Device for Thermal and Tactile Sensation Generation in Virtual Reality. Adv. Funct. Mater. 2020, 31, 2007772. [Google Scholar] [CrossRef]
- Li, H.; Qiao, R.; Davis, T.P.; Tang, S.Y. Biomedical Applications of Liquid Metal Nanoparticles: A Critical Review. Biosensors 2020, 10, 196. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, W.; Wang, H. Synthesis and application of core-shell liquid metal particles: A perspective of surface engineering. Mater. Horiz. 2021, 8, 56–77. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Guo, R.; Sun, Z.; Wang, H.; Hou, Y.; Wang, Q.; Rao, W.; Liu, J. Direct Writing and Repairable Paper Flexible Electronics Using Nickel-Liquid Metal Ink. Adv. Mater. Interfaces 2018, 5, 1800571. [Google Scholar] [CrossRef]
- Mei, S.; Gao, Y.; Deng, Z.; Liu, J. Thermally Conductive and Highly Electrically Resistive Grease Through Homogeneously Dispersing Liquid Metal Droplets Inside Methyl Silicone Oil. J. Electron. Packag. 2014, 136, 011009. [Google Scholar] [CrossRef]
- Tang, S.Y.; Qiao, R.; Lin, Y.; Li, Y.; Zhao, Q.; Yuan, D.; Yun, G.; Guo, J.; Dickey, M.D.; Huang, T.J.; et al. Functional Liquid Metal Nanoparticles Produced by Liquid-Based Nebulization. Adv. Mater. Technol. 2018, 4, 1800420. [Google Scholar] [CrossRef] [Green Version]
- Yu, F.; Xu, J.; Li, H.; Wang, Z.; Sun, L.; Deng, T.; Tao, P.; Liang, Q. Ga-In liquid metal nanoparticles prepared by physical vapor deposition. Prog. Nat. Sci. Mater. Int. 2018, 28, 28–33. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Z.; Zhu, D.; Handschuh-Wang, S.; Liang, S.; Yang, J.; Kong, T.; Zhou, X.; Liu, Y.; Zhou, X. Liquid metal droplets with high elasticity, mobility and mechanical robustness. Mater. Horiz. 2017, 4, 591–597. [Google Scholar] [CrossRef]
- Veerapandian, S.; Jang, W.; Seol, J.B.; Wang, H.; Kong, M.; Thiyagarajan, K.; Kwak, J.; Park, G.; Lee, G.; Suh, W.; et al. Hydrogen-doped viscoplastic liquid metal microparticles for stretchable printed metal lines. Nat. Mater. 2021, 20, 533–540. [Google Scholar] [CrossRef]
- Wang, Y.; Duan, W.; Zhou, C.; Liu, Q.; Gu, J.; Ye, H.; Li, M.; Wang, W.; Ma, X. Phoretic Liquid Metal Micro/Nanomotors as Intelligent Filler for Targeted Microwelding. Adv. Mater. 2019, 31, 1905067. [Google Scholar] [CrossRef]
- Castilla-Amoros, L.; Stoian, D.; Pankhurst, J.R.; Varandili, S.B.; Buonsanti, R. Exploring the Chemical Reactivity of Gallium Liquid Metal Nanoparticles in Galvanic Replacement. J. Am. Chem. Soc. 2020, 142, 19283–19290. [Google Scholar] [CrossRef]
- David, R.; Miki, N. Tunable Noble Metal Thin Films on Ga Alloys via Galvanic Replacement. Langmuir 2018, 34, 10550–10559. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Zhao, X.; Li, J.; Guo, R.; Zhou, Y.; Liu, J. Gallium-Based Liquid Metal Amalgams: Transitional-State Metallic Mixtures (TransM(2)ixes) with Enhanced and Tunable Electrical, Thermal, and Mechanical Properties. ACS Appl. Mater. Interfaces 2017, 9, 35977–35987. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Zhao, X.; Li, J.; Zhou, Y.; Liu, J. Liquid Metal Phagocytosis: Intermetallic Wetting Induced Particle Internalization. Adv. Sci. 2017, 4, 1700024. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Yu, D.; Xia, Z.; Wan, H.; Liu, C.; Yin, T.; He, Z. Ferromagnetic Liquid Metal Putty-Like Material with Transformed Shape and Reconfigurable Polarity. Adv. Mater. 2020, 32, 2000827. [Google Scholar] [CrossRef] [PubMed]
- Hajalilou, A.; Silva, A.F.; Lopes, P.A.; Parvini, E.; Majidi, C.; Tavakoli, M. Biphasic Liquid Metal Composites for Sinter-Free Printed Stretchable Electronics. Adv. Mater. Interfaces 2022, 9, 2101913. [Google Scholar] [CrossRef]
- Lin, Y.; Cooper, C.; Wang, M.; Adams, J.J.; Genzer, J.; Dickey, M.D. Handwritten, Soft Circuit Boards and Antennas Using Liquid Metal Nanoparticles. Small 2015, 11, 6397–6403. [Google Scholar] [CrossRef]
- Yamaguchi, A.; Mashima, Y.; Iyoda, T. Reversible Size Control of Liquid-Metal Nanoparticles under Ultrasonication. Angew. Chem. Int. Ed. 2015, 54, 12809–12813. [Google Scholar] [CrossRef]
- Ren, L.; Zhuang, J.; Casillas, G.; Feng, H.; Liu, Y.; Xu, X.; Liu, Y.; Chen, J.; Du, Y.; Jiang, L.; et al. Nanodroplets for Stretchable Superconducting Circuits. Adv. Funct. Mater. 2016, 26, 8111–8118. [Google Scholar] [CrossRef]
- Tas, A.C.; Majewski, P.J.; Aldinger, F. Synthesis of Gallium Oxide Hydroxide Crystals in Aqueous Solutions with or without Urea and Their Calcination Behavior. J. Am. Ceram. Soc. 2002, 85, 1421–1429. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Liu, Y.; Genzer, J.; Dickey, M.D. Shape-transformable liquid metal nanoparticles in aqueous solution. Chem. Sci. 2017, 8, 3832–3837. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, Q.; Bi, S.; Zhang, W.; Zhou, H.; Jiang, X. Water-processable liquid metal nanoparticles by single-step polymer encapsulation. Nanoscale 2020, 12, 13731–13741. [Google Scholar] [CrossRef] [PubMed]
- Liao, M.; Liao, H.; Ye, J.; Wan, P.; Zhang, L. Polyvinyl Alcohol-Stabilized Liquid Metal Hydrogel for Wearable Transient Epidermal Sensors. ACS Appl. Mater. Interfaces 2019, 11, 47358–47364. [Google Scholar] [CrossRef] [PubMed]
- Gan, T.; Shang, W.; Handschuh-Wang, S.; Zhou, X. Light-Induced Shape Morphing of Liquid Metal Nanodroplets Enabled by Polydopamine Coating. Small 2019, 15, 1804838. [Google Scholar] [CrossRef] [PubMed]
- Centurion, F.; Saborio, M.G.; Allioux, F.M.; Cai, S.; Ghasemian, M.B.; Kalantar-Zadeh, K.; Rahim, M.A. Liquid metal dispersion by self-assembly of natural phenolics. Chem. Commun. 2019, 55, 11291–11294. [Google Scholar] [CrossRef]
- Rahim, M.A.; Centurion, F.; Han, J.; Abbasi, R.; Mayyas, M.; Sun, J.; Christoe, M.J.; Esrafilzadeh, D.; Allioux, F.M.; Ghasemian, M.B.; et al. Polyphenol-Induced Adhesive Liquid Metal Inks for Substrate—Independent Direct Pen Writing. Adv. Funct. Mater. 2020, 31, 2007336. [Google Scholar] [CrossRef]
- Harrington, M.J.; Masic, A.; Holten-Andersen, N.; Waite, J.H.; Fratzl, P. Iron-clad fibers: A metal-based biological strategy for hard flexible coatings. Science 2010, 328, 216–220. [Google Scholar] [CrossRef] [Green Version]
- Farrell, Z.J.; Thrasher, C.J.; Flynn, A.E.; Tabor, C.E. Silanized Liquid-Metal Nanoparticles for Responsive Electronics. ACS Appl. Nano Mater. 2020, 3, 6297–6303. [Google Scholar] [CrossRef]
- Neumann, T.V.; Dickey, M.D. Liquid Metal Direct Write and 3D Printing: A Review. Adv. Mater. Technol. 2020, 5, 2000070. [Google Scholar] [CrossRef]
- Boley, J.W.; White, E.L.; Kramer, R.K. Mechanically sintered gallium-indium nanoparticles. Adv. Mater. 2015, 27, 2355–2360. [Google Scholar] [CrossRef]
- Guo, R.; Wang, X.; Chang, H.; Yu, W.; Liang, S.; Rao, W.; Liu, J. Ni-GaIn Amalgams Enabled Rapid and Customizable Fabrication of Wearable and Wireless Healthcare Electronics. Adv. Eng. Mater. 2018, 20, 1800054. [Google Scholar] [CrossRef]
- Dickey, M.D.; Chiechi, R.C.; Larsen, R.J.; Weiss, E.A.; Weitz, D.A.; Whitesides, G.M. Eutectic Gallium-Indium (EGaIn): A Liquid Metal Alloy for the Formation of Stable Structures in Microchannels at Room Temperature. Adv. Funct. Mater. 2008, 18, 1097–1104. [Google Scholar] [CrossRef]
- Tabatabai, A.; Fassler, A.; Usiak, C.; Majidi, C. Liquid-phase gallium-indium alloy electronics with microcontact printing. Langmuir 2013, 29, 6194–6200. [Google Scholar] [CrossRef] [PubMed]
- Park, T.H.; Kim, J.H.; Seo, S. Facile and Rapid Method for Fabricating Liquid Metal Electrodes with Highly Precise Patterns via One-Step Coating. Adv. Funct. Mater. 2020, 30, 2003694. [Google Scholar] [CrossRef]
- Gozen, B.A.; Tabatabai, A.; Ozdoganlar, O.B.; Majidi, C. High-density soft-matter electronics with micron-scale line width. Adv. Mater. 2014, 26, 5211–5216. [Google Scholar] [CrossRef]
- Sun, Y.C.; Boero, G.; Brugger, J. Stretchable Conductors Fabricated by Stencil Lithography and Centrifugal Force-Assisted Patterning of Liquid Metal. ACS Appl. Electron. Mater. 2021, 3, 5423–5432. [Google Scholar] [CrossRef]
- Kim, M.G.; Brown, D.K.; Brand, O. Nanofabrication for all-soft and high-density electronic devices based on liquid metal. Nat. Commun. 2020, 11, 1002. [Google Scholar] [CrossRef] [Green Version]
- Ozutemiz, K.B.; Wissman, J.; Ozdoganlar, O.B.; Majidi, C. EGaIn–Metal Interfacing for Liquid Metal Circuitry and Microelectronics Integration. Adv. Mater. Interfeces 2018, 5, 1701596. [Google Scholar] [CrossRef]
- Daalkhaijav, U.; Yirmibesoglu, O.D.; Walker, S.; Mengüç, Y. Rheological Modification of Liquid Metal for Additive Manufacturing of Stretchable Electronics. Adv. Mater. Technol. 2018, 3, 1700351. [Google Scholar] [CrossRef]
- Neumann, T.V.; Facchine, E.G.; Leonardo, B.; Khan, S.; Dickey, M.D. Direct write printing of a self-encapsulating liquid metal-silicone composite. Soft Matter 2020, 16, 6608–6618. [Google Scholar] [CrossRef]
- Wu, P.; Wang, Z.; Yao, X.; Fu, J.; He, Y. Recyclable conductive nanoclay for direct in situ printing flexible electronics. Mater. Horiz. 2021, 8, 2006–2017. [Google Scholar] [CrossRef]
- Ma, B.; Xu, C.; Chi, J.; Chen, J.; Zhao, C.; Liu, H. A Versatile Approach for Direct Patterning of Liquid Metal Using Magnetic Field. Adv. Funct. Mater. 2019, 29, 1901370. [Google Scholar] [CrossRef]
- Hao, X.; Li, N.; Wang, H.; Jia, S.; Liu, Q.; Peng, F. Dialdehyde xylan-based sustainable, stable, and catalytic liquid metal nano-inks. Green Chem. 2021, 23, 7796–7804. [Google Scholar] [CrossRef]
- Li, Y.; Feng, S.; Cao, S.; Zhang, J.; Kong, D. Printable Liquid Metal Microparticle Ink for Ultrastretchable Electronics. ACS Appl. Mater. Interfaces 2020, 12, 50852–50859. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Qin, Q.; Zhou, Y.; Wu, Y.; Xue, W.; Gao, S.; Shang, J.; Liu, Y.; Li, R.-W. Recyclable Liquid Metal-Based Circuit on Paper. Adv. Mater. Technol. 2018, 3, 1800131. [Google Scholar] [CrossRef]
- Liu, S.; Yuen, M.C.; White, E.L.; Boley, J.W.; Deng, B.; Cheng, G.J.; Kramer-Bottiglio, R. Laser Sintering of Liquid Metal Nanoparticles for Scalable Manufacturing of Soft and Flexible Electronics. ACS Appl. Mater. Interfaces 2018, 10, 28232–28241. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.Y.; Fu, J.Z.; Gao, Q.; Zhao, P.; He, Y. All-Printed Flexible and Stretchable Electronics with Pressing or Freezing Activatable Liquid-Metal–Silicone Inks. Adv. Funct. Mater. 2019, 30, 1906683. [Google Scholar] [CrossRef]
- Park, J.E.; Kang, H.S.; Koo, M.; Park, C. Autonomous Surface Reconciliation of a Liquid-Metal Conductor Micropatterned on a Deformable Hydrogel. Adv. Mater. 2020, 32, 2002178. [Google Scholar] [CrossRef]
- Kim, M.S.; Kim, S.; Choi, J.; Kim, S.; Han, C.; Lee, Y.; Jung, Y.; Park, J.; Oh, S.; Bae, B.S.; et al. Stretchable Printed Circuit Board Based on Leak-Free Liquid Metal Interconnection and Local Strain Control. ACS Appl. Mater. Interfaces 2022, 14, 1826–1837. [Google Scholar] [CrossRef]
- Wang, J.; Cai, G.; Li, S.; Gao, D.; Xiong, J.; Lee, P.S. Printable Superelastic Conductors with Extreme Stretchability and Robust Cycling Endurance Enabled by Liquid-Metal Particles. Adv. Mater. 2018, 30, 1706157. [Google Scholar] [CrossRef]
- Feng, B.; Jiang, X.; Zou, G.; Wang, W.; Sun, T.; Yang, H.; Zhao, G.; Dong, M.; Xiao, Y.; Zhu, H.; et al. Nacre-Inspired, Liquid Metal-Based Ultrasensitive Electronic Skin by Spatially Regulated Cracking Strategy. Adv. Funct. Mater. 2021, 31, 2102359. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, J.; Wu, Y.; Xiong, X.; Yang, J.; Dickey, M.D. Liquid Metal Interdigitated Capacitive Strain Sensor with Normal Stress Insensitivity. Adv. Intel. Syst. 2021, 2100201. [Google Scholar] [CrossRef]
- Thrasher, C.J.; Farrell, Z.J.; Morris, N.J.; Willey, C.L.; Tabor, C.E. Mechanoresponsive Polymerized Liquid Metal Networks. Adv. Mater. 2019, 31, 1903864. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Ota, H.; Schaler, E.W.; Chen, K.; Zhao, A.; Gao, W.; Fahad, H.M.; Leng, Y.; Zheng, A.; Xiong, F.; et al. Wearable Microfluidic Diaphragm Pressure Sensor for Health and Tactile Touch Monitoring. Adv. Mater. 2017, 29, 701985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Gao, S.; Lu, Y.; Asghar, W.; Cao, J.; Hu, C.; Yang, H.; Wu, Y.; Li, S.; Shang, J.; et al. Bio-Inspired Multi-Mode Pain-Perceptual System (MMPPS) with Noxious Stimuli Warning, Damage Localization, and Enhanced Damage Protection. Adv. Sci. 2021, 8, 2004208. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, J.; Fang, Z.; Hu, Z.; Wei, X.; Cao, Y.; Han, J.; Li, Y. Temperature-Stress Bimodal Sensing Conductive Hydrogel-Liquid Metal by Facile Synthesis for Smart Wearable Sensor. Macromol. Rapid. Commun. 2022, 43, 2100543. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, F.; Liu, S.; Wang, R.; Guo, J.; Ma, X. Liquid Metal-Based Epidermal Flexible Sensor for Wireless Breath Monitoring and Diagnosis Enabled by Highly Sensitive SnS2 Nanosheets. Research 2021, 2021, 1–13. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, S.; Miao, Y.; Yang, H.; Chen, X.; Xiao, X.; Jiang, Z.; Chen, X.; Nie, B.; Liu, J. Highly Stretchable and Sensitive Pressure Sensor Array Based on Icicle-Shaped Liquid Metal Film Electrodes. ACS Appl. Mater. Interfaces 2020, 12, 27961–27970. [Google Scholar] [CrossRef]
- Park, Y.G.; Lee, G.Y.; Jang, J.; Yun, S.M.; Kim, E.; Park, J.U. Liquid Metal-Based Soft Electronics for Wearable Healthcare. Adv. Healthc. Mater. 2021, 10, 2002280. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, Z.; Mao, G.; Liu, Y.; Liu, G.; Shang, J.; Qu, S.; Chen, Q.; Li, R.-W. Printable Liquid-Metal@PDMS Stretchable Heater with High Stretchability and Dynamic Stability for Wearable Thermotherapy. Adv. Mater. Technol. 2019, 4, 1800435. [Google Scholar] [CrossRef]
- Zhang, Y.; Huo, Z.; Wang, X.; Han, X.; Wu, W.; Wan, B.; Wang, H.; Zhai, J.; Tao, J.; Pan, C.; et al. High precision epidermal radio frequency antenna via nanofiber network for wireless stretchable multifunction electronics. Nat. Commun. 2020, 11, 5629. [Google Scholar] [CrossRef]
- Teng, L.; Zhu, L.; Handschuh-Wang, S.; Zhou, X. Robust, multiscale liquid-metal patterning enabled by a sacrificial sealing layer for flexible and wearable wireless powering. J. Mater. Chem. C 2019, 7, 15243–15251. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, D.; Cao, J.; Liu, F.; Zou, S.; Lei, W.; Wu, Y.; Liu, Y.; Shang, J.; Li, R.-W. Liquid Metal Based Nano-Composites for Printable Stretchable Electronics. Sensors 2022, 22, 2516. https://doi.org/10.3390/s22072516
Xu D, Cao J, Liu F, Zou S, Lei W, Wu Y, Liu Y, Shang J, Li R-W. Liquid Metal Based Nano-Composites for Printable Stretchable Electronics. Sensors. 2022; 22(7):2516. https://doi.org/10.3390/s22072516
Chicago/Turabian StyleXu, Dan, Jinwei Cao, Fei Liu, Shengbo Zou, Wenjuan Lei, Yuanzhao Wu, Yiwei Liu, Jie Shang, and Run-Wei Li. 2022. "Liquid Metal Based Nano-Composites for Printable Stretchable Electronics" Sensors 22, no. 7: 2516. https://doi.org/10.3390/s22072516
APA StyleXu, D., Cao, J., Liu, F., Zou, S., Lei, W., Wu, Y., Liu, Y., Shang, J., & Li, R. -W. (2022). Liquid Metal Based Nano-Composites for Printable Stretchable Electronics. Sensors, 22(7), 2516. https://doi.org/10.3390/s22072516