Effect of Non-Covalent Interactions on the 2,4- and 3,5-Dinitrobenzoate Eu-Cd Complex Structures
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Methods
2.2. Synthesis of Compounds
2.2.1. [Eu2(NO3)2Cd2(Phen)2(2,4-Nbz)8]n·2nMeCN (I)
2.2.2. [Eu2(MeCN)2Cd2(Phen)2(3,5-Nbz)10] (II)
3. Results
3.1. Synthesis and Structure of Complexes
3.2. Thermal Decomposition
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.-B.; Furukawa, H.; Ko, N.; Nie, W.; Park, H.J.; Okajima, S.; Cordova, K.E.; Deng, H.; Kim, J.; Yaghi, O.M. Introduction of Functionality, Selection of Topology, and Enhancement of Gas Adsorption in Multivariate Metal–Organic Framework-177. J. Am. Chem. Soc. 2015, 137, 2641–2650. [Google Scholar] [CrossRef]
- Seaton, C.C.; Scowen, I.J.; Blagden, N. Formation of a hybrid coordination-molecular complex. CrystEngComm 2009, 11, 1793–1795. [Google Scholar] [CrossRef]
- Lestari, M.; Lusi, M.; O’Leary, A.; O’Nolana, D.; Zaworotko, M.J. Hygroscopicity in Lithium Coordination Polymers and their Solid Solutions. CrystEngComm 2018, 20, 5940–5944. [Google Scholar] [CrossRef]
- Giunta, B.; Tan, J.; Zaworotko, M.J.; Shytle, R.D. Improving Lithium Therapeutics by Crystal Engineering of Novel Ionic Cocrystals. Mol. Pharm. 2013, 10, 4728–4738. [Google Scholar]
- Phukan, N.; Goswami, S.; Lipstman, S.; Goldberg, I.; Kumar Tripuramallu, B. Solvent Influence in Obtaining Diverse Coordination Symmetries of Dy(III) Metal Centers in Coordination Polymers: Synthesis, Characterization, and Luminescent Properties. Cryst. Growth Des. 2020, 20, 2973–2984. [Google Scholar] [CrossRef]
- Kalaj, M.; Cohen, S.M. Postsynthetic Modification: An Enabling Technology for the Advancement of Metal–Organic Frameworks. ACS Cent. Sci. 2020, 6, 1046–1057. [Google Scholar] [CrossRef]
- Mandal, S.; Natarajan, S.; Mani, P.; Pankajakshan, A. Post-Synthetic Modification of Metal–Organic Frameworks Toward Applications. Adv. Funct. Mater. 2021, 31, 2006291. [Google Scholar] [CrossRef]
- Shmelev, M.A.; Polunin, R.A.; Gogoleva, N.V.; Evstifeev, I.S.; Vasilyev, P.N.; Dmitriev, A.A.; Varaksina, E.A.; Efimov, N.N.; Taydakov, I.V.; Sidorov, A.A.; et al. Cadmium-inspired self-polymerization of {lniiicd2} units: Structure, magnetic and photoluminescent properties of novel trimethylacetate 1D-polymers (Ln = Sm, Eu, Tb, Dy, Ho, Er, Yb). Molecules 2021, 26, 4296. [Google Scholar] [CrossRef]
- Shmelev, M.A.; Kiskin, M.A.; Voronina, J.K.; Babeshkin, K.A.; Efimov, N.N.; Varaksina, E.A.; Korshunov, V.M.; Taydakov, I.V.; Gogoleva, N.V.; Sidorov, A.A.; et al. Molecular and Polymer Ln2M2 (Ln = Eu, Gd, Tb, Dy; M = Zn, Cd) Complexes with Pentafluorobenzoate Anions: The Role of Temperature and Stacking Effects in the Structure; Magnetic and Luminescent Properties. Materials 2020, 13, 5689. [Google Scholar] [CrossRef]
- Shmelev, M.A.; Gogoleva, N.V.; Kuznetsova, G.N.; Kiskin, M.A.; Voronina, Y.K.; Yakushev, I.A.; Ivanova, T.M.; Nelyubina, Y.V.; Sidorov, A.A.; Eremenko, I.L. Cd(II) and Cd(II)–Eu(III) Complexes with Pentafluorobenzoic Acid Anions and N-Donor Ligands: Synthesis and Structures. Russ. J. Coord. Chem. 2020, 46, 557–572. [Google Scholar] [CrossRef]
- Shmelev, M.A.; Kuznetsova, G.N.; Dolgushin, F.M.; Voronina, Y.K.; Gogoleva, N.V.; Kiskin, M.A.; Ivanov, V.K.; Sidorov, A.A.; Eremenko, I.L. Influence of the Fluorinated Aromatic Fragments on the Structures of the Cadmium and Zinc Carboxylate Complexes Using Pentafluorobenzoates and 2,3,4,5-Tetrafluorobenzoates as Examples. Russ. J. Coord. Chem. 2021, 47, 127–143. [Google Scholar] [CrossRef]
- Jassal, A.K.; Sharma, S.; Hundal, G.; Hundal, M.S. Structural Diversity, Thermal Studies, and Luminescent Properties of Metal Complexes of Dinitrobenzoates: A Single Crystal to Single Crystal Transformation from Dimeric to Polymeric Complex of Copper(II). Cryst. Growth Des. 2015, 15, 79–93. [Google Scholar] [CrossRef]
- Mudsainiyan, R.K.; Pandey, S.K. A Combined Theoretical Calculation and Hirshfeld Surface Analysis of Cooperative Non-covalent Interactions in the Crystal Packing in [Cu(L1)2(EDA)]. Z. Anorg. Allg. Chem. 2017, 643, 1245–1252. [Google Scholar] [CrossRef]
- Roy, S.; Bauza, A.; Frontera, A.; Schaper, F.; Banik, R.; Purkayastha, A.; Reddy, B.M.; Sridhar, B.; Drew, M.G.B.; Das, S.K.; et al. Structural diversity and non-covalent interactions in Cd(II) and Zn(II) complexes derived from 3,5-dinitrobenzoic acid and pyridine: Experimental and theoretical aspects. Inorg. Chim. Acta 2016, 440, 38–47. [Google Scholar] [CrossRef]
- Roy, S.; Bauza, A.; Frontera, A.; Banik, R.; Purkayastha, A.; Drew, M.G.B.; Reddy, B.M. Experimental observation and theoretical investigation of a novel Cd(II) complex with π-hole interactions involving nitro groups. CrystEngComm 2015, 17, 3912–3916. [Google Scholar] [CrossRef]
- Bhowal, R.; Balaraman, A.A.; Ghosh, M.; Dutta, S.; Dey, K.K.; Chopra, D. Probing Atomistic Behavior To Unravel Dielectric Phenomena in Charge Transfer Cocrystals. J. Am. Chem. Soc. 2021, 143, 1024–1037. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Ge, S.-Z.; Zhong, J.-C.; Sun, Y.-Q.; Chen, Y.-P. Two novel 2D lanthanide–cadmium heterometal–organic frameworks based on nanosized heart-like Ln6Cd6O12 wheel-clusters exhibiting luminescence sensing to the polarization and concentration of cations. Dalton Trans. 2013, 42, 6314–6317. [Google Scholar] [CrossRef] [PubMed]
- Sidorov, A.A.; Gogoleva, N.V.; Bazhina, E.S.; Nikolaevskii, S.A.; Shmelev, M.A.; Zorina-Tikhonova, E.N.; Starikov, A.G.; Kiskin, M.A.; Eremenko, I.L. Some aspects of the formation and structural features of low nuclearity heterometallic carboxylates. Pure Appl. Chem. 2020, 92, 1093–1110. [Google Scholar] [CrossRef]
- Liu, Q.; Wan, F.; Qiu, L.-X.; Sun, Y.-Q.; Chena, Y.-P. Four 2D Ln–Cd heterometal–organic coordination polymers based on tetranuclear Ln–Cd oxo-cluster with highly selective luminescent sensing of organic molecules and metal cations. RSC Adv. 2014, 4, 27013–27021. [Google Scholar] [CrossRef]
- Shmelev, M.A.; Voronina, Y.K.; Gogoleva, N.V.; Kiskin, M.A.; Sidorov, A.A.; Eremenko, I.L. Synthesis and Crystal Structure of { Eu2Cd2}, {Tb2Cd2} and {Eu2Zn} Complexes with Pentafluorobenzoic Acid Anions and Acetonitrile. Russ. J. Coord. Chem. 2022, 48, 229–237. [Google Scholar]
- Huang, X.F.; Ma, J.X.; Liu, W.S. Lanthanide Metalloligand Strategy toward d–f Heterometallic Metal–Organic Frameworks: Magnetism and Symmetric-Dependent Luminescent Properties. Inorg. Chem. 2014, 53, 5922–5930. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.A.; Gnanam, A.J.; Arambula, J.F.; Jones, J.N.; Swaminathan, J.; Yang, X.; Schipper, D.; Hall, J.W.; DePue, L.J.; Dieye, Y.; et al. Lanthanide nano-drums: A new class of molecular nanoparticles for potential biomedical applications. Faraday Discuss. 2014, 175, 241–255. [Google Scholar] [CrossRef] [Green Version]
- Jassal, A.K.; Sran, B.S.; Suffren, Y.; Bernot, K.; Pointillart, F.; Cador, O.; Hundal, G. Structural diversity and photo-physical and magnetic properties of dimeric to 1D polymeric coordination polymers of lighter lanthanide(III) dinitrobenzoates. Dalton Trans. 2018, 47, 4722–4732. [Google Scholar] [CrossRef] [PubMed]
- de Bettencourt-Dias, A.; Viswanathan, S. Nitro-functionalization and luminescence quantum yield of Eu(III) and Tb(III) benzoic acid complexes. Dalton Trans. 2006, 4093–4103. [Google Scholar] [CrossRef] [PubMed]
- Tsaryuka, V.; Kudryashovaa, V.; Gawryszewska, P.; Szostak, R.; Vologzhaninac, A.; Zhuravleva, K.; Klemenkovac, Z.; Legendziewicz, J.; Zolin, V.J. Structures, luminescence and vibrational spectroscopy of europium and terbium nitro- and dinitro-substituted benzoates. Nitro groups as quenchers of Ln3+ luminescence. Photochem. Photobiol. 2012, 239, 37–46. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SADABS-2004/1; Program for Scaling and Correction of Area Detector Data; Göttingen University: Göttinngen, Germany, 2004. [Google Scholar]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. C 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Llunell, M.; Casanova, D.; Cirera, J.; Alemany, P.; Alvarez, S. SHAPE v.2.1; Program for the Stereochemical Analysis of Molecular Fragments by Means of Continuous Shape Measures and Associated Tools; Universitat de Barcelona: Barcelona, Spain, 2013. [Google Scholar]
- Zhu, X.; Li, Z.; Ji, X.; Chen, Q.; Wu, S.; Gao, E.; Zhu, M. Two new lanthanide complexes with 5-(Pyrazol-1-yl)nicotinic acid: Structures and their anti-cancer properties. J. Inorg. Biochem. 2021, 222, 111505. [Google Scholar] [CrossRef]
- Meng-Xue, Z.; Ning, R.; Jin-Yong, H.; Jian-Jun, Z.; Da-Qi, W. Construction of lanthanide complexes based on 3,4-dichlorobenzoic acid and 5,5′-dimethyl-2,2′-bipyridine: Supramolecular structures, thermodynamic properties and luminescent behaviors. Polyhedron 2019, 169, 239. [Google Scholar] [CrossRef]
- Du, X.-D.; Zheng, W.; Yi, X.-H.; Zhao, J.-P.; Wang, P.; Wang, C.-C. General strategy for lanthanide coordination polymers constructed from 1,1′-ferrocenedicarboxylic acid under hydrothermal conditions. CrystEngComm 2018, 20, 2608. [Google Scholar] [CrossRef]
- Shmelev, M.A.; Gogoleva, N.V.; Dolgushin, F.M.; Lyssenko, K.A.; Kiskin, M.A.; Varaksina, E.A.; Taisakov, I.V.; Sidorov, A.A.; Eremenko, I.L. Influence of Substituents in the Aromatic Fragment of the Benzoate Anion on the Structures and Compositions of the Formed {Cd–Ln} Complexes. Russ. J. Coord. Chem. 2020, 46, 493–504. [Google Scholar] [CrossRef]
- Kamath, A.; Pilet, G.; Tamang, A.; Sinha, B. [{Diaquo(3,5-dinitrobenzoato-κ1O1)(1,10-phenanthroline-κ2N1:N10)}copper(II)] 3,5-dinitrobenzoate: Hydrothermal synthesis, crystal structure and magnetic properties. J. Mol. Struct. 2020, 1199, 126933. [Google Scholar] [CrossRef]
- Moragues-Bartolome, A.M.; Jones, W.; Cruz-Cabeza Du, A.J. Synthon preferences in cocrystals of cis-carboxamides:carboxylic acids. CrystEngComm 2012, 14, 2552. [Google Scholar] [CrossRef]
- Mandal, A.; Rissanen, K.; Mal, P. Unravelling substitution effects on charge transfer characteristics in cocrystals of pyrene based donors and 3,5-dinitrobenzoic acid. CrystEngComm 2019, 21, 4401. [Google Scholar] [CrossRef]
- Prech, E.; Blumann, F.; Affolter, K. Structure Determination of Organic Compounds, 5th ed.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 15–19. [Google Scholar]
- Zhang, J.; Cui, Z.; Field, R.; Moloney, M.G.; Rimmer, S.; Ye, H. Thermo-responsive microcarriers based on poly(N-isopropylacrylamide). Eur. Polym. J. 2015, 67, 346–364. [Google Scholar] [CrossRef]
- Jin, S.; Zhang, H.; Xu, K.; Ye, X.; Zhang, Y.; Fang, Y.; Wang, D. Six new metal(II) complexes with 3D network structures based on carboxylate and hexamethylenetetramine: Syntheses and structures. Polyhedron 2015, 95, 108–119. [Google Scholar] [CrossRef]
- Bai, H.; Gao, H.; Hu, M. A Zigzag Chain Cd (II) Coordination Polymer Based on 2,4-Dinitro-benzoic Acid Ligand: Syntheses, Structure and Photoluminescence. Adv. Mater. Res. 2014, 997, 140–145. [Google Scholar] [CrossRef]
- Yu, M.-H.; Hu, M.; Feng, Z.-Y. Syntheses, Crystal Structures and Properties of Lanthanide Coordination Polymers Based on 2,4-Dinitro-benzoic Acid and 1,10-Phenanthroline. Chin. J. Inorg. Chem. 2014, 30, 1261–1266. [Google Scholar]
- Win, Y.F.; Teoh, S.-G.; Ng, S.-L.; Fun, H.-K.; Ahmad, S. Catena-Poly[[triphenyl tin(IV)]-[mu]-2,4-dinitro benzoato]. Acta Cryst. 2007, E63, m2220–m2221. [Google Scholar]
- Chen, Z.-F.; Yu, L.-C.; Zhang, M.; Yuan, T.; Liang, H.; Fun, H.-K.; Zhang, Y. Syntheses and crystal structures of two samarium(III) complexes with bio-relevant ligands. J. Coord. Chem. 2007, 60, 219–228. [Google Scholar] [CrossRef]
- Zheng, T.-F.; Tian, X.-M.; Ji, J.; Luo, H.; Yao, S.-L.; Liu, S.-J.; Tang, B.-E.; Zhao, Y.-J.; Mao, J.; Zhao, Q.; et al. Two Gd2 cluster complexes with monocarboxylate ligands displaying significant magnetic entropy changes. J. Mol. Struct. 2020, 1200, 127094. [Google Scholar] [CrossRef]
- Dong, C.-H.; Zhang, D.-H.; Ren, N.; Xi, G.-Q.; Hao, J.-J. Bis(μ-3,5-dinitrobenzoato-κ2 O 1:O 1′)bis(μ-3,5-dinitrobenzoato)-κ3 O 1,O 1′:O 1;κ3 O 1:O 1,O 1′-bis[(3,5-dinitrobenzoato-κ2 O 1,O 1′)(1,10-phenanthroline-κ2 N,N)dysprosium(III). Acta Cryst. 2011, E67, m102. [Google Scholar]
- Hu, M.-L.; Xiao, H.-P.; Wang, S.; Li, X.-H. Crystal structure of di(μ-3,5-dinitrobenzoato-O,O′)di(μ-3,5-dinitrobenzoato-O,O:O′)di(3,5-dinitrobenzoato-O,O′)di(1,10-phenanthroline-N,N′)-diterbium(III), Tb2(C12H8N2)2(C7H3N2O6)6. Z. Krist.-New Cryst. Struct. 2003, 218, 491. [Google Scholar]
- Yu, Y.-Z.; Guo, Y.-H.; Niu, Y.-S.; Wu, X.-L.; Fang, Y.-T.; Zhuang, N.-J.; Zhang, J.-W.; Liang, H.; Wang, F. Syntheses, Crystal Structures and Luminescence Properties of Two La(Ⅲ) Complexes Assembled by 3,5-Dinitrosalicylic Acid and 1,10-Phenanthroline. Chin. J. Inorg. Chem. 2018, 34, 2108. [Google Scholar]
- He, X.; Bi, M.-H.; Ye, K.-Q.; Fang, Q.-R.; Zhang, P.; Xu, J.-N.; Wang, Y. Self-assembly of a 1D helical manganese coordination polymer and a tetranuclear lanthanum complex with 1,10-phenanthroline and 3,5-dinitrosalicylato dianion. Inorg. Chem. Commun. 2006, 9, 1165. [Google Scholar] [CrossRef]
Compound/Parameter | Complex I | Complex II |
---|---|---|
Bond | d | |
Cd-O (O2CR) | 2.254(4)–2.506(3) | 2.259(6)–2.778(7) |
Cd-N (Phen) | 2.286(4), 2.313(4) | 2.321(7), 2.345(7) |
Ln-O (O2CR) | 2.364(3)–2.576(3) | 2.328(6)–2.437(6) |
Ln-O (NO3) | 2.448(4), 2.487(4) | - |
Ln-N (MeCN) | - | 2.566(7) |
Cd…Eu | 4.093(1) | 3.963(1) |
Cd…Cdmin | 3.820(1) | 7.237(1) |
Ln…Ln | 4.042(1) | 4.469(1) |
Angles | ω | |
Cd-Eu-Eu | 119.21(2) | 163.87(2) |
Cd-Cd-Ln | 112.01(2) | - |
O1-C1-C2-C3 | −122.3(5) | O16-C15-C16-C17 | 169.2(5) |
O2-C1-C2-C3 | 60.8(6) | O17-C15-C16-C17 | −11.2(8) |
C2-C3-N3-O4 | −155.3(5) | O19-N8-C17-C16 | −81.0(6) |
C2-C3-N3-O3 | 25.4(7) | O18-N8-C17-C16 | 103.8(6) |
O7-C8-C9-C10 | −36.4(7) | O23-C22-C23-C24 | −106.1(7) |
O8-C8-C9-C10 | 148.7(5) | O22-C22-C23-C24 | 79.6(7) |
O9-N5-C10-C9 | −41.9(6) | O24-N10-C24-C23 | 16.7(8) |
O10-N5-C10-C9 | 141.3(5) | O25-N10-C24-C23 | −163.4(5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shmelev, M.A.; Chistyakov, A.S.; Razgonyaeva, G.A.; Kovalev, V.V.; Voronina, J.K.; Dolgushin, F.M.; Gogoleva, N.V.; Kiskin, M.A.; Sidorov, A.A.; Eremenko, I.L. Effect of Non-Covalent Interactions on the 2,4- and 3,5-Dinitrobenzoate Eu-Cd Complex Structures. Crystals 2022, 12, 508. https://doi.org/10.3390/cryst12040508
Shmelev MA, Chistyakov AS, Razgonyaeva GA, Kovalev VV, Voronina JK, Dolgushin FM, Gogoleva NV, Kiskin MA, Sidorov AA, Eremenko IL. Effect of Non-Covalent Interactions on the 2,4- and 3,5-Dinitrobenzoate Eu-Cd Complex Structures. Crystals. 2022; 12(4):508. https://doi.org/10.3390/cryst12040508
Chicago/Turabian StyleShmelev, Maxim A., Aleksandr S. Chistyakov, Galina A. Razgonyaeva, Vladimir V. Kovalev, Julia K. Voronina, Fedor M. Dolgushin, Natalia V. Gogoleva, Mikhail A. Kiskin, Alexey A. Sidorov, and Igor L. Eremenko. 2022. "Effect of Non-Covalent Interactions on the 2,4- and 3,5-Dinitrobenzoate Eu-Cd Complex Structures" Crystals 12, no. 4: 508. https://doi.org/10.3390/cryst12040508
APA StyleShmelev, M. A., Chistyakov, A. S., Razgonyaeva, G. A., Kovalev, V. V., Voronina, J. K., Dolgushin, F. M., Gogoleva, N. V., Kiskin, M. A., Sidorov, A. A., & Eremenko, I. L. (2022). Effect of Non-Covalent Interactions on the 2,4- and 3,5-Dinitrobenzoate Eu-Cd Complex Structures. Crystals, 12(4), 508. https://doi.org/10.3390/cryst12040508