Nature’s Lab for Derivatization: New and Revised Structures of a Variety of Streptophenazines Produced by a Sponge-Derived Streptomyces Strain
Abstract
:1. Introduction
2. Results and Discussion
2.1. Metabolite Spectrum of HB202
2.2. Structural Constitution of Streptophenazines
2.2.1. Isolation and Structure of New Streptophenazines
Position | δC, DEPT | δH, J [Hz] | COSY | HMBC |
---|---|---|---|---|
1 | 132.8, C | |||
2 | 133.6, CH | 8.29 dd (6.9, 1.4) | 3 | 1-COOCH3, 10a, 4 |
3 | 130.9, CH | 7.96 m | 2, 4 | 4a, 1 |
4 | 134.8, CH | 8.46 dd (8.8, 1.4) | 3 | 10a, 2 |
4a | 144.7, C | |||
5a | 142.9, C | |||
6 | 143.2, C | |||
7 | 130.2, CH | 8.03 m | 8 | 1′, 5a, 9 |
8 | 132.5, CH | 7.99 m | 7, 9 | 6 |
9 | 130.4, CH | 8.26 dd (8.6, 1.5) | 8 | 7, 5a |
9a | 142.8, C | |||
10a | 141.9, C | |||
1′ | 71.4, CH | 6.16 d (7.7) | 2′ | 2′-COOCH3, 5a, 7 |
2′ | 55.0, CH | 3.27 ddd (10.1, 7.7, 4.3) | 1′ | |
3′ | 30.5, CH2 | 1.26 m, 1.74 m | ||
4′ | 25.2, CH2 | 1.17 m | ||
5′ | 29.2, CH2 | 1.17 m | ||
6′ | 44.6, CH2 | 1.24 m | 4′ | |
7′ | 71.3, C | |||
8′ | 29.2, CH3 | 1.03 s | 5′, 6′ | |
7′-CH3 | 29.2, CH3 | 1.03 s | 5′, 6′ | |
1-COOCH3 | 168.9, C | |||
1-COOCH3 | 53.3, CH3 | 4.08 s | 1-COOCH3 | |
2′-COOCH3 | 176.8, C | |||
2′-COOCH3 | 52.1, CH3 | 3.63 s | 2′-COOCH3 |
2.2.2. Structure Revision of Streptophenazines B–F and H and Structural Comparison
2.3. Bioactivity Assays
Bacillus subtilis (IC50 [µM]) | Staphylococcus epidermidis (IC50 [µM]) | PDE 4B (IC50 [µM]) | |
---|---|---|---|
Streptophenazine G 9 | 8.2 µM (± 0.9) | 8.4 µM (± 0.5) | 5.2 (± 1.0) |
Streptophenazine I 1 | not active | not active | 11. 6 (± 1.1) |
Streptophenazine J 2 | not active | not active | 12.0 (± 0.9) |
Streptophenazine K 3 | 21.6 (± 6.8) | 14.5 µM (± 2.0) | 12.2 (± 2.0) |
Rolipram | not determined | not determined | 0.75 (± 0.05) |
2.4. Biotechnological Upscaling
3. Experimental Section
3.1. General Experimental Procedures
3.2. Isolation and Identification of Strain Streptomyces sp. HB202
3.3. Cultivation, Extraction and Substance Characterization
3.4. Determination of Biological Activity
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Mentel, M.; Ahuja, E.G.; Mavrodi, D.V.; Breinbauer, R.; Thomashow, L.S.; Blankenfeldt, W. Of two make one: The biosynthesis of phenazines. ChemBioChem 2009, 10, 2295–2304. [Google Scholar] [CrossRef]
- Villavicencio, R.T. The history of blue pus. J. Am. Coll. Surg. 1998, 187, 212–216. [Google Scholar] [CrossRef]
- Laursen, J.B.; Nielsen, J. Phenazine natural products: Biosynthesis, synthetic analogues, and biological activity. Chem. Rev. 2004, 104, 1663–1686. [Google Scholar] [CrossRef]
- Buckingham, J. Dictionary of Natural Products, 2nd ed.; CRC Press: London, UK, 2012; Volume 21. [Google Scholar]
- Reddy, V.M.; Nadadhur, G.; Daneluzzi, D.; O’Sullivan, J.F.; Gangadharam, P.R.J. Antituberculosis activities of clofazimine and its new analogs B4154 and B4157. Antimicrob. Agents Chemother. 1996, 40, 633–636. [Google Scholar]
- Liu, B.; Liu, K.; Lu, Y.; Zhang, D.; Yang, T.; Li, X.; Ma, C.; Zheng, M.; Wang, B.; Zhang, G.; et al. Systematic evaluation of structure-activity relationships of the riminophenazine class and discovery of a C2 pyridylamino series for the treatment of multidrug-resistant tuberculosis. Molecules 2012, 17, 4545–4559. [Google Scholar] [CrossRef]
- Schneemann, I.; Wiese, J.; Kunz, A.L.; Imhoff, J.F. Genetic approach for the fast discovery of phenazine producing bacteria. Mar. Drugs 2011, 9, 772–789. [Google Scholar] [CrossRef] [Green Version]
- Schneemann, I.; Nagel, K.; Kajahn, I.; Labes, A.; Wiese, J.; Imhoff, J.F. Comprehensive investigation of marine Actinobacteria associated with the sponge Halichondria panicea. Appl. Environ. Microbiol. 2010, 76, 3702–3714. [Google Scholar] [CrossRef] [Green Version]
- Mavrodi, D.V.; Peever, T.L.; Mavrodi, O.V.; Parejko, J.A.; Raaijmakers, J.M.; Lemanceau, P.; Mazurier, S.; Heide, L.; Blankenfeldt, W.; Weller, D.M.; et al. Diversity and evolution of the phenazine biosynthesis pathway. Appl. Environ. Microbiol. 2010, 76, 866–879. [Google Scholar] [CrossRef]
- Mitova, M.I.; Lang, G.; Wiese, J.; Imhoff, J.F. Subinhibitory concentrations of antibiotics induce phenazine production in a marine Streptomyces sp. J. Nat. Prod. 2008, 71, 824–827. [Google Scholar] [CrossRef]
- Yang, Z.; Jin, X.; Guaciaro, M.; Molino, B.F.; Mocek, U.; Reategui, R.; Rhea, J.; Morley, T. The revised structure, total synthesis, and absolute configuration of streptophenazine A. Org. Lett. 2011, 13, 5436–5439. [Google Scholar] [CrossRef]
- Yang, Z.; Jin, X.; Guaciaro, M.; Molino, B.F. Asymmetric synthesis and absolute configuration of streptophenazine G. J. Org. Chem. 2012, 77, 3191–3196. [Google Scholar] [CrossRef]
- McCann, M.T.; Gilmore, B.F.; Gorman, S.P. Staphylococcus epidermidis device-related infections: Pathogenesis and clinical management. J. Pharm. Pharmacol. 2008, 60, 1551–1571. [Google Scholar] [CrossRef]
- Rabe, K.F. Update on roflumilast, a phosphodiesterase 4 inhibitor for the treatment of chronic obstructive pulmonary disease. Br. J. Pharmacol. 2011, 163, 53–67. [Google Scholar] [CrossRef]
- Page, C.P.; Spina, D. Selective PDE inhibitors as novel treatments for respiratory diseases. Curr. Opin. Pharmacol. 2012, 12, 275–286. [Google Scholar] [CrossRef]
- Hatzelmann, A.; Morcillo, E.J.; Lungarella, G.; Adnot, S.; Sanjar, S.; Beume, R.; Schudt, C.; Tenor, H. The preclinical pharmacology of roflumilast-A selective, oral phosphodiesterase 4 inhibitor in development for chronic obstructive pulmonary disease. Pulm. Pharmacol. Ther. 2010, 23, 235–256. [Google Scholar] [CrossRef]
- Bode, H.B.; Bethe, B.; Höfs, R.; Zeeck, A. Big effects from small changes: Possible ways to explore nature’s chemical diversity. ChemBioChem 2002, 3, 619–627. [Google Scholar] [CrossRef]
- Imhoff, J.F.; Labes, A.; Wiese, J. Bio-mining the microbial treasures of the ocean: New natural products. Biotechnol. Adv. 2011, 29, 468–482. [Google Scholar] [CrossRef]
- Muffler, K.; Ulber, R. Downstream Processing in Marine Biotechnology. In Marine Biotechnology II; Ulber, R., Gal, Y.L., Eds.; Springer-Berlin: Heidelberg, Germany, 2005; pp. 63–103. [Google Scholar]
- Sarkar, S.; Pramanik, A.; Mitra, A.; Mukherjee, J. Bioprocessing data for the production of marine enzymes. Mar. Drugs 2010, 8, 1323–1372. [Google Scholar] [CrossRef]
- Ackers, R.G.; Moss, D.; Picton, B.E.; Stone, S.M.K.; Morrow, C.C. Sponges of the British Isles (“Sponge V”), a Colour Guide and Working Document; Marine Conservation Society: Edinburgh, Scotand, UK, 2007. [Google Scholar]
- Schulz, D.; Beese, P.; Ohlendorf, B.; Erhard, A.; Zinecker, H.; Dorador, C.; Imhoff, J.F. Abenquines A–D: Aminoquinone derivatives produced by Streptomyces sp. strain DB634. J. Antibiot. (Tokyo) 2011, 64, 763–768. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kunz, A.L.; Labes, A.; Wiese, J.; Bruhn, T.; Bringmann, G.; Imhoff, J.F. Nature’s Lab for Derivatization: New and Revised Structures of a Variety of Streptophenazines Produced by a Sponge-Derived Streptomyces Strain. Mar. Drugs 2014, 12, 1699-1714. https://doi.org/10.3390/md12041699
Kunz AL, Labes A, Wiese J, Bruhn T, Bringmann G, Imhoff JF. Nature’s Lab for Derivatization: New and Revised Structures of a Variety of Streptophenazines Produced by a Sponge-Derived Streptomyces Strain. Marine Drugs. 2014; 12(4):1699-1714. https://doi.org/10.3390/md12041699
Chicago/Turabian StyleKunz, Anna Lena, Antje Labes, Jutta Wiese, Torsten Bruhn, Gerhard Bringmann, and Johannes F. Imhoff. 2014. "Nature’s Lab for Derivatization: New and Revised Structures of a Variety of Streptophenazines Produced by a Sponge-Derived Streptomyces Strain" Marine Drugs 12, no. 4: 1699-1714. https://doi.org/10.3390/md12041699
APA StyleKunz, A. L., Labes, A., Wiese, J., Bruhn, T., Bringmann, G., & Imhoff, J. F. (2014). Nature’s Lab for Derivatization: New and Revised Structures of a Variety of Streptophenazines Produced by a Sponge-Derived Streptomyces Strain. Marine Drugs, 12(4), 1699-1714. https://doi.org/10.3390/md12041699