Briarane Diterpenoids Isolated from Gorgonian Corals between 2011 and 2013
Abstract
:1. Introduction
2. Gorgonacea
2.1. Genus Briareum (Family Briareidae)
2.1.1. Briareum asbestinum
Structure | No. | Name | Bioactivity | Ref. |
---|---|---|---|---|
1 | Briareolate ester J (R = OC(O)(CH2)4CH3) | [5] | ||
2 | Briareolate ester K (R = OC(O)(CH2)4CH3) | EC50 (BG02) = 40 μM | [5] | |
3 | Briareolate ester L (R = OH) | EC50 (BG02, BxPC-3) a = 2.4, 9.3 μM | [6] | |
4 | Briareolate ester M (R = OC(O)(CH2)4CH3) | EC50 (BG02) = 8.0 μM briarane 4 showed cytostatic effects at 13.0 and 17.0 μM against the BxPC-3 cells | [6] | |
5 | Briareolate ester N (R = OC(O)(CH2)4CH3) | [6] |
2.1.2. Briareum excavatum
Structure | No. | Name | Bioactivity | Ref. |
---|---|---|---|---|
6 | Briacavatolide A (R1 = CH3, R2 = OH, R3 = β-OH) | - | [9] | |
7 | Briacavatolide B (R1 = CH2OAc, R2 = OAc, R3 = β-OH) | - | [9] | |
8 | Briacavatolide C (R1 = CH3, R2 = OAc, R3 = α-OC(O)(CH2)2CH3) | IC50 (HCMV) = 18 μM a | [9] | |
10 | Briacavatolide E (R1 = CH3, R2 = OH, R3 = α-OC(O)(CH2)2CH3) | - | [10] | |
9 | Briacavatolide D (R = CH2OH) | - | [10] | |
11 | Briacavatolide F | IC50 (HCMV) = 22 μM | [10] |
2.1.3. Briareum spp.
Structure | No. | Name | Bioactivity | Ref. |
---|---|---|---|---|
12 | Brialalepolide A (R = OAc) | at concentrations of 30, 20 and 15 μM for compounds 12–14, respectively, an approximately 50% decrease in cell viability on Caco-2 cells | [13] | |
13 | Brialalepolide B (R = OC(O)(CH2)4CH3) | [13] | ||
14 | Brialalepolide C (R = OC(O)(CH2)6CH3) | compounds 13 and 14 reduced levels of COX-2 mRNA in Caco-2 and RAW 264.7 cells at concentrations of 10–15 μM a | [13] | |
15 | Briaroxalide A (R1 = R3 = OH, R2 = R4 = OAc) | [14] | ||
16 | Briaroxalide B (R1 = R2 = OH, R3 = R4 = OAc) | [14] | ||
17 | Briaroxalide C (R1 = OH, R2 = R3 = R4 = OAc) | [14] | ||
18 | Briaroxalide D (R1 = R2 = R4 = OH, R3 = OAc) | [14] | ||
19 | Briaroxalide E (R1 = R4 = OH, R2 = R3 = OAc) | [14] | ||
20 | Briaroxalide F (R1 = R2 = R3 = OAc, R4 = OH) | [14] | ||
21 | Briaroxalide G (R1 = R3 = R4 = OAc, R2 = OH) | [14] | ||
22 | Briarenolide E | showed inhibitory effects on the generation of superoxide anion (inhibition rate = 23.7%) and release of elastase (inhibition rate = 28.3%) at 10 μg/mL | [18] | |
23 | Briarenolide F (R1 = OOH, R2 = OC(O)(CH2)2CH3) | showed inhibitory effects on the generation of superoxide anion (inhibition rate = 76.7%) (IC50 = 3.8 μg/mL) and release of elastase (inhibition rate = 27.5%) at 10 μg/mL | [19] | |
24 | Briarenolide G | showed inhibitory effects on the generation of superoxide anion (inhibition rate = 22.0%) and release of elastase (inhibition rate = 13.0%) at 10 μg/mL | [19] |
2.2. Genus Dichotella (Family Ellisellidae)
2.2.1. Dichotella fragilis
2.2.2. Dichotella gemmacea
Structure | No. | Name | Bioactivity | Ref. |
---|---|---|---|---|
25 | Gemmacolide G (R1 = R2 = OAc) | IC50 (A549, MG63) a = 8.4, 38.4 μM | [25] | |
26 | Gemmacolide I (R1 = OC(O)CH2CH(CH3)2, R2 = H) | IC50 (A549, MG63) = 20.6, 25.0 μM | [25] | |
27 | Gemmacolide J (R1 = OC(O)CH2CH(CH3)2, R2 = OAc) | IC50 (A549, MG63) ≤1.4, 79.8 μM briarane 27 exhibited antibacterial activity against B. megaterium (Ф = 16.0 mm) | [25] | |
28 | Gemmacolide K (R1 = OC(O)CH2OH, R2 = H, R3 = Cl, R4 = OC(O)CH2CH(CH3)2, R5 = OAc) | IC50 (A549, MG63) = 38.2, 45.9 μM | [25] | |
29 | Gemmacolide L (R1 = OC(O)CH2OC(O)CH2CH(CH3)2, R2 = H, R3 = Cl, R4 = OC(O)CH2CH(CH3)2, R5 = OAc) | - | [25] | |
30 | Gemmacolide M (R1 = R4 = OAc, R2 = OCH3, R3 = H, R5 = OC(O)CH2CH(CH3)2) | IC50 (A549) = 27.4 μM exhibited antifungal activity against S. tritici (Ф = 15.0 mm) | [25] | |
31 | Gemmacolide N (R1 = R2 = R4 = OAc, R3 = H, R5 = OCH3) | briaranes 31–36 exhibited cytotoxicity toward A549 (IC50 ≥ 50.5, >44.6, >44.1, 21.6, 27.2, 16.4 μM) and MG63 (IC50 ≥ 50.5, >44.6, >44.1, 20.5, 23.7, 18.8 μM) cells briaranes 31, 32 and 34 exhibited antibacterial activity against E. coli (Ф = 12.5, 13.0, 10.0 mm) | [26] | |
32 | Gemmacolide O (R1 = OC(O)CH2OH, R2 = R3 = R4 = OAc, R5 = Cl) | [26] | ||
33 | Gemmacolide P (R1 = R3 = R4 = OAc, R2 = OC(O)CH2CH(CH3)2, R5 = OH) | [26] | ||
34 | Gemmacolide Q (R1 = OC(O)CH2OH, R2 = OC(O)CH2CH(CH3)2, R3 = R4 = OAc, R5 = OH) | [26] | ||
35 | Gemmacolide R (R1 = OC(O)CH2OH, R2 = R3 = OAc, R4 = OC(O)CH2CH(CH3)2, R5 = OH | briaranes 31, 32 and 34 exhibited antibacterial activity against E. coli (Ф = 12.5, 13.0, 10.0, mm) briaranes 31 and 34 exhibited antifungal activity against S. tritici (Ф = 7.5, 7.5 mm) briaranes 43–45, 47, 48, 50–52, 54 and 56–60 exhibited cytotoxicity toward A549 cells (IC50 = 14.7, 19.4, 17.9, 20.1, 27.4, 5.0, 27.7, 39.9, >37.8, 13.4, 78.5, 10.1, 28.7, 16.8 μM) briaranes 43–45, 47, 48, 50–54 and 56–59 exhibited cytotoxicity toward MG63 cells (IC50 = 28.7, 22.8, 42.7, 41.3, 33.0, 5.0, 37.5, 9.1, 39.0, 37.8, 12.1, 25.8, 17.1, >100 μM) | [26] | |
36 | Gemmacolide S (R1 = OC(O)CH2OC(O)CH2CH(CH3)2, R2 = R4 = OAc, R3 = R5 = OC(O)CH2CH(CH3)2) | [26] | ||
43 | Gemmacolide AA (R1 = OC(O)CH2OH, R2 = R3 = R4 = OAc, R5 = OCH3) | [28] | ||
44 | Gemmacolide AB (R1 = OC(O)CH2OH, R2 = OC(O)CH2CH(CH3)2, R3 = R4 = OAc, R5 = OCH3) | [28] | ||
45 | Gemmacolide AC (R1 = R3 = R4 = OAc, R2 = OC(O)CH2CH(CH3)2, R5 = OCH3) | [28] | ||
46 | Gemmacolide AD (R1 = R3 = OAc, R2 = R4 = OC(O)CH2CH(CH3)2, R5 = OCH3) | [28] | ||
47 | Gemmacolide AE (R1 = OC(O)CH2OC(O)CH2CH(CH3)2, R2 = R3 = H, R4 = OAc, R5 = OCH3) | [28] | ||
48 | Gemmacolide AF (R1 = R3 = R4 = OAc, R2 = R5 = OC(O)CH2CH(CH3)2) | [28] | ||
49 | Gemmacolide AG (R1 = R2 = R3 = R4 = OAc, R5 = OC(O)CH2CH(CH3)2) | [28] | ||
50 | Gemmacolide AH (R1 = OC(O)CH2OC(O)CH2CH(CH3)2, R2 = R5 = OC(O)CH2CH(CH3)2, R3 = R4 = OAc) | [28] | ||
51 | Gemmacolide AI (R1 = OC(O)CH2OC(O)CH2CH(CH3)2, R2 = OH, R3 = R4 = OAc, R5 = OC(O)CH2CH(CH3)2) | [28] | ||
52 | Gemmacolide AJ (R1 = OC(O)CH2OC(O)CH2CH(CH3)2, R2 = OC(O)CH2CH(CH3)2, R3 = R4 = OAc, R5 = Cl) | [28] | ||
53 | Gemmacolide AK (R1 = OC(O)CH2OH, R2 = R4 = OAc, R3 = OC(O)CH2CH(CH3)2, R5 = OCH3) | [28] | ||
54 | Gemmacolide AL (R1 = OC(O)CH2OC(O)CH2CH(CH3)2, R2 = R4 = OAc, R3 = OC(O)CH2CH(CH3)2, R5 = OCH3) | [28] | ||
55 | Gemmacolide AM (R1 = OC(O)CH2OC(O)CH2CH(CH3)2, R2 = R4 = OAc, R3 = OC(O)CH2CH(CH3)2, R5 = Cl) | briaranes 63, 64, 66–71 and 75 showed antifouling activity against the larval settlement of barnacle B. amphitrite (EC50 = 4.1, 1.82, 6.3, 7.6, 4.6, 1.2, 5.6, 0.70, 2.0 μg/mL) | [28] | |
56 | Gemmacolide AN (R1 = OC(O)CH2OH, R2 = R4 = OAc, R3 = OC(O)CH2CH(CH3)2, R5 = Cl) | [28] | ||
57 | Gemmacolide AO (R1 = OC(O)CH2OH, R2 = R3 = R5 = OC(O)CH2CH(CH3)2, R4 = OAc) | [28] | ||
58 | Gemmacolide AP (R1 = OC(O)CH2OH, R2 = R3 = OAc, R4 = OC(O)CH2CH(CH3)2, R5 = Cl) | [28] | ||
59 | Gemmacolide AQ (R1 = R2 = R3 = OAc, R4 = OC(O)CH2CH(CH3)2, R5 = OH) | [28] | ||
60 | Gemmacolide AR (R1 = R2 = R3 = R5 = OAc, R4 = OC(O)CH2CH(CH3)2) | [28] | ||
61 | Dichotellide F (R1 = OC(O)CH2OC(O)CH2CH(CH3)2, R2 = R3 = R4 = OAc, R5 = OCH3) | [35] | ||
62 | Dichotellide G (R1 = OC(O)CH2OC(O)CH2CH(CH3)2, R2 = R4 = OAc, R3 = OC(O)CH2CH(CH3)2, R5 = OCH3) | [35] | ||
63 | Dichotellide H (R1 = OC(O)CH2OC(O)CH2CH(CH3)2, R2 = OC(O)CH2CH(CH3)2, R3 = R4 = OAc, R5 = Cl) | [35] | ||
64 | Dichotellide I (R1 = OC(O)CH2OC(O)CH2CH(CH3)2, R2 = R3 = R4 = OAc, R5 = OC(O)CH2CH(CH3)2) | [35] | ||
65 | Dichotellide J (R1 = R2 = R3 = R4 = R5 = OAc) | [35] | ||
66 | Dichotellide K (R1 = R2 = R4 = OAc, R3 = R5 = OC(O)CH2CH(CH3)2) | [35] | ||
67 | Dichotellide L (R1 = R2 = R3 = OAc, R4 = R5 = OC(O)CH2CH(CH3)2) | [35] | ||
68 | Dichotellide M (R1 = R4 = OAc, R2 = R3 = OC(O)CH2CH(CH3)2, R5 = OCH3) | [35] | ||
69 | Dichotellide N (R1 = R2 = OAc, R3 = H, R4 = OC(O)CH2CH(CH3)2, R5 = OCH3) | [35] | ||
- | 70 | Dichotellide O (R1 = R4 = OAc, R2 = OC(O)CH2CH(CH3)2, R3 = H, R5 = OCH3) | - | [35] |
71 | Dichotellide P (R1 = R2 = OAc, R3 = H, R4 = R5 = OC(O)CH2CH(CH3)2) | [35] | ||
72 | Dichotellide Q (R1 = OAc, R2 = R4 = OH, R3 = OC(O)CH2CH(CH3)2, R5 = Cl) | [35] | ||
73 | Dichotellide R (R1 = OAc, R2 = R4 = OH, R3 = R5 = OC(O)CH2CH(CH3)2) | [35] | ||
74 | Dichotellide S (R1 = R3 = OAc, R2 = R4 = OH, R5 = OC(O)CH2CH(CH3)2) | [35] | ||
75 | Dichotellide U (R = CH2OC(O)CH2CH(CH3)2) | [35] | ||
| 37 | Gemmacolide T (R1 = R4 = OAc, R2 = OC(O)CH2CH(CH3)2, R3 = H) | briaranes 37–42 exhibited cytotoxicity toward A549 (IC50 = 16.9, 18.0, <1.5, 19.1, >45.7, <0.3 μM) and MG63 (IC50 = 18.0, 15.1, 20.5, 17.4, >45.7, <0.3 μM) cells briaranes 37–42 exhibited antibacterial activity against E. coli (Ф = 19.0, 20.0, 20.0, 17.0, 20.0, 34.0 mm) briaranes 37–42 exhibited antifungal activity against M. violaceum (Ф = 14.0, 9.5, 11.0, 13.0, 15.0, 11.0 mm) and S. tritici (Ф = 14.0, 9.5, 13.0, 17.0, 12.0, 13.0 mm) | [27] |
38 | Gemmacolide U (R1 = R2 = OAc, R3 = H, R4 = OC(O)CH2CH(CH3)2) | [27] | ||
39 | Gemmacolide V (R1 = R2 = R4 = OAc, R3 = H) | [27] | ||
40 | Gemmacolide W (R1 = R3 = OC(O)CH2CH(CH3)2, R2 = R4 = OAc) | [27] | ||
41 | Gemmacolide X (R = OAc) (=Dichotellide T) | [27,35] | ||
42 | Gemmacolide Y (R = OC(O)CH2CH(CH3)2) | [27] |
2.3. Genus Junceella (Family Ellisellidae)
2.3.1. Junceella fragilis
Structure | No. | Name | Bioactivity | Ref. |
---|---|---|---|---|
76 | Frajunolide L (R1 = R2 = OAc, R3 = CH3) | briaranes 76, 80 and 81 showed inhibitory effects on the generation of superoxide anion (inhibition rate = 18.7%, 32.5%, 28.7%) and the release of elastase (inhibition rate = 16.2%, 35.6%, 34.1%) at 10 μg/mL | [41] | |
80 | Frajunolide P (R1 = OC(O)C(CH3)3, R2 = H, R3 = C(O)OCH3) | [42] | ||
81 | Frajunolide Q (R1 = OAc, R2 = H, R3 = C(O)OCH3) | [42] | ||
77 | Frajunolide M | briaranes 77–79 and 82 showed inhibitory effects on the release of elastase (inhibition rate = 13.1%, 22.3%, 17.2%, 16.0%) at 10 μg/mL | [41] | |
78 | Frajunolide N | - | [41] | |
79 | Frajunolide O | - | [41] | |
82 | Frajunolide R | - | [42] | |
83 | Frajunolide S | - | [42] |
2.3.2. Junceella juncea
Structure | No. | Name | Bioactivity | Ref. |
---|---|---|---|---|
84 | R = OC(O)CH2CH(CH3)2a | showed moderate activity against the fungi Aspergillus niger, Candida albicans and Penicillium notatum (inhibition zone = 18, 17, 16 mm) | [43] | |
85 | Juncenolide M | briaranes 85–87 showed inhibitory effects on the release of elastase (inhibition rate = 15.9%, 29.0%, 35.9%) at 10 μg/mL | [47] | |
86 | Juncenolide N (R1 = OH, R2 = H, R3 = CH3) | - | [47] | |
87 | Juncenolide O (R1 = R2 = OAc, R3 = C(O)OCH3) | showed an inhibitory effect on the generation of superoxide anion (inhibition rate = 27.6%) at 10 μg/mL | [47] |
2.4. Genus Verrucella (Family Ellisellidae)
2.4.1. Verrucella umbraculum
3. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sung, P.-J.; Sheu, J.-H.; Xu, J.-P. Survey of briarane-type diterpenoids of marine origin. Heterocycles 2002, 57, 535–579. [Google Scholar] [CrossRef]
- Sung, P.-J.; Chang, P.-C.; Fang, L.-S.; Sheu, J.-H.; Chen, W.-C.; Chen, Y.-P.; Lin, M.-R. Survey of briarane-related diterpenoids: Part II. Heterocycles 2005, 65, 195–204. [Google Scholar] [CrossRef]
- Sung, P.-J.; Sheu, J.-H.; Wang, W.-H.; Fang, L.-S.; Chung, H.-M.; Pai, C.-H.; Su, Y.-D.; Tsai, W.-T.; Chen, B.-Y.; Lin, M.-R.; et al. Survey of briarane-type diterpenoids—Part III. Heterocycles 2008, 75, 2627–2648. [Google Scholar] [CrossRef]
- Sung, P.-J.; Su, J.-H.; Wang, W.-H.; Sheu, J.-H.; Fang, L.-S.; Wu, Y.-C.; Chen, Y.-H.; Chung, H.-M.; Su, Y.-D.; Chang, Y.-C. Survey of briarane-type diterpenoids—Part IV. Heterocycles 2011, 83, 1241–1258. [Google Scholar] [CrossRef]
- Meginley, R.J.; Gupta, P.; Schulz, T.C.; McLean, A.B.; Robins, A.J.; West, L.M. Briareolate esters from the gorgonian Briareum asbestinum. Mar. Drugs 2012, 10, 1662–1670. [Google Scholar] [CrossRef]
- Gupta, P.; Sharma, U.; Schulz, T.C.; Sherrer, E.S.; McLean, A.B.; Robins, A.J.; West, L.M. Bioactive diterpenoid containing a reversible “spring-loaded” (E,Z)-dieneone Michael acceptor. Org. Lett. 2011, 13, 3920–3923. [Google Scholar]
- Dookran, R.; Maharaj, D.; Mootoo, B.S.; Ramsewak, R.; McLean, S.; Reynolds, W.F.; Tinto, W.F. Briarane and asbestinane diterpenes from Briareum asbestinum. Tetrahedron 1994, 50, 1983–1992. [Google Scholar]
- Mootoo, B.S.; Ramsewak, R.; Sharma, R.; Tinto, W.F.; Lough, A.J.; McLean, S.; Reynolds, W.F.; Yang, J.-P.; Yu, M. Further briareolate esters and briareolides from the Caribbean gorgonian octocoral Briareum asbestinum. Tetrahedron 1996, 52, 9953–9962. [Google Scholar] [CrossRef]
- Yeh, T.-T.; Wang, S.-K.; Dai, C.-F.; Duh, C.-Y. Briacavatolides A–C, new briaranes from the Taiwanese octocoral Briareum excavatum. Mar. Drugs 2012, 10, 1019–1026. [Google Scholar] [CrossRef]
- Wang, S.-K.; Yeh, T.-T.; Duh, C.-Y. Briacavatolides D–F, new briaranes from the Taiwanese octocoral Briareum excavatum. Mar. Drugs 2012, 10, 2103–2110. [Google Scholar] [CrossRef]
- Wu, S.-L.; Sung, P.-J.; Su, J.-H.; Sheu, J.-H. Briaexcavatolides S–V, four new briaranes from a Formosan gorgonian Briareum excavatum. J. Nat. Prod. 2003, 66, 1252–1256. [Google Scholar] [CrossRef]
- Sung, P.-J.; Lin, M.-R.; Su, Y.-D.; Chiang, M.Y.; Hu, W.-P.; Su, J.-H.; Cheng, M.-C.; Hwang, T.-L.; Sheu, J.-H. New briaranes from the octocorals Briareum excavatum (Briareidae) and Junceella fragilis (Ellisellidae). Tetrahedron 2008, 64, 2596–2604. [Google Scholar] [CrossRef]
- Joyner, P.M.; Waters, A.L.; Williams, R.B.; Powell, D.R.; Janakiram, N.B.; Rao, C.V.; Cichewicz, R.H. Briarane diterpenes diminish COX-2 expression in human colon adenocarcinoma cells. J. Nat. Prod. 2011, 74, 857–861. [Google Scholar] [CrossRef]
- Ota, K.; Okamoto, N.; Mitome, H.; Miyaoka, H. Briaroxalides: Novel diepoxybriarane diterpenes from an Okinawan gorgonian Briareum sp. Heterocycles 2012, 85, 135–145. [Google Scholar] [CrossRef]
- Aoki, S.; Okano, M.; Matsui, K.; Itoh, T.; Satari, R.; Akiyama, S.; Kobayashi, M. Brianthein A, a novel briarane-type diterpene reversing multidrug resistance in human carcinoma cell line, from the gorgonian Briareum excavatum. Tetrahedron 2001, 57, 8951–8957. [Google Scholar] [CrossRef]
- Iwagawa, T.; Takayama, K.; Okamura, H.; Nakatani, M.; Doe, M. New briarane diterpenes from a gorgonacean Briareum sp. Heterocycles 1999, 51, 1653–1659. [Google Scholar] [CrossRef]
- Iwagawa, T.; Nishitani, N.; Nakatani, M.; Doe, M.; Morimoto, Y.; Takemura, K. Briarlides I–R, briarane diterpenes from a gorgonian Briareum sp. J. Nat. Prod. 2005, 68, 31–35. [Google Scholar] [CrossRef]
- Hong, P.-H.; Su, Y.-D.; Lin, N.-C.; Chen, Y.-H.; Kuo, Y.-H.; Hwang, T.-L.; Wang, W.-H.; Chen, J.-J.; Sheu, J.-H.; Sung, P.-J. Briarenolide E: The first 2-ketobriarane diterpenoid from an octocoral Briareum sp. (Briareidae). Tetrahedron Lett. 2012, 53, 1710–1712. [Google Scholar] [CrossRef]
- Hong, P.-H.; Su, Y.-D.; Su, J.-H.; Chen, Y.-H.; Hwang, T.-L.; Weng, C.-F.; Lee, C.-H.; Wen, Z.-H.; Sheu, J.-H.; Lin, N.-C.; et al. Briarenolides F and G, new briarane diterpenoids from a Briareum sp. octocoral. Mar. Drugs 2012, 10, 1156–1168. [Google Scholar] [CrossRef]
- Qi, S.-H.; Zhang, S.; Huang, H.; Xiao, Z.-H.; Huang, J.-S.; Li, Q.-X. New briaranes from the South China Sea gorgonian Junceella juncea. J. Nat. Prod. 2004, 67, 1907–1910. [Google Scholar] [CrossRef]
- Qi, S.-H.; Zhang, S.; Qian, P.-Y.; Xiao, Z.-H.; Li, M.-Y. Ten new antifouling briarane diterpenoids from the South China Sea gorgonian Junceella juncea. Tetrahedron 2006, 62, 9123–9130. [Google Scholar] [CrossRef]
- Shin, J.; Park, M.; Fenical, W. The junceellolides, new anti-inflammatory diterpenoids of the briarane class from the Chinese gorgonian Junceella fragilis. Tetrahedron 1989, 45, 1633–1638. [Google Scholar] [CrossRef]
- Sung, P.-J.; Pai, C.-H.; Su, Y.-D.; Hwang, T.-L.; Kuo, F.-W.; Fan, T.-Y.; Li, J.-J. New 8-hydroxybriarane diterpenoids from the gorgonians Junceella juncea and Junceella fragilis (Ellisellidae). Tetrahedron 2008, 64, 4224–4232. [Google Scholar] [CrossRef]
- Zhou, Y.-M.; Shao, C.-L.; Wang, C.-Y.; Huang, H.; Xu, Y.; Qian, P.-Y. Chemical constituents of the gorgonian Dichotella fragilis (Ridleg) from the South China Sea. Nat. Prod. Commun. 2011, 6, 1239–1242. [Google Scholar]
- Li, C.; La, M.-P.; Li, L.; Li, X.-B.; Tang, H.; Liu, B.-S.; Krohn, K.; Sun, P.; Yi, Y.-H.; Zhang, W. Bioactive 11,20-epoxy-3,5(16)-diene briarane diterpenoids from the South China Sea gorgonian Dichotella gemmacea. J. Nat. Prod. 2011, 74, 1658–1662. [Google Scholar] [CrossRef]
- Li, C.; La, M.-P.; Sun, P.; Kurtan, T.; Mandi, A.; Tang, H.; Liu, B.-S.; Yi, Y.-H.; Li, L.; Zhang, W. Bioactive (3Z,5E)-11,20-epoxybriara-3,5-dien-7,18-olide diterpenoids from the South China Sea gorgonian Dichotella gemmacea. Mar. Drugs 2011, 9, 1403–1418. [Google Scholar] [CrossRef]
- Li, C.; La, M.-P.; Tang, H.; Pan, W.-H.; Sun, P.; Krohn, K.; Yi, Y.-H.; Li, L.; Zhang, W. Bioactive briarane diterpenoids from the South China Sea gorgonian Dichotella gemmacea. Bioorg. Med. Chem. Lett. 2012, 22, 4368–4372. [Google Scholar] [CrossRef]
- Li, C.; Jiang, M.; La, M.-P.; Li, T.-J.; Tang, H.; Sun, P.; Liu, B.-S.; Yi, Y.-H.; Liu, Z.; Zhang, W. Chemistry and tumor cell growth inhibitory activity of 11,20-epoxy-3Z,5(6)E-diene briaranes from the South China Sea gorgonian Dichotella gemmacea. Mar. Drugs 2013, 11, 1565–1582. [Google Scholar] [CrossRef]
- Li, C.; La, M.-P.; Li, L.; Li, X.-B.; Tang, H.; Liu, B.-S.; Krohn, K.; Sun, P.; Yi, Y.-H.; Zhang, W. Correction to bioactive 11,20-epoxy-3,5(16)-diene briarane diterpenoids from the South China Sea gorgonian Dichotella gemmacea. J. Nat. Prod. 2012, 75, 2047. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Hwang, T.-L.; Huang, S.-K.; Huang, L.-W.; Lin, M.-R.; Sung, P.-J. 12-epi-Fragilide E, a new briarane-type diterpenoid from the gorgonian coral Ellisella robusta. Heterocycles 2010, 81, 991–996. [Google Scholar] [CrossRef]
- Shen, Y.-C.; Lin, Y.-C.; Ko, C.-L.; Wang, L.-T. New briaranes from the Taiwanese gorgonian Junceella juncea. J. Nat. Prod. 2003, 66, 302–305. [Google Scholar] [CrossRef]
- Wang, S.-S.; Chen, Y.-H.; Chang, J.-Y.; Hwang, T.-L.; Chen, C.-H.; Khalil, A.T.; Shen, Y.-C. Juncenolides H–K, new briarane diterpenoids from Junceella juncea. Helv. Chim. Acta 2009, 92, 2092–2100. [Google Scholar] [CrossRef]
- Luo, Y.; Long, K.; Fang, Z. Studies of the chemical constituents of the Chinese gorgonian (III)—Isolation and identification of a new polyacetoxy chlorine-containing diterpene lactone (praelolide). Zhongshan Daxue Xuebao Ziran Kexueban (Acta Scientiarum Naturalium Universitatis Sunyatseni) 1983, 83–92. (In Chinese) [Google Scholar]
- Sung, P.-J.; Fan, T.-Y.; Fang, L.-S.; Wu, S.-L.; Li, J.-J.; Chen, M.-C.; Cheng, Y.-M.; Wang, G.-H. Briarane derivatives from the gorgonian coral Junceella fragilis. Chem. Pharm. Bull. 2003, 51, 1429–1431. [Google Scholar] [CrossRef]
- Sun, J.-F.; Han, Z.; Zhou, X.-F.; Yang, B.; Lin, X.; Liu, J.; Peng, Y.; Yang, X.-W.; Liu, Y. Antifouling briarane type diterpenoids from South China Sea gorgonians Dichotella gemmacea. Tetrahedron 2013, 69, 871–880. [Google Scholar] [CrossRef]
- Isaacs, S.; Carmely, S.; Kashman, Y. Juncins A–F, six new briarane diterpenoids from the gorgonian Junceella juncea. J. Nat. Prod. 1990, 53, 596–602. [Google Scholar]
- Sheu, J.-H.; Chen, Y.-P.; Hwang, T.-L.; Chiang, M.Y.; Fang, L.-S.; Sung, P.-J. Junceellolides J–L, 11,20-epoxybriaranes from the gorgonian coral Junceella fragilis. J. Nat. Prod. 2006, 69, 269–273. [Google Scholar] [CrossRef]
- Sun, J.-F.; Huang, H.; Chai, X.-Y.; Yang, X.-W.; Meng, L.; Huang, C.-G.; Zhou, X.-F.; Yang, B.; Hu, J.; Chen, X.-Q.; et al. Dichotellides A–E, five new iodine-containing briarane type diterpenoids from Dichotella gemmacea. Tetrahedron 2011, 67, 1245–1250. [Google Scholar] [CrossRef]
- Lin, Y.; Long, K. Studies of the chemical constituents of the Chinese gorgonian (IV)—junceellin, a new chlorine-containing diterpenoid from Junceella squamat. Zhongshan Daxue Xuebao, Ziran Kexueban (Acta Scientiarum Naturalium Universitatis Sunyatseni) 1983, 46–51. (In Chinese) [Google Scholar]
- Long, K.; Lin, Y.; Huang, W. Studies on the chemical constituents of the Chinese gorgonian VI—Junceellin B, a new chlorine-containing diterpenoid from Junceella squamata. Zhongshan Daxue Xuebao, Ziran Kexueban (Acts Scientiarum Naturalium Universitatis Sunyatseni) 1987, 15–20. (In Chinese) [Google Scholar]
- Liaw, C.-C.; Kuo, Y.-H.; Lin, Y.-S.; Hwang, T.-L.; Shen, Y.-C. Frajunolides L–O, four new 8-hydroxybriarane diterpenoids from the gorgonian Junceella fragilis. Mar. Drugs 2011, 9, 1477–1486. [Google Scholar]
- Liaw, C.-C.; Lin, Y.-C.; Lin, Y.-S.; Chen, C.-H.; Hwang, T.-L.; Shen, Y.-C. Four new briarane diterpenoids from Taiwanese gorgonian Junceella fragilis. Mar. Drugs 2013, 11, 2042–2053. [Google Scholar] [CrossRef]
- Murthy, Y.L.N.; Mallika, D.; Rajack, A.; Reddy, G.D. A new antifungal briarane diterpenoid from the gorgonian Junceella juncea Pallas. Bioorg. Med. Chem. Lett. 2011, 21, 7522–7525. [Google Scholar] [CrossRef]
- He, H.-Y.; Faulkner, D.J. New chlorinated diterpenes from the gorgonian Junceella gemmacea. Tetrahedron 1991, 47, 3271–3280. [Google Scholar] [CrossRef]
- Anjaneyulu, A.S.R.; Rao, N.S.K. Juncins G and H: new briarane diterpenoids of the Indian Ocean gorgonian Junceella juncea Pallas. J. Chem. Soc. Perkin Trans. 1 1997, 959–962. [Google Scholar] [CrossRef]
- Anjaneyulu, A.S.R.; Rao, V.L.; Sastry, V.G.; Venugopal, M.J.R.V.; Schmitz, F.J. Juncins I–M, five new briarane diterpenoids from the Indian Ocean gorgonian Junceella juncea Pallas. J. Nat. Prod. 2003, 66, 507–510. [Google Scholar] [CrossRef]
- Chang, J.-Y.; Liaw, C.-C.; Fazary, A.E.; Hwang, T.-L.; Shen, Y.-C. New briarane diterpenoids from the gorgonian coral Junceella juncea. Mar. Drugs 2012, 10, 1321–1330. [Google Scholar] [CrossRef]
- Sung, P.-J.; Tsai, W.-T.; Chiang, M.Y.; Su, Y.-M.; Kuo, J. Robustolides A–C, three new briarane-type diterpenoids from the female gorgonian coral Ellisella robusta (Ellisellidae). Tetrahedron 2007, 63, 7582–7588. [Google Scholar] [CrossRef]
- Keifer, P.A.; Rinehart, K.L., Jr.; Hooper, I.R. Renillafoulins, antifouling diterpenes from the sea pansy Renilla reniformis (octocorallia). J. Org. Chem. 1986, 51, 4450–4454. [Google Scholar] [CrossRef]
- Look, S.A.; Fenical, W.; van Engen, D.; Clardy, J. Erythrolides: unique marine diterpenoids interrelated by a naturally occurring di-π-methane rearrangement. J. Am. Chem. Soc. 1984, 106, 5026–5027. [Google Scholar] [CrossRef]
- Qi, S.-H.; Zhang, S.; Wen, Y.-M.; Xiao, Z.-H.; Li, Q.-X. New briaranes from the South China Sea gorgonian Junceella fragilis. Helv. Chim. Acta 2005, 88, 2349–2354. [Google Scholar] [CrossRef]
- Shen, Y.-C.; Chen, Y.-H.; Hwang, T.-L.; Guh, J.-H.; Khalil, A.T. Four new briarane diterpenoids from the gorgonian coral Junceella fragilis. Helv. Chim. Acta 2007, 90, 1391–1398. [Google Scholar] [CrossRef]
- Huang, R.; Wang, B.; Liu, Y. Briarane-type diterpenoids from the gorgonian coral Verrucella umbraculum. Chem. Nat. Comp. 2012, 48, 516–517. [Google Scholar] [CrossRef]
- Burks, J.E.; van der Helm, D.; Chang, C.Y.; Ciereszko, L.S. The crystal and molecular structure of briarein A, a diterpenoid from the gorgonian Briareum asbestinum. Acta Cryst. 1977, B33, 704–709. [Google Scholar]
- Rocha, J.; Peixe, L.; Gomes, N.C.M.; Calado, R. Cnidarians as a new marine bioactive compounds—An overview of the last decade and future steps for bioprospecting. Mar. Drugs 2011, 9, 1860–1886. [Google Scholar] [CrossRef]
- Leal, M.C.; Calado, R.; Sheridan, C.; Alimonti, A.; Osinga, R. Coral aquaculture to support drug discovery. Trends Biotechnol. 2013, 31, 555–561. [Google Scholar] [CrossRef]
- Bowden, B.F.; Vasilescu, I.M. Biomedical Potential of Unchlorinated Briarane Diterpenes from Gorgonians and Sea Pens. In Marine Biomaterials: Characterization, Isolation and Application; Kim, S.-K., Ed.; CRC Press: Washington, DC, USA, 2013; pp. 481–518. [Google Scholar]
- Liu, Y.; Lin, X.; Yang, B.; Liu, J.; Zhou, X.; Peng, Y. Cytotoxic Briarane-Type Diterpenoids. In Marine Phamacognosy: Trends and Applications; Kim, S.-K., Ed.; CRC Press: Washington, DC, USA, 2012; pp. 53–63. [Google Scholar]
- Wei, W.-C.; Sung, P.-J.; Duh, C.-Y.; Chen, B.-W.; Sheu, J.-H.; Yang, N.-S. Anti-Inflammatory activities of natural products isolated from soft corals of Taiwan between 2008 and 2012. Mar. Drugs 2013, 11, 4083–4126. [Google Scholar] [CrossRef]
- Wei, W.-C.; Lin, S.-Y.; Chen, Y.-J.; Wen, C.-C.; Huang, C.-Y.; Palanisamy, A.; Yang, N.-S.; Sheu, J.-H. Topical application of marine briarane-type diterpenes effectively inhibits 12-O-tetradecanoylphorbol-13-acetate-induced inflammation and dermatitis in murine skin. J. Biomed. Sci. 2011, 18, 94. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Sheu, J.-H.; Chen, Y.-H.; Chen, Y.-H.; Su, Y.-D.; Chang, Y.-C.; Su, J.-H.; Weng, C.-F.; Lee, C.-H.; Fang, L.-S.; Wang, W.-H.; et al. Briarane Diterpenoids Isolated from Gorgonian Corals between 2011 and 2013. Mar. Drugs 2014, 12, 2164-2181. https://doi.org/10.3390/md12042164
Sheu J-H, Chen Y-H, Chen Y-H, Su Y-D, Chang Y-C, Su J-H, Weng C-F, Lee C-H, Fang L-S, Wang W-H, et al. Briarane Diterpenoids Isolated from Gorgonian Corals between 2011 and 2013. Marine Drugs. 2014; 12(4):2164-2181. https://doi.org/10.3390/md12042164
Chicago/Turabian StyleSheu, Jyh-Horng, Yung-Husan Chen, Yu-Hsin Chen, Yin-Di Su, Yu-Chia Chang, Jui-Hsin Su, Ching-Feng Weng, Chia-Hung Lee, Lee-Shing Fang, Wei-Hsien Wang, and et al. 2014. "Briarane Diterpenoids Isolated from Gorgonian Corals between 2011 and 2013" Marine Drugs 12, no. 4: 2164-2181. https://doi.org/10.3390/md12042164
APA StyleSheu, J. -H., Chen, Y. -H., Chen, Y. -H., Su, Y. -D., Chang, Y. -C., Su, J. -H., Weng, C. -F., Lee, C. -H., Fang, L. -S., Wang, W. -H., Wen, Z. -H., Wu, Y. -C., & Sung, P. -J. (2014). Briarane Diterpenoids Isolated from Gorgonian Corals between 2011 and 2013. Marine Drugs, 12(4), 2164-2181. https://doi.org/10.3390/md12042164