Toxic Picoplanktonic Cyanobacteria—Review
Abstract
:1. Introduction
2. Cyanobacterial Blooms
3. Morphology and Physiology of Picocyanobacteria
4. Harmfulness and Toxicity
4.1. Hepatotoxins
4.2. Neurotoxins
4.3. Cytotoxins
4.4. Dermotoxins
4.5. Other Toxic Compounds
5. Conclusions
Genus | Species/Strain | Toxin | Source |
---|---|---|---|
Synechocystis | Synechocystis | LPS | [86,108,127,168,169] |
Microcystin | |||
BMAA | |||
Synechocystis aqualitis | Microcystin LR | [124] | |
Synechocystis (SyncWTP97) | Microcystin | [176] | |
Synechococcus | Synechococcus nidulans CCALA 188 | Microcystin | [126] |
Synechococcus | LPS | [86,108,127,128,168,169,177] | |
Microcystin | |||
BMAA | |||
Nodularin | |||
Synechococcus PCC 6301 | BMAA | [148] | |
Synechococcus SS-1 | Microcystin | [127] | |
Synechococcus BP-1 | Thionsulfolipid | [175] | |
Synechococcus CENA 108 | Microcystin | [125] | |
Cyanodictyon | Cyanodictyon planctonicum | Nodularin | [128] |
Cyanodictyon imperfectum | Nodularin | [128] | |
Cyanobium | Cyanobium rubescens SAG 381 | Microcystin | [126] |
Cyanobacterium | Cyanobacterium cedrorum CCAP 1479/2a | Microcystin | [126] |
Aphanocapsa | Aphanocapsa cumulus | Microcystin LR | [124,178] |
Aphanocapsa delicatissima | Nodularin | [128] | |
Aphanocapsa incerta | Nodularin | [128] | |
Aphanocapsa sp. | LPS Microcystin | [86] | |
Aphanothece | Aphanothece stratus | Nodularin | [178] |
Aphanothece parallelliformis | [128] | ||
Merismopedia | Merismopedia CENA106 | Microcystin | [125] |
Merismopedia tenuissima | Nodularin | [128] | |
Romeria | Romeria carauru | Microcystin | [178] |
Prochlorococcus | Prochlorococcus marinus CCMP1377 | BMAA | [148] |
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sieburth, J.M.N.; Smatacek, V.; Lenz, J. Pelagic ecosystem structure: Heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol. Oceanogr. 1978, 23, 1256–1263. [Google Scholar] [CrossRef]
- Johnson, P.W.; Sieburth, J.M.N. In situ morphology and occurrence of eukariotic phototrophs of bacterial size in the picoplankton of estuarine and oceanic waters. J. Phycol. 1982, 8, 318–327. [Google Scholar] [CrossRef]
- Stockner, J.G. Phototrophic picoplankton: An overview from marine and freshwater ecosystems. Limnol. Oceanogr. 1988, 33, 765–775. [Google Scholar] [CrossRef]
- Not, F.; Valentin, K.; Romari, K.; Lovejoy, C.; Massana, R.; Töbe, K.; Vaulot, D.; Medlin, L.K. Picobiliphytes: A marine picoplanktonic algal group with unknown affinities to other eukaryotes. Science 2007, 315, 253–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, P.W.; Sieburth, J.M.N. Chroococcoid cyanobacteria in the diverse phototrophic biomass. Limnol. Oceanogr. 1979, 24, 928–935. [Google Scholar] [CrossRef]
- Waterbury, J.B.; Watson, S.W.; Guillard, R.R.L.; Brand, L.E.E. Widespread occurrence of a unicellular, marine, planktonic cyanobacterium. Nature 1979, 227, 293–294. [Google Scholar] [CrossRef]
- Li, W.K.W.; Subba Rao, D.V.; Harrison, W.G.; Smith, J.C.; Cullen, J.J.; Irwin, B.; Platt, T. Autotrophic picoplankton in the tropical ocean. Science 1983, 219, 292–295. [Google Scholar] [CrossRef] [PubMed]
- Callieri, C.; Stockner, J.G. Freshwater autotrophic picoplankton: A review. J. Limnol. 2002, 61, 1–14. [Google Scholar] [CrossRef]
- Bailey-Watts, A.E.; Bindloss, M.E.; Belcher, J.H. Freshwater primary production by a blue-green alga of bacterial size. Nature 1968, 220, 1344–1345. [Google Scholar] [CrossRef] [PubMed]
- Holmes, R.W.; Anderson, G.C. Size fractionation of C14 labelled natural phytoplankton communities. In Symposium on Marine Microbiology; Oppenheimer, C.H., Ed.; Thomas Publisher: Springfield, IL, USA, 1963; pp. 241–250. [Google Scholar]
- Daley, R.J.; Hobbie, J.E. Direct counts of aquatic bacteria by a modified epifluorescence technique. Limnol. Oceanogr. 1975, 20, 875–882. [Google Scholar] [CrossRef]
- Olson, R.J.; Vaulot, D.; Chisholm, S.W. Marine phytoplankton distributions measured using shipboard flow cytometry. Deep-Sea Res. 1985, 32, 1273–1280. [Google Scholar] [CrossRef]
- Azam, F.; Fenchel, T.; Field, J.G.; Gray, J.S.; Meyer-Reil, L.A.; Thingstad, F. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 1983, 10, 257–263. [Google Scholar] [CrossRef]
- Worden, A.Z.; Nolan, J.K.; Palenik, B. Assessing the dynamics and ecology of marine picophytoplankton: The importance of the eukaryotic component. Limnol. Oceanogr. 2004, 49, 168–179. [Google Scholar] [CrossRef]
- Pomeroy, L.R.; Williams, P.J.L.; Azam, F.; Hobbie, J.E. The microbal loop. Oceanography 2007, 2, 28–33. [Google Scholar] [CrossRef]
- Weisse, T. The microbal food web and its sensitivy to eutrophication and contaminant enrichment: A cross-system overview. Int. Revue Ges. Hydrobiol. 1991, 76, 327–337. [Google Scholar] [CrossRef]
- Weisse, T. Dynamicsof autotrophic picoplankton in marine and freshwater ecosystems. In Advances in Microbial Ecology; Jones, J.G., Ed.; Plenum Press: New York, NY, USA, 1993; Volume 13, pp. 327–370. [Google Scholar]
- Chróst, R.J.; Siuda, W. Microbial production, utilization, and enzymatic degradation of organic matter in the upper trophogenic layer in the pelagial zone of lakes along a eutrophication gradient. Limnol. Oceanogr. 2006, 51, 749–762. [Google Scholar] [CrossRef]
- Ribes, M.; Coma, R.; Gili, J.M. Seasonal variation of particulate organic carbon, dissolved organic carbon and the contribution of microbal communities to the live particulate organic carbon in a shallow near-botton ecosystem at the Northwestern Mediterranean Sea. J. Plankton Res. 1999, 21, 1077–1100. [Google Scholar] [CrossRef]
- Weisse, T. Dynamics of autotrophic picoplankton in Lake Constance. J. Plankton Res. 1988, 10, 1179–1188. [Google Scholar] [CrossRef]
- Weisse, T. Freshwater ciliates as ecophysiological model organisms—lessons from Daphnia, major achievements, and future perspectives. Arch. Hydrobiol. 2006, 167, 371–402. [Google Scholar] [CrossRef]
- Callieri, C.; Karjalainen, S.M.; Passoni, S. Grazing by ciliates and heterotrophic nanoflagellates on picocyanobacteria in Lago Maggiore, Italy. J. Plankton Res. 2002, 24, 785–796. [Google Scholar] [CrossRef]
- Agasild, H.; Zingel, P.; Karus, K.; Kangro, K.; Salujöe, J.; Nöges, T. Does metazooplankton regulate the ciliate community in a shallow eutrophic lake? Freshw. Biol. 2013, 58, 183–191. [Google Scholar] [CrossRef]
- Fermani, P.; Diovisalvi, N.; Torremorell, A.; Lagomarsino, L.; Zagarese, H.E.; Unrein, F. The microbial food web structure of a hypertrophic warm-temperate shallow lake, as affected by contrasting zooplankton assemblages. Hydrobiologia 2013, 714, 115–130. [Google Scholar] [CrossRef]
- Jyothibabu, R.; Mohan, A.P.; Jagadeeesan, L.; Anjusha, A.; Muraleedharan, K.R.; Lallu, K.R.; Kiran, K.; Ullas, N. Ecology and trophic preference of picoplankton and nanoplankton in the Gulf of Mannar and the Palk Bay, southeast coast of India. J. Mar. Syst. 2013, 111–112, 29–44. [Google Scholar] [CrossRef]
- Sorokin, P.Y.; Sorokin, Y.I.; Boscolo, R.; Giovanardi, O. Bloom of picocyanobacteria in the Venice lagoon during summer–autumn 2001: Ecological sequences. Hydrobiologia 2004, 523, 71–85. [Google Scholar] [CrossRef]
- Parvathi, A.; Zhong, X.; Pradeep Ram, A.S.; Jacquet, S. Dynamics of auto- and heterotrophic picoplankton and associated viruses in Lake Geneva. Hydrol. Earth Syst. Sci. 2014, 18, 1073–1087. [Google Scholar] [CrossRef]
- Szeląg-Wasielewska, E. Picoplankton and other size groups of phytoplankton in various shallow lakes. Hydrobiologia 1997, 342–343, 79–85. [Google Scholar] [CrossRef]
- Vörös, L.; Mózes, A.; Somogyi, B. A five-year study of autotrophic winter picoplankton in Lake Balaton, Hungary. Aquat. Ecol. 2009, 43, 727–734. [Google Scholar] [CrossRef]
- Szeląg-Wasielewska, E. Autotrophic picoplankton dynamics in a small shallow lake. Hydrobiologia 1999, 408–409, 301–306. [Google Scholar] [CrossRef]
- Ning, X.; Cloern, J.E.; Cole, B.E. Spatial and temporal variability of picocyanobacteria Synechococcus sp. In San Francisco Bay. Limnol. Oceanogr. 2000, 45, 695–702. [Google Scholar] [CrossRef]
- Sorokin, Y.I.; Dallocchio, F. Dynamics of phosphorus in the Venice lagoon during a picocyanobacteria bloom. J. Plankton Res. 2008, 30, 1019–1026. [Google Scholar] [CrossRef]
- Sánchez-Baracaldo, P.; Handley, B.A.; Hayes, P.K. Picocyanobacterial community structure offreshwater lakes and the Baltic Sea revealed by phylogenetic analyses and clade-specificquantitative PCR. Microbiology 2008, 154, 3347–3357. [Google Scholar] [CrossRef] [PubMed]
- Palmer, C.M. Algae in water supplies of Ohio. Ohio J. Sci. 1962, 62, 225–244. [Google Scholar]
- Paerl, H.W. A comparison of cyanobacterial bloom dynamics in freshwater, estuarine and marine environments. Phycologia 1996, 35, 25–35. [Google Scholar] [CrossRef]
- Chorus, I.; Bartram, J. Toxic Cyanobacteria in Water, A Guide to Their Public Health Consequences, Monitoring and Management; WHO, Spon Press: London, UK, 1999. [Google Scholar]
- Codd, G.A. Harmful Algae News; IOC of UNESCO, United Nations Educational, Scientific and Cultural Organization: Paris, France, 1996. [Google Scholar]
- Błaszczyk, A.; Mazur-Marzec, H. BMAA and other cyanobacterial neurotoxins. PolHypRes 2006, 4, 7–14. [Google Scholar]
- Francis, G. Poisonous Australian Lake. Nature 1978, 18, 11–12. [Google Scholar] [CrossRef]
- Codd, G.A.; Oberemm, A.; Tarczyńska, M. Recognition and awareness-raising of toxic cyanobacterial blooms and associated poisonings at Lake Barlewice, Poland in 1884, and recent cyanobacterial toxin analyses. Ecohydrol. Hydrobiol. 2004, 4, 3–6. [Google Scholar]
- Mur, L.R.; Skulberg, O.M.; Utkilen, H. Cyanobacteria in the environment. In Toxic Cyanobacteria in Water. A Guide to Their Public Health Consequences; Chorus, I., Bartam, J., Eds.; St Edmundsbury Press: Bury St Edmunds, Suffolk, UK, 1999; pp. 15–39. [Google Scholar]
- Paerl, H.W. Assessing and managing nutrient-enhanced eutrophication in estuarine and coastal waters: Interactive effects of human and climatic perturbations. Ecol. Eng. 2006, 26, 40–54. [Google Scholar] [CrossRef]
- Callieri, C.; Stockner, J.G. Picocyanobacteria success in oligotrophic lakes: Fact or fiction? J. Limnol. 2000, 59, 72–76. [Google Scholar] [CrossRef]
- Bell, T.; Kalff, J. The contribution of picophytoplankton in marine and freshwater systems of different trophic status and depth. Limnol. Oceanogr. 2001, 46, 1243–1248. [Google Scholar] [CrossRef]
- Callieri, C. Picophytoplankton in freshwater ecosystems: The importance of small-sized phototrophs. Freshwat. Rev. 2008, 1, 1–28. [Google Scholar] [CrossRef]
- Stockner, J.; Callieri, C.; Cronberg, G. Picoplankton and other non-bloom-forming cyanobacteria in lakes. In The Ecology of Cyanobacteria: Their Diversity in Time and Space; Whitton, B.A., Potts, M., Eds.; Kluwer Academic Publishers: Dordrecht, Holland, 2000; pp. 195–231. [Google Scholar]
- Callieri, C.; Caravati, E.; Corno, G.; Bertoni, R. Picocyanobacterial community structure and space-time dynamics in the subalpine Lake Maggiore (N. Italy). J. Limnol. 2012, 71, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Crosbie, N.D.; Pöckl, M.; Weisse, T. Rapid establishment of clonal isolates of freshwater autotrophic picoplankton by single-cell and single-colony sorting. J. Microbiol. Meth. 2003, 55, 361–370. [Google Scholar] [CrossRef]
- Horn, H.; Horn, W. Bottom-up or top-down—How is the autotrophic picoplankton mainly controlled? Results of long-term investigations from two drinking water reservoirs of different trophic state. Limnologica 2008, 38, 302–312. [Google Scholar] [CrossRef]
- Callieri, C. Single cells and microcolonies of freshwater picocyanobacteria: A common ecology. J. Limnol. 2010, 69, 257–277. [Google Scholar] [CrossRef]
- Stockner, J.G. Autotrophic picoplankton in freshwater ecosystems: The view from the summit. Int. Revue Ges. Hydrobiol. 1991, 76, 493–402. [Google Scholar] [CrossRef]
- Komárková, J. Do cyanobacterial pikoplankton exist in eutrophic reservoirs? Verh. Internat. Limnol. 2002, 28, 497–500. [Google Scholar]
- Szeląg-Wasielewska, E. Dynamics of autotrophic picoplankton communities in the epilimnion of a eutrophic lake (Strzeszyńskie Lake, Poland). Ann. Limnol. Int. J. Lim. 2004, 40, 113–120. [Google Scholar] [CrossRef]
- Lavallée, B.F.; Pick, F.R. Picocyanobacteria abundance in relation to growth and loss rates in oligotrophic to mesotrophic lakes. Aquat. Microb. Ecol. 2002, 27, 37–46. [Google Scholar] [CrossRef]
- Stockner, J.G.; Shortreed, K.S. Autotrophic picoplankton: Community composition, abundance and distribution across a gradient of oligotrophic British Columbia and Yukon Territory lakes. Int. Revue Ges. Hydrobiol. 1991, 76, 581–601. [Google Scholar] [CrossRef]
- Gervais, F.; Padisák, J.; Koschel, R. Do light quality and low nutrient concentration favour picocyanobacteria below the thermocline of the oligotrophic Lake Stechlin? J. Plankton Res. 1997, 19, 771–781. [Google Scholar] [CrossRef]
- Šilović, T.; Balagué, V.; Orlić, S.; Pedrós-Alió, C. Picoplankton seasonal variation and community structure in the northeast Adriatic coastal zone. FEMS Microbiol. Ecol. 2012, 82, 678–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pick, F.R.; Agbeti, M. The seasonal dynamics and composition of photosynthetic picoplankton communities in temperate lakes in Ontario, Canada. Int. Rev. Ges. Hydrobiol. 1991, 76, 565–580. [Google Scholar] [CrossRef]
- Morris, I.; Glover, H. Physiology of photosynthesis by marine coccoid cyanobacteria—Some ecological implications. Limnol. Oceanogr. 1981, 26, 957–961. [Google Scholar] [CrossRef]
- Kana, T.M.; Gilbert, P.M. Effect of irradiances up to 2000 μE m-2 s-1 on marine Synechococcus WH7803-II. Photosynthetic responses and mechanisms. Deep-Sea Res. 1987, 34, 497–516. [Google Scholar] [CrossRef]
- Vörös, L.; Callieri, C.; Balogh, K.V.; Bertoni, R. Freshwater picocyanobacteria along a trophic gradient and light quality range. Hydrobiologia 1998, 369/370, 117–125. [Google Scholar] [CrossRef]
- Joniak, T.; Jakubowska, N.; Szeląg-Wasielewska, E. Degradation of the recreational functions of urban lake: A preliminary evaluation of water turbidity and light availability (Strzeszyńskie Lake, Western Poland). Pol. J. Nat. Sci. 2013, 28, 43–51. [Google Scholar]
- Vinebrooke, R.; Leavitt, P.R. Direct and interactive effects of allochthonous dissolved organic matter, inorganic nutrients, and ultraviolet radiation on an alpine littoral food web. Limnol. Oceanogr. 1998, 43, 1065–1081. [Google Scholar] [CrossRef]
- Greisberger, S.; Dokulil, M.T.; Teubner, K. A comparison of phytoplankton size-fractions in Mondsee, an alpine lake in Austria: Distribution, pigment composition and primary production rates. Aquat. Ecol. 2007, 42, 379–389. [Google Scholar] [CrossRef]
- Kneip, C.; Parbel, A.; Foerstendorf, H.; Scheer, H.; Siebert, F.; Hildebrandt, P. Fourier transform near-infrared resonance Raman spectroscopic study of the α-subunit of phycoerythrocyanin and phycocyanin from the cyanobacterium Mastigocladus laminosus. J. Raman Spectrosc. 1998, 29, 939–944. [Google Scholar] [CrossRef]
- Fresneau, C.; Rivière, M.E.; Arrio, B. Characterization of the plasmalemma ATPase from the cyanobacteria Synechococcus PCC 6311 and PCC 7942. Arch. Biochem. Biophys. 1993, 306, 254–260. [Google Scholar] [CrossRef]
- Allen, M.M.; Hutchison, F. Nitrogen limitation and recovery in the cyanobacterium Aphanocapsa 6308. Arch. Microbiol. 1980, 128, 1–7. [Google Scholar] [CrossRef]
- Wehr, J.D. Experimental tests of nutrient limitation in freshwater picoplankton. Appl. Environ. Microbiol. 1989, 45, 1196–1201. [Google Scholar]
- Agha, R.; Quesada, A. Oligopeptides as biomarkers of cyanobacterial subpopulations. Toward an understanding of their biological role. Toxins 2014, 6, 1929–1950. [Google Scholar] [CrossRef] [PubMed]
- Ersmark, K.; del Valle, J.R.; Hanessian, S. Chemistry and biology of the aeruginosin family of serine protease inhibitors. Angew. Chem. Int. Ed. 2008, 47, 1202–1223. [Google Scholar] [CrossRef]
- Harada, K.-I.; Fujii, K.; Shimada, T.; Suzuki, M.; Sano, H.; Adachi, K.; Carmichael, W.W. Two cyclic peptides, anabaenopeptins, a third group of bioactive compounds from the cyanobacterium Anabaena flos-aquae NRC525–17. Tetrahedron Lett. 1995, 36, 1511–1514. [Google Scholar] [CrossRef]
- Martin, C.; Oberer, L.; Ino, T.; König, W.A.; Busch, M.; Weckesser, J. Cyanopeptolins, new depsipeptides from the cyanobacterium Microcystis sp. PCC7806. J. Antibiot. 1993, 46, 1550. [Google Scholar] [CrossRef] [PubMed]
- Todorova, A.K.; Jüttner, F.; Linden, A.; Pluess, T.; von Philipsborn, W. Nostocyclamide: A new macrocyclic, thiazole-containing allelochemical from Nostoc sp. 31 (Cyanobacteria). J. Organ. Chem. 1995, 60, 7891–7895. [Google Scholar] [CrossRef]
- Carmichael, W. Cyanobacteria secondary metabolites-The cyanotoxins. J. Appl. Microbiol. 1992, 72, 445–459. [Google Scholar]
- Okino, T.; Matsuda, H.; Murakami, M.; Yamaguchi, K. Microginin, an angiotensin-converting enzyme inhibitor from the blue-green alga Microcystis aeruginosa. Tetrahedron Lett. 1993, 34, 501–504. [Google Scholar] [CrossRef]
- Ishitsuka, M.O.; Kusumi, T.; Kakisawa, H.; Kaya, K.; Watanabe, M.M. Microviridin. A novel tricyclic depsipeptide from the toxic cyanobacterium Microcystis viridis. J. Am. Chem. Soc. 1990, 112, 8180–8182. [Google Scholar]
- Welker, M.; von Döhren, H. Cyanobacterial peptides-Nature’s own combinatorial biosynthesis. FEMS Microbiol. Rev. 2006, 30, 530–563. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, E.W.; Nelson, J.T.; Rasko, D.A.; Sudek, S.; Eisen, J.A.; Haygood, M.G.; Ravel, J. Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. Proc. Natl. Acad. Sci. USA 2005, 102, 7315–7320. [Google Scholar] [CrossRef] [PubMed]
- Arnison, P.G.; Bibb, M.J.; Bierbaum, G.; Bowers, A.A.; Bugni, T.S.; Bulaj, G.; Camarero, J.A.; Campopiano, D.J.; Challis, G.L.; Clardy, J.; et al. Ribosomally synthesized and posttranslationally modified peptide natural products: Overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 2013, 30, 108–160. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, E.W.; Donia, M.S. Cyanobactin ribosomally synthesized peptides-a case of deep metagenome mining. Meth. Enzymol. 2009, 458, 575–596. [Google Scholar] [PubMed]
- Leikoski, N.; Fewer, D.P.; Jokela, J.; Wahlsten, M.; Rouhiainen, L.; Sivonen, K. Highly diverse cyanobactins in strains of the genus Anabaena. Appl. Environ. Microbiol. 2010, 76, 701–709. [Google Scholar] [CrossRef] [PubMed]
- Shih, P.M.; Wu, D.; Latifi, A.; Axen, S.D.; Fewer, D.P.; Talla, E.; Calteau, A.; Cai, F.; de Marsac, N.T.; Rippka, R.; et al. Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. PNAS 2013, 110, 1053–1058. [Google Scholar] [CrossRef] [PubMed]
- Journey, C.A.; Beaulieu, K.M.; Bradley, P.M. Environmental factors that influence cyanobacteria and geosmin occurrence in reservoirs. In Current Perspectives in Contaminant Hydrology and Water Resources Sustainability; Bradley, P.M., Ed.; InTech Online: Rijeka, Croatia, 2013. [Google Scholar] [CrossRef]
- Taylor, W.D.; Losee, R.F.; Torobin, M.; Izaguirre, G.; Sass, D.; Khiari, D.; Atasi, K. Early Warning and Management of Surface Water Taste-and-Odor Events; Awwa Research Fundation: Denver, CO, USA, 2006. [Google Scholar]
- Journey, C.A.; Arrington, J.M.; Beaulieu, K.M.; Graham, J.L.; Bradley, P.M. Limnological Conditions and Occurrence of Taste-and-Odor Compounds in Lake William C. Bowen and Municipal Reservoir #1, Spartanburg County, South Carolina, 2006–2009; U.S. Geological Survey: Reston, VA, USA, 2011.
- Graham, J.L.; Loftin, K.A.; Ziegler, A.C.; Meyer, M.T. Cyanobacteria in lakes and reservoirs: Toxin and taste-and-odor sampling guidelines (Version 1.0,9/2008). In Geological Survey Techniques of Water-Resources Investigations; USGS, 2008; Chapter A7. Available online: http://pubs.water.usgs.gov/twri9A/ (accessed on 1 November 2014). [Google Scholar]
- Graham, J.L.; Loftin, K.A.; Meyer, M.T.; Ziegler, A.C. Cyanotoxin mixtures and taste-and-odor compounds in cyanobacterial blooms from the midwestern United States. Environ. Sci. Technol. 2010, 44, 7361–7368. [Google Scholar] [CrossRef] [PubMed]
- Kondo, F.; Ikai, Y.; Oka, H.; Ishikawa, N.; Watanabe, M.F.; Watanabe, M.; Harada, K.I.; Suzuki, M. Separation and identification of microcystins in cyanobacteria by frit-fast atom bombardment liquid chromatography/mass spectrometry. Toxicon 1992, 30, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Mazur-Marzec, H. Characterization of phycotoxins produced by cyanobacteria. Oceanol. Hydrobiol. Stud. 2006, 35 (Suppl. 1), 85–109. [Google Scholar]
- Duy, T.N.; Lam, P.K.S.; Shaw, G.; Connell, D.W. Toxicology and risk assessment of freshwater cyano-bacterial (bluegreen algal) toxins in water. Rev. Environ. Contam. Toxicol. 2000, 163, 113–186. [Google Scholar] [PubMed]
- Cox, P.A.; Banack, S.A.; Murch, S.J. Biomagnification of cyanobacterial neurotoxins and neurodegenerative disease among the Chamorro people of Guam. Proc. Natl. Acad. Sci. USA 2003, 100, 13380–13383. [Google Scholar] [CrossRef] [PubMed]
- Codd, G.A.; Metcalf, J.S.; Ward, C.J.; Beattie, K.A.; Bell, S.G. Analysis of cyanobacterial toxins by physicochemical and biochemical methods. J. AOAC Int. 2001, 84, 1626–1633. [Google Scholar] [PubMed]
- Codd, G.A.; Morrison, L.F.; Metcalf, J.S. Cyanobacterial toxins: Risk management for health protection. Toxicol. Appl. Pharmacol. 2005, 203, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, A.; Harel, M.; Kaplan-Levy, R.N.; Hadas, O.; Sukenik, A.; Dittmann, E. The languages spoken in the water body (or the biological role of cyanobacterial toxins). Front. Microbiol. 2012. [Google Scholar] [CrossRef]
- Holland, A.; Kinnear, S. Interpreting the possible ecological role(s) of cyanotoxins: Compounds for competitive advantage and/or physiological aide? Mar. Drugs 2013, 11, 2239–2258. [Google Scholar] [CrossRef] [PubMed]
- Rzymski, P.; Poniedziałek, B.; Kokociński, M.; Jurczak, T.; Lipski, D.; Wiktorowicz, K. Interspecific allelopathy in cyanobacteria: Cylindrospermopsin and Cylindrospermopsis raciborskii effect on the growth and metabolism of Microcystis aeruginosa. Harmful Algae 2014, 35, 1–8. [Google Scholar] [CrossRef]
- Pearson, L.A.; Neilan, B.A. The molecular genetics of cyanobacterial toxicity as a basis for monitoring water quality and public health risk. Curr. Opin. Biotech. 2008, 19, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Kellmann, R.; Mills, T.; Neilan, B.A. Functional modeling and phylogenetic distribution of putative cylindrospermopsin biosynthesis enzymes. J. Mol. Evol. 2006, 62, 267–280. [Google Scholar] [CrossRef] [PubMed]
- Mejean, A.; Mann, S.; Vassilidis, G.; Lombard, B.; Loew, D.; Ploux, O. In vitro reconstitution of the first steps of anatoxin-a biosynthesis in Oscillatoria PCC 6506: From free L-proline to acyl carrier protein bound dehydroproline. Biochemistry 2010, 49, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, G.; Dittmann, E.; Ordorika, L.V.; Rippka, R.; Herdman, M.; Börner, T. Nonribosomal peptide synthetase genes occur in most cyanobacterial genera as evidenced by their distribution in axenic strains of the PCC. Arch. Microbiol. 2001, 178, 452–458. [Google Scholar] [CrossRef]
- Neilan, B.A. The molecular evolution and DNA profiling of toxic cyanobacteria. Curr. Issues Mol. Biol. 2002, 4, 1–11. [Google Scholar] [PubMed]
- Christiansen, G.; Molitor, C.; Philmus, B.; Kurmayer, R. Nontoxic strains of cyanobacteria are the result of major gene deletion events induced by a transposable element. Mol. Biol. Evol. 2008, 25, 1695–1704. [Google Scholar] [CrossRef] [PubMed]
- Neilan, B.A.; Pearson, L.A.; Moffitt, M.C.; Mihali, K.T.; Kaebernick, M.; Kellmann, R.; Pomati, F. The genetics and genomics of cyanobacterial toxicity. Adv. Exp. Med. Biol. 2008, 619, 417–452. [Google Scholar] [PubMed]
- Mazur-Marzec, H.; Browarczyk-Matusiak, G.; Forycka, K.; Kobos, J.; Pliński, M. Morphological, genetic, chemical and ecophysiological characterisation of two Microcystis aeruginosa isolates from the Vistula Lagoon, southern Baltic. Oceanologia 2010, 52, 127–146. [Google Scholar] [CrossRef]
- Byrd, J.J.; Colwell, R.R. Maintenance of plasmids pBR322 and pUC8 in nonculturable Escherichia coli in the marine environment. Appl. Environ. Microbiol. 1990, 56, 2104–2107. [Google Scholar] [PubMed]
- Oliver, J.D. The viable but nonculturable state in bacteria. J. Microbiol. 2005, 43, 93–100. [Google Scholar] [PubMed]
- Rinehart, K.; Namikoshi, N.; Choi, B. Structure and biosynthesis of toxins from blue-green algae (cyanobacteria). J. App. Phycol. 1994, 6, 159–176. [Google Scholar] [CrossRef]
- Sivonen, K.; Jones, G. Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management; E and FN Spon: New York, NY, USA, 1999; Volume 1, pp. 40–111. [Google Scholar]
- Rouhiainen, L.; Vakkilainen, T.; Siemer, B.L.; Buikema, W.; Haselkorn, R.; Sivonen, K. Genes coding for hepatotoxic heptapeptides (microcystins) in the cyanobacterium Anabaena strain 90. Appl. Environ. Microb. 2004, 70, 686–692. [Google Scholar] [CrossRef]
- Fischer, W.J.; Altheimer, S.; Cattori, V.; Meier, P.J.; Dietrich, D.R.; Hagenbuch, B. Organic anion transporting polypeptides expressed in liver and brain mediate uptake of microcystin. Toxicol. Appl. Pharmacol. 2005, 203, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Pflugmacher, S.; Wiegand, C.; Oberemm, A.; Beattie, K.A.; Krause, E.; Codd, G.A.; Steinberg, C.E.W. Identification of an enzymatically formed glutathione conjugate of the cyanobacterial hepatotoxin microcystin-LR: The first step of detoxication. Biochim. Biophys. Acta 1998, 1425, 527–533. [Google Scholar] [CrossRef] [PubMed]
- Rao, P.V.L.; Gupta, N.; Bhaskar, A.S.B.; Jayaraj, R. Toxins and bioactive compounds from cyanobacteria and their implications on human health. J. Environ. Biol. 2002, 23, 215–224. [Google Scholar] [PubMed]
- Rinehart, K.L.; Harada, K.I.; Namikoshi, M.; Chen, C.; Harvis, C.A.; Munroe, M.H.G.; Blunt, J.W.; Mulligan, P.E.; Beasley, V.R.; Dahlem, A.M.; et al. Nodularin, microcystin and the configuration of Adda. J. Am. Chem. Soc. 1988, 110, 8557–8558. [Google Scholar] [CrossRef]
- Namikoshi, M.; Choi, B.W.; Sakai, R.; Sun, F.; Rinehart, K.L.; Carmichael, W.W.; Evans, W.R.; Cruz, P.; Munro, M.H.G.; Blunt, J.W. New nodularins: a general method for structure assignment. J. Org. Chem. 1994, 59, 2349–2357. [Google Scholar] [CrossRef]
- Pearson, L.; Mihali, T.; Moffitt, M.; Kellmann, R.; Neilan, B. On the chemistry, toxicology and genetics of the cyanobacterial toxins, microcystin, nodularin, saxitoxin and cylindrospermopsin. Mar. Drugs 2010, 8, 1650–1680. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.Z.X.; Boland, M.P.; Smillie, M.A.; Klix, H.; Ptak, C.; Andersen, R.J.; Holmes, C.F.B. Identification of protein phosphatase inhibitors of the microcystin class in the marine environment. Toxicon 1993, 31, 1407–1414. [Google Scholar] [CrossRef]
- Williams, D.E.; Craig, M.; Dawe, S.C.; Kent, M.C.; Holmes, C.F.B.; Anderson, R.J. Evidence for a covalently bound form of microcystin-LR in salmon larvae and dungeness crab larvae. Chem. Res. Toxicol. 1997, 10, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, Z.A. Accumulation of cyanobacterial hepatotoxins by Daphnia in some Egyptian Irrigation Canals. Ecotoxicol. Environ. Saf. 2001, 50, 4–8. [Google Scholar] [CrossRef]
- Sipi, V.O.; Kankaanp, H.T.; Flinkman, J.; Lahti, K.; Meriluoto, J.A.O. Time-dependent accumulation of cyanobacterial hepatotoxins in flounders (Platichthys flesus) and mussels (Mytilus edulis) from the Northern Baltic Sea. Environ. Toxicol. 2001, 16, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Sipi, V.O.; Kankaanp, H.T.; Lahti, K.; Carmichael, W.W.; Meriluoto, J.A.O. Detection of nodularin in flounders and cod from the Baltic Sea. Environ. Toxicol. 2001, 16, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Adamovský, O.; Kopp, R.; Hilscherová, K.; Babica, P.; Palíková, M.; Pasková, V.; Navrátil, S.; Marsálek, B.; Bláha, L. Microcystin kinetics (bioaccumulation and elimination) and biochemical responses in common carp (Cyprinus carpio) and silver carp (Hypophthalmichthys molitrix) exposed to toxic cyanobacterial blooms. Environ. Toxicol. Chem. 2007, 26, 2687–2693. [Google Scholar] [CrossRef] [PubMed]
- Amrani, A.; Nasri, H.; Azzouz, A.; Kadi, Y.; Bouaїcha, N. Variation in cyanobacterial hepatotoxin (microcystin) content of water samples and two species of fishes collected from a shallow lake in Algeria. Arch. Environ. Contam. Toxicol. 2014, 66, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Falconer, I.R. Cyanobacterial Toxins of Drinking Water Supplies; CRC Press: London, UK, 2005. [Google Scholar]
- Domingos, P.; Rubim, T.K.; Molica, R.J.R.; Azevedo, S.M.F.O.; Carmichael, W.W. First report of microcystin production by picoplanktonic cyanobacteria isolated from a Northeast Brazilian drinking water supply. Environ. Toxicol. 1999, 14, 31–35. [Google Scholar] [CrossRef]
- Furtado, A.L.F.F.; Calijuri, M.C.; Lorenzi, A.S.; Honda, R.Y.; Genuário, D.R.; Fiore, M.F. Morphological and molecular characterization of cyanobacteria from a Brazilian facultative wastewater stabilization pond and evaluation of microcystin production. Hydrobiologia 2009, 627, 195–209. [Google Scholar] [CrossRef]
- Bláha, L.; Maršálek, B. Microcystin production and toxicity of picocyanobacteria as a risk factor for drinking water treatment plants. Algol. Stud. 1999, 92, 95–108. [Google Scholar]
- Carmichael, W.W.; Li, R. Cyanobacteria toxins in the Salton Sea. Saline Syst. 2006, 2, 5. [Google Scholar] [CrossRef] [PubMed]
- Mazur-Marzec, H.; Sutryk, K.; Kobos, J.; Hebel, A.; Hohlfeld, N.; Błaszczyk, A.; Toruńska, A.; Kaczkowska, M.J.; Łysiak-Pastuszak, E.; Kraśniewski, W.; et al. Occurrence of cyanobacteria and cyanotoxins in the Southern Baltic Proper. Filamentous cyanobacteria vs. single-celled picocyanobacteria. Hydrobiologia 2013, 701, 235–252. [Google Scholar] [CrossRef]
- Wiese, M.; D’Agostino, P.M.; Mihali, T.K.; Moffitt, M.C.; Neilan, B.A. Neurotoxic alkaloids: Saxitoxin and its analogs. Mar. Drugs 2010, 8, 2185–2211. [Google Scholar] [CrossRef] [PubMed]
- Rogers, E.H.; Hunter, E.S., III; Moser, V.C.; Phillips, P.M.; Herkovits, J.; Muñoz, L.; Hall, L.L.; Chernoff, N. Potential developmental toxicity of anatoxin-a, a cyanobacterial toxin. J. Appl. Toxicol. 2005, 25, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Devlin, J.P.; Edwards, O.E.; Gorham, P.R.; Hunter, N.R.; Pike, R.K.; Stavric, B. Anatoxin-a, a toxic alkaloid from Anabaena flos-aquae NRC-44h. Can. J. Chem. 1977, 55, 1367–1371. [Google Scholar] [CrossRef]
- Skulberg, O.M.; Carmichael, W.W.; Anderson, R.A.; Matsunaga, S.; Moore, R.E.; Skulberg, R. Investigations of a neurotoxic oscillatorialean strain (Cyanophyceae) and its toxin. Isolation and characterization of homoanatoxin-a. Env. Toxicol. Chem. 1992, 11, 321–329. [Google Scholar] [CrossRef]
- Pravda, M.; Kreuzer, M.P.; Guilbault, G.G. Analysis of important freshwater and marine toxins. Anal. Lett. 2002, 25, 1–15. [Google Scholar] [CrossRef]
- Rellán, S.; Osswald, J.; Saker, M.; Gago-Martinez, A.; Vasconcelos, V. First detection of anatoxin-a in human and animal dietary supplements containing cyanobacteria. Food Chem Toxicol. 2009, 47, 2189–2195. [Google Scholar] [CrossRef] [PubMed]
- Wonnacott, S.; Gallagher, T. The chemistry and pharmacology of anatoxin-a and related homotropanes with respect to nicotinic acetylcholine receptors. Mar. Drugs 2006, 4, 228–254. [Google Scholar] [CrossRef]
- Matsunaga, S.; Moore, R.E.; Niemczura, W.P. Anatoxin-a (s), a potent anticholinesterase from Anabaena flos-aquae. J. Am. Chem. Soc. 1989, 111, 8021–8023. [Google Scholar] [CrossRef]
- Hyde, E.G.; Carmichael, W.W. Anatoxin-a(s), a naturally occurring organophosphate, is an irreversible active site-directed inhibitor of acetylcholinesterase (EC 3.1.1.7). J. Biochem. Toxicol. 1991, 6, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Villatte, F.; Schulze, H.; Schmid, R.D.; Bachmann, T.T. A disposable acetylcholinesterase-based electrode biosensor to detect anatoxin-a(s) in water. Anal. Bioanal. Chem. 2001. [Google Scholar] [CrossRef]
- Devic, E.; Li, D.; Dauta, A.; Henriksen, P.; Codd, G.A.; Marty, J.L.; Fournier, D. Detection of anatoxin-a(s) in environmental samples of cyanobacteria by using a biosensor with engineered acetylcholinesterases. Appl. Environ. Microbiol. 2002, 68, 4102–4106. [Google Scholar] [CrossRef] [PubMed]
- Patocka, J.; Gupta, R.C.; Kuca, K. Anatoxin-a(s): Natural organophosphorus anticholinesterase agent. Mil. Med. Sci. Lett. 2011, 80, 129–139. [Google Scholar]
- Moustafa, A.; Loram, J.E.; Hackett, J.D.; Anderson, D.M.; Plumley, F.G. Origin of saxitoxin biosynthetic genes in cyanobacteria. PLoS One 2009, 4, e5758. [Google Scholar] [CrossRef]
- Al-Tebrineh, J.; Mihali, T.K.; Pomati, F.; Neilan, B.A. Detection of saxitoxin-producing cyanobacteria and Anabaena circinalis in environmental water blooms by quantitative PCR. Appl. Environ. Microbiol. 2010, 76, 7836. [Google Scholar] [CrossRef] [PubMed]
- Rapala, J.; Robertson, A.; Negri, A.P.; Berg, K.A.; Tuomi, P.; Lyra, C.; Erkomaa, K.; Lahti, K.; Hoppu, K.; Lepistö, L. First report of saxitoxin in Finnish lakes and possible associated effects on human health. Environ. Toxicol. 2005, 20, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Al-Sammak, M.A.; Hoagland, K.D.; Cassada, D.; Snow, D.D. Co-occurrence of the cyanotoxins BMAA, DABA and anatoxin-a in Nebraska reservoirs, fish, and aquatic plants. Toxins 2014, 6, 488–508. [Google Scholar] [CrossRef] [PubMed]
- Chiu, A.S.; Gehringer, M.M.; Welch, J.H.; Neilan, B.A. Does α-amino-β-methylaminopropionic acid (BMAA) play a role in neurodegeneration? Int. J. Environ. Res. Public Health 2011, 8, 3728–3746. [Google Scholar] [CrossRef] [PubMed]
- Chiu, A.S.; Gehringer, M.M.; Braidy, N.; Guillemin, G.J.; Welch, J.H.; Neilan, B.A. Excitotoxic potential of the cyanotoxin beta-methyl-amino-l-alanine (BMAA) in primary human neurons. Toxicon 2012, 60, 1159–1165. [Google Scholar] [CrossRef] [PubMed]
- Chiu, A.S.; Gehringer, M.M.; Braidy, N.; Guillemin, G.J.; Welch, J.H.; Neilan, B.A. Gliotoxicity of the cyanotoxin, b-methyl-amino-l-alanine (BMAA). Sci. Rep. 2013, 3, 1482. [Google Scholar] [PubMed]
- Cox, P.A.; Banack, S.A.; Murch, S.J.; Rasmussen, U.; Tien, G.; Bidigare, R.R.; Metcalfj, S.; Morrison, L.F.; Codd, G.A.; Bergman, B. Diverse taxa of cyanobacteria produce β-N-methylamino-l-alanine, a neurotoxic amino acid. Proc. Natl. Acad. Sci. USA 2005, 102, 5074–5078. [Google Scholar] [CrossRef] [PubMed]
- Berntzon, L.; Erasmie, S.; Celepli, N.; Eriksson, J.; Rasmussen, U.; Bergman, B. BMAA inhibits nitrogen fixation in the cyanobacterium Nostoc sp. PCC 7120. Mar. Drugs 2013, 11, 3091–3108. [Google Scholar] [CrossRef] [PubMed]
- Okle, O.; Rath, L.; Galiziac, G.; Dietrich, D.R. The cyanobacterial neurotoxin beta-N-methylamino-l-alanine (BMAA) induces neuronal and behavioral changes in honeybees. Toxicol. Appl. Pharmacol. 2013, 270, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Combes, A.; Abdellaoui, S.E.; Sarazin, C.; Vial, J.; Mejean, A.; Ploux, O.; Pichon, V.; BMAALS group. Validation of the analytical procedure for the determination of the neurotoxin β-N-methylamino-l-alanine in complex environmental samples. Anal. Chim. Acta 2013, 771, 42–49. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Environmental Health Sciences (NIEHS). Chemical Information Review Document for L-β-Methylaminoalanine (CAS No. 15920-93-1); U.S Department of Health Sciences National Institutes of Health: Research Triangle Park, CR, USA, 2008; pp. 1–40.
- Bell, A. The discovery of BMAA, and examples of biomagnifi cation and protein incorporation involving other non-protein amino acids. Amyotroph. Lateral Scler. Suppl. 2009, 2, 21–25. [Google Scholar] [CrossRef]
- Burja, A.M.; Banaigs, B.; Abou-Mansour, E.; Burgess, J.G.; Wright, P.C. Marine cyanobacteria-prolific source of natural products. Tetrahedron 2001, 57, 9347–9377. [Google Scholar] [CrossRef]
- Okino, T. Heterocycles from Cyanobacteria. Top. Heterocycl. Chem. 2006, 5, 1–19. [Google Scholar]
- Ishida, K.; Murakami, M. Kasumigamide, an antialgal peptide from the cyanobacterium Microcystis aeruginosa. J. Org. Chem. 2000, 65, 5898–5900. [Google Scholar] [CrossRef]
- Andrianasolo, E.H.; Goeger, D.; Gerwick, W.H. Mitsoamide: A cytotoxic linear lipopeptide from the Madagascar marine cyanobacterium Geitlerinema sp. Pure Appl. Chem. 2007, 79, 593–602. [Google Scholar] [CrossRef]
- Falconer, I.R.; Humpagem, A.R. Cyanobacterial (Blue-Green Algal) Toxins in Water Supplies: Cylindrospermopsins. Environ. Toxicol. 2006, 21, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Froscio, S.M.; Humpage, A.R.; Burcham, P.C.; Falconer, I.R. Cylindrospermopsin-induced protein synthesis inhibition and its dissociation from acute toxicity in mouse hepatocytes. Environ. Toxicol. Water Qual. 2003, 18, 243–251. [Google Scholar] [CrossRef]
- Wiseman, H.; Halliwell, B. Damage to DNA by reactive oxygen and nitrogen species: Role in inflammatory disease and progression to cancer. Biochem. J. 1996, 313, 17–29. [Google Scholar] [PubMed]
- Ríos, V.; Prieto, A.I.; Cameán, A.M.; González-Vila, F.J.; de la Rosa, J.M.; Vasconcelos, V.; González-Pérez, J.A. Detection of cylindrospermopsin toxin markers in cyanobacterial algal blooms using analytical pyrolysis (Py-GC/MS) and thermally-assisted hydrolysis and methylation (tch-GC/MS). Chemosphere 2014, 108, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Poniedziałek, B.; Rzymski, P.; Wiktorowicz, K. Toxicity of cylindrospermopsin in human lymphocytes: Proliferation, viability and cell cycle studies. Toxicol. Vitro 2014, 28, 968–974. [Google Scholar] [CrossRef]
- Hawkins, P.R.; Runnegar, M.T.C.; Jackson, A.R.B.; Falconer, I.R. Severe hepatotoxicity caused by the tropical cyanobacterium (blue-green alga) Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Raju isolated from a domestic water supply reservoir. Appl. Environ. Microbiol. 1985, 50, 1292–1295. [Google Scholar] [PubMed]
- Osborne, N.J.T.; Webb, P.; Shaw, G.R. The toxins of Lyngbya majuscula and their human and ecological health effects. Environ. Int. 2001, 27, 381–392. [Google Scholar] [CrossRef] [PubMed]
- Rzymski, P.; Poniedziałek, B. Dermatotoxins synthesized by blue-green algae (Cyanobacteria). Post. Dermatol. Alergol. 2012, 29, 47–50. [Google Scholar]
- Ito, E.; Satake, M.; Yasumoto, T. Pathological effects of lyngbyatoxin A upon mice. Toxicon 2002, 40, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Rzymski, P. Effect of cyanophyceae toxins on human health. Now. Lek. 2009, 78, 353–359. [Google Scholar]
- Schmidt, W.; Drews, G.; Weckesser, J.; Mayer, H. Lipopolysaccharides in four strains of the unicellular cyanobacterium Synechocystis. Arch. Microbiol. 1980, 127, 217–222. [Google Scholar] [CrossRef]
- Schmidt, W.; Drews, G.; Weckesser, J.; Fromme, I.; Borowiak, D. Characterization of the lipopolysaccharides from eight strains of the Cyanobacterium Synechococcus. Arch. Microbiol. 1980, 127, 209–215. [Google Scholar] [CrossRef]
- Snyder, D.S.; Brahamsha, B.; Azadi, P.; Palenik, B. Structure of compositionally simple lipopolysaccharide from marine Synechococcus. J. Bacteriol. 2009, 191, 5499–5509. [Google Scholar] [CrossRef] [PubMed]
- Stewart, I.; Schluter, P.J.; Shaw, G.R. Cyanobacterial lipopolysaccharides and human health—A review. Environ. Health 2006, 5, 7. [Google Scholar] [CrossRef] [PubMed]
- Takada, H.; Kotani, S. Structure-function relationships of lipid A. In Bacterial Endotoxic Lipopolysaccharides; Morrison, D.C., Ryan, J.L., Eds.; CRC Press: Boca Raton, FL, USA, 1992; Volume 1, pp. 107–134. [Google Scholar]
- Rapala, J.; Erkomaa, K.; Kukkonen, J.; Sivonen, K.; Lahti, K. Detection of microcystins with protein phosphatase inhibition assay, high-performance liquid chromatography-UV detection and enzyme-linked immunosorbent assay: Comparison of methods. Anal. Chim. Acta 2002, 466, 213–231. [Google Scholar] [CrossRef]
- Best, J.H.; Pflugmacher, S.; Wiegand, C.; Eddy, F.B.; Metcalf, J.S.; Codd, G.A. Effects of enteric bacterial and cyanobacterial lipopolysaccharides, and of microcystin-LR, on glutathione S-transferase activities in zebra fish (Danio rerio). Aquat. Toxicol. 2002, 60, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Kaya, K.; Sano, T.; Watanabe, M.M.; Shiraishi, F.; Ito, H. Thioic O-acid ester in sulfolipid isolated from freshwater picoplankton cyanobacterium, Synechococcus sp. Biochim. Biophys. Acta 1993, 1169, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Oudra, B.; Loudiki, M.; Vasconelos, V.; Sabour, B.; Sbiyyaa, B.; Oufdou, K.; Mezrioui, N. Detection and quantification of microcystins from cyanobacteria strains isolated from reservoirs and ponds in Morocco. Environ. Toxicol. 2001, 17, 32–39. [Google Scholar] [CrossRef]
- Graham, J.L.; Jones, J.R. Microcystin distribution in physical size class separations of natural plankton communities. Lake Reserv. Manag. 2007, 23, 161–168. [Google Scholar] [CrossRef]
- Komárek, J.; Azevedo, S.M.F.O.; Domingos, P.; Komárková, J.; Tichý, M. Background of the Caruaru tragedy; a case taxonomic study of toxic cyanobacteria. Algol. Stud. 2001, 103, 9–29. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakubowska, N.; Szeląg-Wasielewska, E. Toxic Picoplanktonic Cyanobacteria—Review. Mar. Drugs 2015, 13, 1497-1518. https://doi.org/10.3390/md13031497
Jakubowska N, Szeląg-Wasielewska E. Toxic Picoplanktonic Cyanobacteria—Review. Marine Drugs. 2015; 13(3):1497-1518. https://doi.org/10.3390/md13031497
Chicago/Turabian StyleJakubowska, Natalia, and Elżbieta Szeląg-Wasielewska. 2015. "Toxic Picoplanktonic Cyanobacteria—Review" Marine Drugs 13, no. 3: 1497-1518. https://doi.org/10.3390/md13031497
APA StyleJakubowska, N., & Szeląg-Wasielewska, E. (2015). Toxic Picoplanktonic Cyanobacteria—Review. Marine Drugs, 13(3), 1497-1518. https://doi.org/10.3390/md13031497