Monacyclinones, New Angucyclinone Metabolites Isolated from Streptomyces sp. M7_15 Associated with the Puerto Rican Sponge Scopalina ruetzleri
Abstract
:1. Introduction
2. Results and Discussion
2.1. Purification and Structure Elucidation of Angucyclinone Derivatives
Position | Monacyclinone A (4) | Monacyclinone B (5) | Monacyclinone C (6) | Monacyclinone D (7) | Monacyclinone E (8) | |||||
---|---|---|---|---|---|---|---|---|---|---|
13C | 1H (m, J Hz) | 13C | 1H (m, J Hz) | 13C | 1H (m, J Hz) | 13C | 1H (m, J Hz) | 13C | 1H (m, J Hz) | |
1 | 156.7 | 164.8 | 196.9 | 172.9 | 175.7 | |||||
2 | 119.9 | 7.33 (s) | 116.0 | 8.22 (s) | 54.5 | 3.22 (m) | 45.3 | 3.23 (d, 17.0) | 46.9 | 3.02 (m) |
3.22 (m) | 3.21 (d, 17.0) | 3.02 (m) | ||||||||
3 | 142.6 | 141.5 | 71.9 | 90.7 | 72.4 | |||||
4 | 121.6 | 7.28 (s) | 121.0 | 7.43 (s) | 45.0 | 3.25 (m) | 40.3 | 3.21 (d, 17.0) | 41.0 | 2.52 (m) |
3.25 (m) | 3.81 (d, 17.0) | 3.47 (m) | ||||||||
4a | 120.3 | 124.2 | 153.6 | 139.4 | 136.7 | |||||
5 | 137.5 | 8.19 (d, 8.0) | 157.4 | 122.4 | 7.16 (s) | 130.5 | 7.53 (d, 8.0) | 140.7 | 8.06 (d, 8.0) | |
6 | 122.5 | 8.40 (d, 8.0) | 105.6 | 8.01 (s) | 164.5 | 120.8 | 8.01 (d, 8.0) | 118.9 | 7.90 (d, 8.0) | |
6a | 135.6 | 123.5 | 117.5 | 133.4 | 132.4 | |||||
7 | 188.1 | 189.9 | 193.1 | 189.6 | 188.9 | |||||
7a | 115.0 | 115.2 | 115.4 | 115.9 | 116.3 | |||||
8 | 158.7 | 158.9 | 158.8 | 159.2 | 160.0 | |||||
9 | 140.0 | 139.9 | 139.0 | 138.2 | 141.0 | |||||
10 | 134.1 | 8.03 (d, 8.0) | 134.0 | 8.05 (d, 8.0) | 134.5 | 8.03 (d, 8.0) | 133.7 | 8.09 (d, 8.0) | 134.0 | 8.13 (d, 8.0) |
11 | 121.4 | 7.91 (d, 8.0) | 121.3 | 7.97 (d, 8.0) | 119.5 | 7.82 (d, 8.0) | 119.0 | 8.05 (d, 8.0) | 119.6 | 8.00 (d, 8.0) |
11a | 134.6 | 135.1 | 135.3 | 133.4 | 132.6 | |||||
12 | 189.5 | 187.5 | 184.1 | 181.0 | 189.1 | |||||
12a | 134.3 | 132.2 | 130.6 | 116.7 | 116.3 | |||||
12b | 121.1 | 123.7 | 122.6 | 160.0 | 162.6 | |||||
13 | 21.5 | 2.39 (s) | 21.7 | 2.46 (s) | 30.1 | 1.56 (s) | 27.3 | 1.78 (s) | 27.8 | 1.69 (s) |
1′ | 65.2 | 5.26ax (d, 11.0) | 65.2 | 5.23ax (m) | 65.1 | 5.22ax (dd, 11.0,1.0) | 64.7 | 5.26ax (m) | 65.2 | 5.25ax (m) |
2′ | 32.5 | 1.44ax (m) | 32.5 | 1.44ax (m) | 32.1 | 1.36ax (m) | 31.9 | 1.39ax (m) | 32.2 | 1.42ax (m) |
2.39eq (m) | 2.30eq (m) | 2.34eq (m) | 2.33eq (m) | 2.33eq (m) | ||||||
3′ | 22.4 | 1.98ax (m) | 22.8 | 1.79ax (m) | 22.7 | 1.81ax (m) | 22.5 | 1.83ax (m) | 23.1 | 1.69ax (m) |
1.98eq (m) | 1.93eq (m) | 1.94eq (m) | 1.94eq (m) | 1.89eq (m) | ||||||
4′ | 64.7 | 2.82ax (br s) | 64.5 | 2.53ax (s) | 64.7 | 2.53ax (m) | 64.2 | 2.54ax (m) | 64.7 | 2.33ax (m) |
5′ | 71.2 | 4.72 (m) | 71.6 | 4.64 (m) | 71.9 | 4.61 (m) | 71.8 | 4.63 (m) | 72.0 | 4.61 (m) |
6′ | 12.4 | 1.52ax (d, 7.0) | 12.2 | 1.44ax (m) | 12.3 | 1.44ax (d, 7.0) | 12.0 | 1.46ax (d, 7.0) | 12.3 | 1.42ax (m) |
7′ | 42.8 | 2.52 (s) | 43.2 | 2.31 (s) | 43.0 | 2.34 (s) | 43.0 | 2.33 (s) | 43.3 | 2.19 (s) |
8′ | 42.8 | 2.52 (s) | 43.2 | 2.31 (s) | 43.0 | 2.34 (s) | 43.0 | 2.33 (s) | 43.3 | 2.19 (s) |
Position | 13C | 1H (m, J Hz) | COSY | HMBC | ROESY | TOCSY |
---|---|---|---|---|---|---|
1 | 204.4, C | |||||
2 | 50.6, C | 2.83 (dd, 18.0, 3.0) | 4, 12a, 4a, 1, 13, 3 | 4 | ||
3.34 (dd, 18.0, 3.0) | ||||||
3 | 75.9, C | |||||
4 | 49.8, CH2 | 2.12 (m) | 13, 5, 3, 2 | 2 | ||
2.93 (dd, 14.0, 3.0) | ||||||
4a | 82.8, C | |||||
5 | 36.7, CH2 | 2.83 (m) | 6 | 7a, 6, 12a, 4a, 1 | 6 | |
6 | 64.5, CH | 4.69 (m) | 5 | |||
6a | 58.5, C | |||||
7 | 198.0, C | |||||
7a | 118.4, C | |||||
8 | 159.2, C | |||||
9 | 140.7, C | |||||
10 | 135.3, CH | 8.14 (d, 8.0) | 11 | 1′, 7a, 11, 11a, 8 | 11 | |
11 | 120.5, CH | 8.03 (d, 8.0) | 10 | 7a, 9, 8, 12, 7 | 10 | |
11a | 133.1, C | |||||
12 | 192.7, C | |||||
12a | 71.3, C | |||||
12b | 80.5, C | |||||
13 | 25.7 CH3 | 1.33 (s) | 4, 3, 12b, 1 | 4, 5 | ||
1′ | 65.1, CH | 5.17ax (m) | 2′ | 3′, 2′, 10, 9, 8 | 6′, 3′ax | 2′, 3′, 4′, 1′ |
2′ | 32.4, CH2 | 1. 26ax (m) | 3′, 1′ | 3′, 1′, 9, 4′ | 4′ | 5′, 1′, 3′ |
2.22eq (m) | 3′eq | |||||
3′ | 23.2, CH2 | 1.70ax (m) | 4′, 2′ | 2′, 4′ | 1′, 6′ | 2′, 6′, 4′, 5′, 1′ |
1.85eq (m) | 2′eq, 5′ | |||||
4′ | 64.6, CH | 2.36ax (m) | 5′, 3′ | 6′, 5′ | 2′ax | 2′, 6′, 3′ |
5′ | 72.1, CH | 4.58 (m) | 6′, 4′ | 6′, 3′, 1′, 4′ | 3′eq | 6′, 3′, 4′ |
6′ | 12.3, CH3 | 1.44ax (m) | 5′ | 4′, 5′ | 1′, 3′ax | 3′, 5′ |
7′ | 43.5, CH3 | 2.25 (s) | 4′ | |||
8′ | 43.5, CH3 | 2.25 (s) | 4′ | |||
1′′ | 94.1, CH | 5.75ax (s) | 2′′ | 3′′, 5′′, 4a | 3′′ ax, 6′′ | 3′′, 4′′, 2′′ |
2′′ | 31.1, CH2 | 1.44ax (m) | 3′′, 1′′ | 4′′ | 4′′ | |
2.25eq (m) | 3′′eq | |||||
3′′ | 14.2, CH2 | 1.14eq (m) | 4′′, 2′′ | 5′′, 1′′, 4′′ | 1′′, 6′′ | 7′′, 4′′, 2′′, 5′′, 1′′ |
1.46ax (m) | 2′′eq, 5′′ | |||||
4′′ | 66.1, CH | 1.93ax (m) | 5′′, 3′′ | 6′′, 5′′, 3′′ | 2′′ ax | 6′′, 3′′, 2′′, 5′′, 1′′ |
5′′ | 68.3, CH | 3.65 (m) | 6′′, 4′′ | 3′′, 6′′, 4′′ | 3′′eq | 6′′, 3′′, 4′′, 2′′ |
6′′ | 19.1, CH3 | 0.75ax (d, 6.0) | 5′′ | 1′′, 5′′, 4′′ | 1′′, 3′′ax | 3′′, 4′′, 2′′, 5′′ |
7′′ | 41.1, CH3 | 2.05 (s) | 4′′ | |||
8′′ | 41.1, CH3 | 2.05 (s) | 4′′ |
2.2. Cultivation of a Possible New Phylotype of Streptomyces sp.
2.3. Biosynthetic Diversity of Angucyclinone Derivatives
2.4. Biological Activity of Angucyclinone Derivatives
Compound | EC50 24 h (µM) | EC50 48 h (µM) |
---|---|---|
Frigocyclinone (1) | >10 | 5.2 |
Dimethyldehydrorabelomycin (3) | >10 | >10 |
4 | >10 | >10 |
5 | >10 | >10 |
6 | 1.1 × 102 | 1.6 × 102 |
7 | >10 | >10 |
8 | >10 | 2.7 × 102 |
9 | 6.1 × 10−1 | 7.3 × 10−1 |
3. Experimental Section
3.1. General Experimental
3.2. Isolation of Streptomyces sp. M7_15
3.3. DNA Extraction, Sequencing and Phylogenetic Analysis
3.4. Chemical Analysis of Actinomycetes
3.5. Purification of Monacyclinones from Streptomyces sp. M7_15
3.6. Image Based Cytotoxicity Assay Using SJCRH30 (Rhabdomyosarcoma) Cells
4. Conclusions
Supplementary Files
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
NMR | Nuclear Magnetic Resonance |
COSY | Correlation Spectroscopy |
HMBC | Heteronuclear Multiple-Bond Connectivity |
ROESY | Rotating frame Nuclear Overhauser Spectroscopy |
HSQC | Heteronuclear Single Quantum Coherence |
TOCSY | Total Correlation Spectroscopy |
HPLC | High Performance Liquid Chromatography |
LC/MS | Liquid Chromatography/Mass Spectrometry |
References
- Abdelmohsen, U.R.; Bayer, K.; Hentschel, U. Diversity, abundance and natural products of marine sponge-associated actinomycetes. Nat. Prod. Rep. 2014, 31, 381–399. [Google Scholar] [CrossRef] [PubMed]
- Dharmaraj, S.; Sumantha, A. Bioactive potential of Streptomyces associated with marine sponges. World J. Microb. Biotech. 2009, 25, 1971–1979. [Google Scholar] [CrossRef]
- Li, K.; Li, Q.L.; Ji, N.Y.; Liu, B.; Zhang, W.; Cao, X.P. Deoxyuridines from the marine sponge associated actinomycete Streptomyces microflavus. Mar. Drugs 2011, 9, 690–695. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.G.; Selvakumar, D.; Dhevendaran, K. Occurrence of sponges associated Streptomyces and its antimicrobial activity. World J. Fish Mar. Sci. 2011, 3, 151–158. [Google Scholar]
- Schneemann, I.; Kajahn, I.; Ohlendorf, B.; Zinecker, H.; Erhard, A.; Nagel, K.; Wiese, J.; Imhoff, J.F. Mayamycin, a cytotoxic polyketide from a Streptomyces strain isolated from the marine sponge Halichondria panicea. J. Nat. Prod. 2010, 73, 1309–1312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, S.T.; Komaki, H.; Motohashi, K.; Kozone, I.; Mukai, A.; Takagi, M.; Shin-ya, K. Streptomyces associated with a marine sponge Haliclona sp.; Biosynthetic genes for secondary metabolites and products. Environ. Microbiol. 2011, 13, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Olano, C.; Méndez, C.; Salas, J.A. Antitumor compounds from actinomycetes: From gene clusters to new derivatives by combinatorial biosynthesis. Nat. Prod. Rep. 2009, 26, 628–660. [Google Scholar] [CrossRef] [PubMed]
- Abdelfattah, M.S.; Kharel, M.K.; Hitron, J.A.; Baig, I.; Rohr, J. Moromycins A and B, isolation and structure elucidation of C-glycosylangucycline-type antibiotics from Streptomyces sp. Ky002. J. Nat. Prod. 2008, 71, 1569–1573. [Google Scholar] [CrossRef] [PubMed]
- Fotso, S.; Mahmud, T.; Zabriskie, T.M.; Santosa, D.A.; Proteau, P.J. Angucyclinones from an Indonesian Streptomyces sp. J. Nat. Prod. 2007, 71, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Rohr, J.; Thiericke, R. Angucycline group antibiotics. Nat. Prod. Rep. 1992, 9, 103–137. [Google Scholar] [CrossRef] [PubMed]
- Kharel, K.K.; Pahari, P.; Shepher, M.D.; Tibrewal, N.; Nybo, S.E.; Shaaban, K.A.; Rohr, R. Angucyclines: Biosynthesis, mode-of-action, new natural products, and synthesis. Nat. Prod. Rep. 2012, 29, 264–325. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Liu, B.; Wang, H.; Yang, S.; Zhang, H.; Wang, Y.; Ji, N.; Qin, S.; Laatsch, H. Kiamycin, a unique cytotoxic angucyclinone derivative from a marine Streptomyces sp. Mar. Drugs 2012, 10, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Bringmann, G.; Lang, G.; Maksimenka, K.; Hamm, A.; Gulder, T.A.M.; Dieter, A.; Bull, A.T.; Stach, J.E.M.; Kocher, N.; Müller, W.E.G. Gephyromycin, the first bridged angucyclinone, from Streptomyces griseus strain NTK 14. Phytochemistry 2005, 66, 1366–1373. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Lu, X.; Ke, A.; Zheng, Z.; Lin, J.; Hao, W.; Zhu, J.; Fan, Y.; Ding, Y.; Jiang, Q. Three novel members of angucycline group from Streptomyces sp. N05wa963. J. Antibiot. 2011, 64, 339–343. [Google Scholar] [CrossRef] [PubMed]
- Wiedenmayer, F. Shallow-water sponges of the western Bahamas. Experientia. Suppl. 1977, 28, 1–43. [Google Scholar]
- Vicente, J.; Stewart, A.; Song, B.; Hill, R.T.; Wright, J.L.C. Biodiversity of actinomycetes associated with Caribbean sponges and their potential for natural product discovery. Mar. Biotechnol. 2014, 15, 413–424. [Google Scholar] [CrossRef] [PubMed]
- Bruntner, C.; Binder, T.; Pathom-aree, W.; Goodfellow, M.; Bull, A.T.; Potterat, O.; Puder, C.; Hörer, S.; Schmid, A.; Bolek, W. Frigocyclinone, a novel angucyclinone antibiotic produced by a Streptomyces griseus strain from Antarctica. J. Antibiot. 2005, 58, 346–349. [Google Scholar] [CrossRef] [PubMed]
- Kuntsmann, M.P.; Mitscher, L.A. The structural characterization of tetrangomycin and tetrangulol. J. Org. Chem. 1966, 31, 2920–2925. [Google Scholar]
- Seaton, P.; Gould, S.J. Kinamycin biosynthesis. Derivation by excision of an acetate unit from a single-chain decaketide intermediate. J. Am. Chem. Soc. 1987, 109, 5282–5284. [Google Scholar] [CrossRef]
- Tibrewal, N.; Pahari, P.; Wang, G.; Kharel, M.K.; Morris, C.; Downey, T.; Hou, Y.; Bugni, T.S.; Rohr, J. Baeyer-Villiger C-C bond cleavage reaction in gilvocarcin and jadomycin biosynthesis. J. Am. Chem. Soc. 2012, 134, 18181–18184. [Google Scholar] [CrossRef] [PubMed]
- Rix, U.; Fischer, C.; Remsing, L.L.; Rohr, J. Modification of post-PKS tailoring steps through combinatorial biosynthesis. Nat. Prod. Rep. 2002, 19, 542–580. [Google Scholar] [CrossRef] [PubMed]
- Rix, U.; Remsing, L.L.; Hoffmeister, D.; Bechthold, A.; Rohr, J. Urdamycin L: A novel metabolic shunt product that provides evidence for the role of the urdM gene in the urdamycin A biosynthetic pathway of Streptomyces fradiae tü 2717. Chem. Bio. Chem. 2003, 4, 109–111. [Google Scholar] [CrossRef] [PubMed]
- Gontang, E.A.; Fenical, W.; Jensen, P.R. Phylogenetic diversity of gram-positive bacteria cultured from marine sediments. Appl. Environ. Microbiol. 2007, 73, 3272–3282. [Google Scholar] [CrossRef] [PubMed]
- Dröge, M.; Pühler, A.; Selbitschka, W. Horizontal gene transfer among bacteria in terrestrial and aquatic habitats as assessed by microcosm and field studies. Biol. Fertil. Soil. 1999, 29, 221–245. [Google Scholar]
- Thomas, C.M.; Nielsen, K.M. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat. Rev. Microbiol. 2005, 3, 711–721. [Google Scholar] [CrossRef] [PubMed]
- Tolba, S.; Wellington, E.M. Horizontal gene transfer within Streptomycetes. Microbiol. Aust. 2004, 25, 34–35. [Google Scholar]
- Olano, C.; Méndez, C.; Salas, J.A. Antitumor compounds from marine actinomycetes. Mar. Drugs 2009, 7, 210–248. [Google Scholar] [CrossRef] [PubMed]
- Thibodeaux, C.J.; Chang, W.; Liu, H. Enzymatic chemistry of cyclopropane, epoxide, and airidine biosynthesis. Chem. Rev. 2012, 112, 1681–1709. [Google Scholar] [CrossRef] [PubMed]
- Patrikainen, P.; Kallio, P.; Fan, K.; Klika, K.D.; Shaaban, K.A.; Mantsala, P.; Rohr, J.; Yang, K.; Niemi, J.; Metsa-Ketela, M. Tailoring enzymes involved in the biosynthesis of angucyclines contain latent context-dependent catalytic activities. Chem. Biol. 2012, 19, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Jensen, P.R.; Gontang, E.; Mafnas, C.; Mincer, T.J.; Fenical, W. Culturable marine actinomycete diversity from tropical Pacific Ocean sediments. Environ. Microbiol. 2005, 7, 1039–1048. [Google Scholar] [CrossRef] [PubMed]
- Shockman, G.D.; Lampen, J.O. Inhibition by antibiotics of the growth of bacterial and yeast protoplasts. J. Bacteriol. 1962, 84, 508–512. [Google Scholar] [PubMed]
- Farris, M.; Olson, J. Detection of actinobacteria cultivated from environmental samples reveals bias in universal primers. Lett. Appl. Microbiol. 2007, 45, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Reysenbach, A.L.; Giver, L.J.; Wickham, G.S.; Pace, N.R. Differential amplification of rRNA genes by polymerase chain reaction. Appl. Environ. Microbiol. 1992, 58, 3417–3418. [Google Scholar] [PubMed]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef] [PubMed]
- McCall, J.R.; Elliott, E.A.; Bourdelais, A.J. A new cytotoxicity assay for brevetoxins using fluorescence microscopy. Mar. Drugs 2014, 12, 4868–4882. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vicente, J.; Stewart, A.K.; Van Wagoner, R.M.; Elliott, E.; Bourdelais, A.J.; Wright, J.L.C. Monacyclinones, New Angucyclinone Metabolites Isolated from Streptomyces sp. M7_15 Associated with the Puerto Rican Sponge Scopalina ruetzleri. Mar. Drugs 2015, 13, 4682-4700. https://doi.org/10.3390/md13084682
Vicente J, Stewart AK, Van Wagoner RM, Elliott E, Bourdelais AJ, Wright JLC. Monacyclinones, New Angucyclinone Metabolites Isolated from Streptomyces sp. M7_15 Associated with the Puerto Rican Sponge Scopalina ruetzleri. Marine Drugs. 2015; 13(8):4682-4700. https://doi.org/10.3390/md13084682
Chicago/Turabian StyleVicente, Jan, Allison K. Stewart, Ryan M. Van Wagoner, Elizabeth Elliott, Andrea J. Bourdelais, and Jeffrey L. C. Wright. 2015. "Monacyclinones, New Angucyclinone Metabolites Isolated from Streptomyces sp. M7_15 Associated with the Puerto Rican Sponge Scopalina ruetzleri" Marine Drugs 13, no. 8: 4682-4700. https://doi.org/10.3390/md13084682
APA StyleVicente, J., Stewart, A. K., Van Wagoner, R. M., Elliott, E., Bourdelais, A. J., & Wright, J. L. C. (2015). Monacyclinones, New Angucyclinone Metabolites Isolated from Streptomyces sp. M7_15 Associated with the Puerto Rican Sponge Scopalina ruetzleri. Marine Drugs, 13(8), 4682-4700. https://doi.org/10.3390/md13084682