Lipid Composition, Fatty Acids and Sterols in the Seaweeds Ulva armoricana, and Solieria chordalis from Brittany (France): An Analysis from Nutritional, Chemotaxonomic, and Antiproliferative Activity Perspectives
Abstract
:1. Introduction
2. Results and Discussion
2.1. Lipid Contents and Lipid Classes Distribution
U. armoricana (%) | S. chordalis (%) | |
---|---|---|
Water content fresh algae | 92.00 ± 1.25 | 90.05 ± 0.70 |
Total lipids | 2.62 ± 0.04 | 2.96 ± 0.04 |
Neutral lipids | 55.60 ± 0.05 | 37.70 ± 0.07 |
Glycolipids | 29.10 ± 0.10 | 38.50 ± 0.02 |
Phospholipids | 15.30 ± 0.10 | 23.70 ± 0.09 |
Phylum | Algal Species | Location | Date | Reported Levels (%) | References |
---|---|---|---|---|---|
Chlorophyta | Ulva sp. | Beach in Plestin-les-Grèves, France | June 2012 | 0.6% dw | [7] |
north-east part of the Black Sea (Feodosiya and Karadag Bays, Crimea) | July 1987 | 0.2% dw | [8] | ||
U. lactuca | Coast of Abu Qir Bay near Boughaz El-Maadya (Egypt) | April, August and October 2010 | 4.0% dw | [9] | |
Buleji beach of Karachi coast | Different seasons at low tide | 1.2% dw | [10] | ||
Littoral between the area of Téboulba and Sayada (Monastir-Tunisia) | July 2007 | 7.9% dw | [11] | ||
Chlorophyta | U. lactuca | Indian Sundarbans | September 2007–June 2008 | 0.3%–1.0% dw | [12] |
Bohai Sea near Weihai (China) | August | 1.2% fw | [13] | ||
Bodega Bay, California | November 1995 | 3.1% dw | [14] | ||
Coast of Norway | May and June 2012 | 2.6% dw | [15] | ||
Coast of the Persian Gulf (Iran) | - | 3.6% dw | [16] | ||
Ria de Aveiro | October 2012 | 0.3% dw | [17] | ||
U. rigida | north-east part of the Black Sea (Feodosiya and Karadag Bays, Crimea) | July 1987 | 0.3% dw | [8] | |
Varvara, Bulgaria | October 2011 | 0.8% fw | [18] | ||
U. fenestrata | Pacific Ocean in the Northern part of Canada | - | 0.5% la | [19] | |
U. pertusa | Bohai Sea near Weihai (China) | August | 0.9% fw | [13] | |
U. lactuca U. fasciata U. taeniata U. pertusa U. reticulata U. beytensis U. compressa U. rIgida U. linza U. flexuosa U. erecta U. prolifera | Gujarat coast, India | March–October 2011 | 0.7%–2.0% fw | [20] | |
U. linza | Abu Qir Bay, Egypt | Spring, summer, autumn | 4.1% dw, 3.8% dw, 3.2% dw | [21] | |
Rhodophyta | S. chordalis | Littoral zone of the Saint Gildas de Rhuys, France | March 2012 | 0.9% dw | [7] |
S. robusta | Gujarat coast, India | March–October 2011 | 0.4%–1.0% fw 0.9% fw | [20] | |
Buleji beach of Karachi coast | Different seasons at low tide | 2.8% dw | [10] | ||
Sea of South China | - | 0.3% la | [19] |
2.2. Lipid Composition
2.2.1. Neutral Lipid and Sterol Composition
U. armoricana (%) (21% Total Lipids) | S. chordalis (%) (10% Total Lipids) | |
---|---|---|
Hydrocarbons | ||
Hydrocarbons | 4.3 ± 0.1 | 5.7 ± 0.2 |
Squalene | 2.7 ± 0.1 | 4.5 ± 0.1 |
Total hydrocarbons | 7.0 ± 0.1 | 10.2 ± 0.1 |
Sterols | ||
22(E)-Dehydrocholesterol | 1.0 ± 0.1 | 1.3 ± 0.1 |
Cholesterol | 35.2 ± 0.3 | 42.6 ± 0.2 |
Campesterol | 1.3 ± 0.1 | 1.7 ± 0.1 |
Brassicasterol | 3.0 ± 0.2 | 2.1 ± 0.1 |
22-Dehydrolathosterol | 0.8 ± 0.1 | 1.0 ± 0.1 |
Fucosterol | 1.4 ± 0.1 | 2.3 ± 0.1 |
Isofucosterol | 25.0 ± 0.2 | nd a |
Cholest-4-en-3-one | 0.8 ± 0.1 | 2.0 ± 0.1 |
Total sterols | 68.5 ± 0.1 | 53.0 ± 0.1 |
Other compounds | ||
α-Tocopherol | 5.5 ± 0.1 | 3.1 ± 0.1 |
Phytol | 19.0 ± 0.1 | 33.7 ± 0.3 |
2.2.2. Fatty Acid Composition of Total Lipids
Fatty Acid (FAs) a | ECL c | U. armoricana (%) | S. chordalis (%) |
---|---|---|---|
Saturated fatty acids (SFAs) | |||
14:0 | 14.00 | 0.6 ± 0.2 | 2.6 ± 0.2 |
15:0 | 15.00 | 0.4 ± 0.1 | 1.4 ± 0.1 |
16:0 | 16.00 | 42.0 ± 0.2 | 45.0 ± 0.2 |
18:0 | 18.00 | 1.0 ± 0.1 | 9.9 ± 0.1 |
22:0 | 22.00 | 2.3 ± 0.1 | nd b |
24:0 | 24.00 | 0.2 ± 0.1 | nd b |
Total SFAs | 46.5 ± 0.1 | 58.9 ± 0.1 | |
Monounsaturated fatty acids (MUFAs) | |||
14:1 | 13.63 | 0.4 ± 0.1 | nd b |
15:1 | 14.57 | nd b | 0.2 ± 0.1 |
16:1n-9 | 15.79 | 2.7 ± 0.1 | nd b |
16:1n-7 | 15.94 | 1.9 ± 0.1 | nd b |
16:1 | 15.76 | nd b | 0.2 ± 0.1 |
17:1n-7 | 16.77 | nd b | 18.5 ± 0.1 |
18:1 | 17.14 | 1.9 ± 0.1 | nd b |
18:1n-9 | 17.71 | nd b | 3.4 ± 0.1 |
18:1n-7 | 17.78 | 17.3 ± 0.1 | 4.0 ± 0.1 |
Total MUFAs | 24.3 ± 0.1 | 26.3 ± 0.1 | |
Polyunsaturated fatty acids (PUFAs) | |||
14:2 | 13.53 | 1.6 ± 0.1 | nd b |
16:4n-3 | 15.61 | 6.4 ± 0.1 | nd b |
18:4n-3 | 17.70 | 8.6 ± 0.1 | nd b |
18:3n-3 | 17.77 | 0.5 ± 0.1 | nd b |
18:2n-6 | 17.80 | 3.7 ± 0.1 | nd b |
18:2n-3 | 17.87 | 8.4 ± 0.1 | nd b |
20:5n-3 | 19.21 | Trace | 5.0 ± 0.1 |
20:4n-6 | 19.33 | Trace | 9.8 ± 0.1 |
Total PUFAs | 29.2 ± 0.1 | 14.8 ± 0.1 | |
Total n-6 PUFAs | 3.7 ± 0.1 | 9.8 ± 0.1 | |
Total n-3 PUFAs | 23.9 ± 0.1 | 5.0 ± 0.1 | |
Ratio n-6/n-3 | 0.1 ± 0.1 | 1.9 ± 0.1 |
2.2.3. Fatty Acid Composition of Phospholipids
Fatty Acid (FAs) a | ECL c | U. armoricana (%) | S. chordalis (%) |
---|---|---|---|
Saturated fatty acids (SFAs) | |||
13:0 | 13.00 | 1.7 ± 0.2 | nd b |
14:0 | 14.00 | 0.9 ± 0.1 | 2.3 ± 0.1 |
15:0 | 15.00 | 0.2 ± 0.2 | 0.4 ± 0.1 |
16:0 | 16.00 | 53.6 ± 0.1 | 29.0 ± 0.1 |
17:0 | 17.00 | 0.4 ± 0.1 | 0.8 ± 0.1 |
18:0 | 18.00 | 4.6 ± 0.1 | 5.0 ± 0.1 |
19:0 | 19.00 | 0.2 ± 0.0 | nd b |
20:0 | 20.00 | 0.3 ± 0.1 | nd b |
21:0 | 21.00 | 0.2 ± 0.0 | nd b |
22:0 | 22.00 | 1.9 ± 0.2 | nd b |
24:0 | 24.00 | 0.3 ± 0.1 | nd b |
Total SFAs | 64.3 ± 0.1 | 37.5 ± 0.1 | |
Monounsaturated fatty acids (MUFAs) | |||
15:1 | 14.57 | 0.2 ± 0.1 | nd b |
16:1n-11 | 15.70 | 1.7 ± 0.1 | nd b |
16:1n-8 | 15.85 | nd b | 3.0 ± 0.1 |
16:1n-7 | 15.94 | 1.2 ± 0.1 | nd b |
17:1n-14 | 16.73 | 3.6 ± 0.1 | nd b |
17:1n-7 | 16.77 | nd b | 8.6 ± 0.1 |
17:1n-4 | 16.88 | nd b | 10.2 ± 0.2 |
18:1n-9 | 17.71 | nd b | 2.2 ± 0.2 |
18:1n-7 | 17.78 | 5.8 ± 0.1 | 3.2 ± 0.1 |
18:1n-3 | 17.96 | nd b | 9.6 ± 0.1 |
19:1 | 18.54 | 0.5 ± 0.2 | nd b |
22:1 | 21.60 | 0.4 ± 0.1 | nd b |
Total MUFAs | 13.4 ± 0.1 | 36.8 ± 0.1 | |
Polyunsaturated fatty acids (PUFAs) | |||
16:4n-3 | 15.60 | 2.2 ± 0.1 | nd b |
18:4n-3 | 17.70 | 3.3 ± 0.1 | nd b |
18:3 | 17.75 | nd b | 1.2 ± 0.2 |
18:3n-3 | 17.77 | 7.6 ± 0.2 | nd b |
18:2 | 17.79 | nd b | 2.1 ± 0.1 |
18:2n-6 | 17.80 | 1.7 ± 0.2 | nd b |
20:5n-3 | 19.21 | 0.4 ± 0.1 | 2.6 ± 0.1 |
20:4n-6 | 19.32 | 0.4 ± 0.1 | 12.2 ± 0.1 |
20:3n-9 | 19.44 | 0.4 ±0.1 | nd b |
20:2 | 19.56 | 0.4 ± 0.1 | nd b |
21:3 | 20.64 | 0.4 ± 0.1 | nd b |
22:6n-3 | 21.54 | 0.3 ± 0.1 | nd b |
22:5 | 21.63 | 0.8 ± 0.1 | nd b |
22:3 | 21.83 | 0.6 ± 0.1 | nd b |
Total PUFAs | 18.5 ± 0.1 | 18.1 ± 0.1 | |
Hydroxy fatty acids (Hydroxy FAs) | |||
2-Hydroxy FAs | |||
2-OH-16:1 | 17.18 | nd b | 1.5 ± 0.1 |
2-OH-16:0 | 17.31 | 1.0 ± 0.1 | 1.4 ± 0.1 |
2-OH-17:0 | 18.26 | 0.2 ± 0.1 | 4.5 ± 0.1 |
2-OH-18:0 | 19.24 | 1.0 ± 0.1 | nd b |
2-OH-22:0 | 23.26 | 0.1± 0.1 | nd b |
3-Hydroxy FAs | |||
3-OH-17:1 | 18.53 | 0.2± 0.1 | nd b |
Total Hydroxy FAs | 2.5 ± 0.1 | 7.4 ± 0.1 | |
Total Fatty aldehyde | 1.3 ± 0.1 | nd b | |
dimethylacetals | |||
Total n-6 PUFAs | 2.1 ± 0.1 | 12.2 ± 0.1 | |
Total n-3 PUFAs | 13.8 ± 0.1 | 12.2 ± 0.1 | |
Ratio n-6/n-3 | 0.1 ± 0.1 | 1.0 ± 0.1 |
2.2.4. Fatty Acid Composition of Glycolipids
U. armoricana | S. chordalis | |
---|---|---|
MGDG a | 44.0 | 44.9 |
DGDG b | 28.8 | 23.0 |
SQDG c | 27.2 | 32.0 |
Fatty Acid (FAs) a | ECL c | U. armoricana b (%) | S. chordalis b (%) |
---|---|---|---|
Saturated fatty acids (SFAs) | |||
12:0 | 12.00 | 0.04 | nd b |
14:0 | 14.00 | 0.6 | 3.2 |
br-15:0 | 14.46 | 0.04 | nd b |
iso-15:0 | 14.53 | 0.08 | 0.1 |
ai-15:0 | 14.63 | 0.5 | nd b |
15:0 | 15.00 | 0.3 | 0.4 |
16:0 | 16.00 | 64.2 | 40.0 |
ai-17:0 | 16.72 | 0.5 | nd b |
17:0 | 17.00 | 2.3 | 5.1 |
18:0 | 18.00 | nd b | 3.1 |
19:0 | 19.00 | 1.2 | 9.9 |
20:0 | 20.00 | 0.2 | 0.1 |
21:0 | 21.00 | 2.4 | nd b |
22:0 | 22.00 | 2.3 | 0.1 |
23 | 23.00 | 0.1 | nd b |
24:0 | 24.00 | 0.5 | 0.7 |
Total SFAs | 75.2 | 62.7 | |
Monounsaturated fatty acids (MUFAs) | |||
13:1 | 12.72 | 1.5 | nd b |
15:1 | 14.57 | 2.5 | nd b |
16:1n-5 | 15.86 | nd b | 4.1 |
16:1n-9 | 15.79 | 0.5 | nd b |
16:1n-7 | 15.94 | 2.1 | nd b |
17:1n-5 | 16.80 | nd b | 15.4 |
17:1n-4 | 16.88 | nd b | 0.5 |
18:1n-9 | 17.71 | nd b | 3.6 |
18:1n-7 | 17.78 | 3.5 | nd b |
18:1n-5 | 17.84 | nd b | 1.6 |
19:1 | 18.86 | nd b | 1.4 |
Total MUFAs | 10.1 | 26.6 | |
Polyunsaturated fatty acids (PUFAs) | |||
16:4n-3 | 15.61 | 2.1 | nd b |
18:4n-3 | 17.70 | 0.2 | nd b |
18:3n-3 | 17.77 | 3.5 | nd b |
18:2 | 17.79 | nd b | 0.2 |
18:2n-6 | 17.80 | 0.6 | nd b |
18:2n-3 | 17.87 | 1.8 | nd b |
20:5n-3 | 19.21 | nd b | 1.2 |
20:4n-6 | 19.32 | nd b | 2.1 |
22:6n-3 | 21.54 | 0.9 | nd b |
22:3 | 21.83 | nd b | 0.9 |
Total PUFAs | 9.0 | 4.5 | |
Hydroxy fatty acids (Hydroxy FAs) | |||
2-Hydroxy FAs | |||
2-OH-14:0 | 15.57 | 0.04 | nd b |
2-OH-16:0 | 17.30 | 0.8 | 0.4 |
2-OH-18:0 | 19.23 | 0.2 | 2.7 |
2-OH-20:0 | 21.45 | 0.4 | nd b |
2-OH-22:0 | 23.26 | 0.2 | 0.6 |
3-Hydroxy FAs | |||
3-OH-16:0 | 17.64 | nd b | 0.5 |
3-OH-17:0 | 18.55 | 1.5 | 0.9 |
3-OH-18:0 | 19.46 | 0.3 | nd b |
Total Hydroxy FAs | 3.5 | 5.1 | |
Other compounds d | 2.2 | 0.7 | |
Total n-6 PUFAs | 0.6 | 2.1 | |
Total n-3 PUFAs | 8.5 | 1.2 | |
Ratio n-6/n-3 | 0.07 | 1.7 |
2.3. Antiproliferative Activity against Human Non-Small Cell Lung Cancer
2.4. Proposed Algal Glycolipid Structures of Bioactive Constituents
3. Materials and Methods
3.1. Samples
3.2. Lipid Extraction, Lipid Classes, Fatty Acid and Sterol
3.3. Thin Layer Chromatography
3.4. Gas Chromatography-Mass Spectrometry Analyses of Fatty Acid and Sterol Derivatives
3.5. Cellular Studies (NSCLC-N6)
3.6. Liquid Chromatography-Mass Spectrometry Analysis of Glycolipids
3.7. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
AA | arachidonic acid |
ai | anteiso |
br | branched |
DHA | n-3 docosahexaenoic acid |
DGDG | digalactosyldiglycerols |
DMA | dimethylacetal |
dw | dry weight |
ECL | equivalent chain lengths |
EPA | n-3 eicosapentaenoic acid |
FA(s) | fatty acid(s) |
FAME(s) | fatty acid methyl ester(s) |
fw | fresh weight |
GC-MS | gas chromatography-mass spectrometry |
GL | glycolipids |
HR-MS | high resolution mass spectrometry |
IC50 | 50% inhibitory concentration |
I | iso |
LC-MS | liquid chromatography-mass spectrometry |
LCMS-IT-TOF | liquid chromatography coupled with a electrospray ionization ion trap time-of-flight multistage mass spectrometer |
la | lyophilized algae |
MGDG | monogalactosyldiglycerols |
MUFA(s) | monounsaturated fatty acids |
NAP | N-acyl pyrrolidide(s) |
NL | neutral lipids |
PUFA(s) | polyunsaturated fatty acid(s) |
PL | phospholipids |
SFA(s) | saturated fatty acids |
SQDG | sulfoquinovosyl diacylglycerols |
SQMG | sulfoquinovosyl monoacylglycerols |
s.d. | standard deviation |
TL | total lipids |
References
- Stengel, D.B.; Connan, S.; Popper, Z.A. Algal chemodiversity and bioactivity: Sources of natural variability and implications for commercial application. Biotechnol. Adv. 2011, 29, 483–501. [Google Scholar] [CrossRef] [PubMed]
- Dawczynski, C.; Schubert, R.; Jahreis, G. Amino acids, fatty acids, and dietary fiber in edible seaweed products. Food Chem. 2007, 103, 891–899. [Google Scholar] [CrossRef]
- Newton, I.S. Long chain fatty acids in health and nutrition. J. Food Lipids 1996, 3, 233–249. [Google Scholar] [CrossRef]
- Rajasulochana, P.; Krishnamoorthy, P.; Dhamotharan, R. Amino acids, fatty acids and minerals in Kappaphycus sps. J. Agric. Biol. Sci. 2010, 5, 1–12. [Google Scholar]
- Miyashita, K.; Mikami, N.; Hosokawa, M. Chemical and nutritional characteristics of brown seaweed lipids: A review. J. Funct. Foods 2013, 5, 1507–1517. [Google Scholar] [CrossRef]
- Darcy-Vrillon, B. Nutritional aspects of the developing use of marine macroalgae for the human food industry. Int. J. Food Sci. Nutr. 1993, 44, 23–35. [Google Scholar]
- Hardouin, K.; Burlot, A.-S.; Umami, A.; Tanniou, A.; Stiger-Pouvreau, V.; Widowati, I.; Bedoux, G.; Bourgougnon, N. Biochemical and antiviral activities of enzymatic hydrolysates from different invasive French seaweeds. J. Appl. Phycol. 2014, 26, 1029–1042. [Google Scholar] [CrossRef]
- Dembitsky, V.M.; Rozentsvet, O.A. Diacylglyceryltrimethylhomoserines and phospholipids of some green marine macrophytes. Phytochemistry 1989, 28, 3341–3343. [Google Scholar] [CrossRef]
- Khairy Hanan, M.; El-Shafay Shimaa, M. Seasonal variations in the biochemical composition of some common seaweed species from the coast of Abu Qir Bay, Alexandria, Egypt. Oceanologia 2013, 55, 435–452. [Google Scholar] [CrossRef]
- Ambreen; Hira, K.; Tariq, A.; Ruqqia; Sultana, V.; Ara, J. Evaluation of biochemical component and antimicrobial activity of some seaweeds occurring at Karachi coast, Pakistan. J. Bot. 2012, 44, 1799–1803. [Google Scholar]
- Yaich, H.; Garna, H.; Besbes, S.; Paquot, M.; Blecker, C.; Attia, H. Chemical composition and functional properties of Ulva lactuca seaweed collected in Tunisia. Food Chem. 2011, 128, 895–901. [Google Scholar] [CrossRef]
- Banerjee, K.; Ghosh, R.; Homechaudhuri, S.; Mitra, A. Biochemical Composition of Marine Macroalgae from Gangetic Delta at the Apex of Bay of Bengal. Afr. J. Basic. Appl. Sci. 2009, 1, 96–104. [Google Scholar]
- Li, X.; Fan, X.; Han, L.; Lou, Q. Fatty acids of some algae from the Bohai Sea. Phytochemistry 2002, 59, 157–161. [Google Scholar] [CrossRef]
- Khotimchenko, S.V.; Vaskovsky, V.E.; Titlyanova, T.V. Fatty acids of marine algae from the Pacific coast of north California. Bot. Mar. 2002, 45, 17–22. [Google Scholar] [CrossRef]
- Maehre, H.K.; Malde, M.K.; Eilertsen, K.-E.; Elvevoll, E.O. Characterization of protein, lipid and mineral contents in common Norwegian seaweeds and evaluation of their potential as food and feed. J. Sci. Food Agric. 2014, 94, 3281–3290. [Google Scholar] [CrossRef] [PubMed]
- Rohani-Ghadikolaei, K.; Abdulalian, E.; Ng, W.K. Evaluation of the proximate, fatty acid and mineral composition of representative green, brown and red seaweeds from the Persian Gulf of Iran as potential food and feed resources. J. Food Sci. Technol. 2012, 49, 774–780. [Google Scholar] [CrossRef] [PubMed]
- Santos, S.A.O.; Vilela, C.; Freire, C.S.R.; Abreu, M.H.; Rocha, S.M.; Silvestre, A.J.D. Chlorophyta and Rhodophyta macroalgae: A source of health promoting phytochemicals. Food Chem. 2015, 183, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, V.; Stancheva, M.; Petrova, D. Fatty acid composition of black sea Ulva rigida and Cystoseira crinita. Bulg. J. Agric. Sci. 2013, 19 (Suppl. 1), 42–47. [Google Scholar]
- Colombo, M.L.; Rise, P.; Giavarini, F.; de Angelis, L.; Galli, C.; Bolis, C.L. Marine Macroalgae assources of polyunsaturated fatty acids. Plant Foods Hum. Nutr. 2006, 61, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Kumari, P.; Bijo, A.J.; Mantri, V.A.; Reddy, C.R.K.; Jha, B. Fatty acid profiling of tropical marine macroalgae: An analysis from chemotaxonomic and nutritional perspectives. Phytochemistry 2013, 86, 44–56. [Google Scholar] [CrossRef] [PubMed]
- El Maghraby, D.M.; Fakhry, E.M. Lipid content and fatty acid composition of Mediterranean macro-algae as dynamic factors for biodiesel production. Oceanologia 2015, 57, 86–92. [Google Scholar] [CrossRef]
- Khotimchenko, S.V. Lipids from the marine alga Gracilaria verrucosa. Chem. Nat. Comp. 2005, 41, 285–288. [Google Scholar] [CrossRef]
- Li, Y.; Moore, R.B.; Qin, J.G.; Scott, A.; Ball, A.S. Extractable liquid, its energy and hydrocarbon content in the green alga Botryococcus braunii. Biomass Bioenergy 2013, 52, 103–112. [Google Scholar] [CrossRef]
- Sanchez-Machado, D.I.; Lopez-Cervantes, J.; Lopez-Hernandez, J.; Paseiro-Losada, P. Fatty acids, total lipid, protein and ash contents of processed edible seaweeds. Food Chem. 2004, 85, 439–444. [Google Scholar] [CrossRef]
- Kendel, M.; Couzinet-Mossion, A.; Viau, M.; Fleurence, J.; Barnathan, G.; Wielgosz-Collin, G. Seasonal composition of lipids, fatty acids and sterols in the edible red alga Grateloupia turuturu. J. Appl. Phycol. 2013, 25, 425–432. [Google Scholar] [CrossRef]
- Kelly, G.S. Squalene and its potential clinical uses. Altern. Med. Rev. 1999, 4, 29–36. [Google Scholar] [PubMed]
- Das, B. The Science behind Squalene-the Human Antioxidant, 2nd ed.; Toronto Medical Publishing: Toronto, ON, Canada, 2005. [Google Scholar]
- Christie, W.W. The Lipid Library. Available online: http://lipidlibrary.aocs.org/index.cfm (accessed on 27 August 2015).
- Daines, A.M.; Payne, R.J.; Humphries, M.E.; Abell, A.D. The synthesis of naturally occurring vitamin K and vitamin K analogues. Curr. Org. Chem. 2003, 7, 1–15. [Google Scholar] [CrossRef]
- Netscher, T. Synthesis of Vitamin E. Vitam. Horm. 2007, 76, 155–202. [Google Scholar] [PubMed]
- Gancheva, K.Z.; Dimitrova-Konaklieva, S.D.; Ljubomirov, K.S.; Simeonof, P.S. A comparative study on the sterol composition of some brown algae from the Black Sea. J. Serb. Chem. Soc. 2003, 68, 269–275. [Google Scholar]
- Thompson, G.A. Lipids and membrane function in green algae. Biochim. Biophys. Acta 1996, 1302, 7–45. [Google Scholar] [CrossRef]
- Parish, E.J.; Honda, H.; Chitrakorn, S.; Livant, P. A facile chemical synthesis of cholest-4-en-3-one. Carbon-13 nuclear magnetic resonance spectral properties of cholest-4-en-3-one and cholest-5-en-3-one. Lipids 1991, 26, 675–677. [Google Scholar] [CrossRef]
- Suzuki, K.; Shimizu, T.; Nakata, T. The cholesterol metabolite cholest-4-en-3-one and its 3-oxo derivatives suppress body weight gain, body fat accumulation and serum lipid concentration in mice. Bioorg. Med. Chem. Lett. 1998, 18, 2133–2138. [Google Scholar] [CrossRef]
- Patch, C.S.; Tapsell, L.C.; Williams, P.G.; Gordon, M. Plant sterols as dietary adjuvants in the reduction of cardiovascular risk: Theory and evidence. Vasc. Health Risk Manag. 2006, 2, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Aknin, M.; Moellet-nzaou, R.; Kornprobst, J.M.; Gaydou, E.M.; Samb, A.; Miralleq, J. Sterol composition of twelve Chlorophyceae from the Senegalese coast and their chemotaxonomic significance. Phytochemistry 1992, 31, 4167–4169. [Google Scholar] [CrossRef]
- Nobuo, I.; Naoko, M.; Kyosuke, T.; Tamao, Y. Sterol compositions in some green algae and brown algae. Steroids 1968, 12, 41–48. [Google Scholar]
- Nasir, M.; Saeidnia, S.; Mashinchian-Moradi, A.; Gohari, A.R. Sterols from the red algae, Gracilaria salicornia and Hypnea flagelliformis, from Persian Gulf. Pharmacogn. Mag. 2011, 7, 97–100. [Google Scholar] [PubMed]
- Gressler, V.; Yokoya, N.; Fujii, M.; Colepicolo, P.; Filho, J.; Torres, R.; Pinto, E. Lipid, fatty acid, protein, amino acid and ash contents in four Brazilian red algae species. Food. Chem. 2010, 120, 585–590. [Google Scholar] [CrossRef]
- Sato, S. Effects of environmental factors on the lipid components of Porphyra species. Bull. Jpn. Sot. Sci. Fish. 1975, 41, 326–339. [Google Scholar]
- Johns, R.B.; Nichols, P.D.; Perry, G.J. Fatty acid composition of ten marine algae from Australian waters. Phytochemistry 1979, 18, 799–802. [Google Scholar] [CrossRef]
- Kumari, P.; Reddy, C.R.K.; Jha, B. Comparative evaluation and selection of a method for lipid and fatty acid extraction from macroalgae. Anal. Biochem. 2011, 415, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Pereira, H.; Barreira, L.; Figueiredo, F.; Custodio, L.; Vizetto-Duarte, C.; Polo, C.; Resek, E.; Engelen, A.; Varela, J. Polyunsaturated fatty acids of marine macroalgae: Potential for nutritional and pharmaceutical applications. Mar. Drugs 2012, 10, 1920–1935. [Google Scholar] [CrossRef] [PubMed]
- Aknin, M.; Miralles, J.; Kornprobst, M. Sterol and fatty acid distribution in red algae from Senegalese coast. Comp. Biochem. Physiol. B Comp. Biochem. 1990, 96, 559–563. [Google Scholar] [CrossRef]
- Matanjun, P.; Mohamed, S.; Mustapha, N.M.; Muhammad, K. Nutrient content of tropical edible seaweeds, Eucheuma cottonii, Caulerpa lentillifera and Sargassum polycystum. J. Appl. Phycol. 2009, 21, 75–80. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Wu, J.H.Y. Omega-3 fatty acids and cardiovascular disease effects on risk factors, molecular pathways, and clinical events. J. Am. Coll. Cardiol. 2011, 58, 2047–2067. [Google Scholar] [CrossRef] [PubMed]
- Poudyal, H.; Panchal, S.K.; Ward, L.C.; Brown, L. Effects of ALA, EPA and DHA in high-carbohydrate, high-fat diet-induced metabolic syndrome in rats. J. Nutr. Biochem. 2013, 24, 1041–1052. [Google Scholar] [CrossRef] [PubMed]
- Gillies, P.J.; Harris, W.S.; Kris-Etherton, P.M. Omega-3 fatty acids in food and pharma: The enabling role of biotechnology. Curr. Atheroscler. Rep. 2011, 13, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Eckert, G.P.; Lipka, U.; Muller, W.E. Omega-3 fatty acids in neurodegenerative diseases: Focus on mitochondria. Prostaglandins Leukot. Essent. Fatty Acids 2013, 88, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Carballeira, N.M.; Emiliano, A.; Rodriguez, J.; Reyes, E.D. Isolation and characterization of novel 2-hydroxy fatty acids from the phospholipids of the sponge Smenospongia aurea. Lipids 1992, 27, 681–685. [Google Scholar] [CrossRef] [PubMed]
- Barnathan, G.; Kornprobst, J.M. Sponge fatty acids, 5. Characterization of complete series of 2-hydroxy long-chain fatty acids in phospholipids of two Senegalese marine sponges from the family Suberitidae: Pseudosuberites sp. and Suberites massa. J. Nat. Prod. 1993, 56, 2104–2113. [Google Scholar] [CrossRef]
- Barnathan, G.; Bourgougnon, N.; Kornprobst, J.M. Methoxy fatty acids isolated from the red alga Schizymenia dubyi. Phytochemistry 1998, 5, 761–765. [Google Scholar] [CrossRef]
- Kendel, M.; Fleurence, J.; Barnathan, G.; Rabesaotra, V.; Wielgosz-Collin, G. Non-methylene interrupted and hydroxy fatty acids in polar lipids of the alga Grateloupia turuturu over the four seasons. Lipids 2013, 48, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, G.I.; Shioya, M.; Nagashima, H. Occurrence of 2-hydroxyacids in microalgae. Phytochemistry 1984, 23, 1421–1423. [Google Scholar] [CrossRef]
- Alugupalli, S.; Portaels, F.; Larsson, L. Systematic study of the 3-hydroxy fatty acid composition of mycobacteria. J. Bacteriol. 1994, 176, 2962–2969. [Google Scholar] [PubMed]
- Rezanka, T.; Sokolov, M.Y.; Viden, I. Unusual and very longchain fatty acids in Desulfotomaculum, a sulfate-reducing bacterium. FEMS Microbiol. Ecol. 1990, 73, 231–238. [Google Scholar] [CrossRef]
- Sjögren, J.; Magnusson, J.; Broberg, A.; Schnuürer, J; Kenne, L. Antifungal 3-hydroxy fatty acids from Lactobacillus plantarum MiLAB 14. Appl. Environ. Microbiol. 2003, 69, 7554–7557. [Google Scholar] [CrossRef] [PubMed]
- Cole, J.J. Interactions between bacteria and algae in aquatic ecosystems. Annu. Rev. Ecol. Evol. Syst. 1982, 13, 291–314. [Google Scholar] [CrossRef]
- Zabeti, N.; Bonin, P.; Volkman, J.K.; Guasco, S.; Rontani, J.F. Fatty acid composition of bacterial strains associated with living cells of the haptophyte Emiliania huxleyi. Org. Geochem. 2010, 41, 627–636. [Google Scholar] [CrossRef]
- Nagan, N.; Zoeller, R.A. Plasmalogens: Biosynthesis and functions. Prog. Lipid. Res. 2001, 40, 199–229. [Google Scholar] [CrossRef]
- Fleury, B.G.; Figueiredo, L.; Marconi, M.I.; Teixeira, V.L.; Ferreira, A.B.B.; Pinto, A.C. Fatty acids as chemotaxonomic markers of marine macrophytes from Rio de Janeiro State, Brazil. Nat. Prod. Commun. 2011, 6, 667–672. [Google Scholar] [PubMed]
- Galloway, A.W.E.; Britton-Simmons, K.H.; Duggins, D.O.; Gabrielson, P.W.; Brett, M.T. Fatty acid signatures differentiate marine macrophytes at ordinal and family ranks. J. Phycol. 2012, 48, 956–965. [Google Scholar] [CrossRef]
- Al-Hasan, R.H.; Hantash, F.M.; Radwan, S.S. Enriching marine macroalgae with eicosatetranoic (arachidonic) and eicosapentaenoic acids by chilling. Appl. Microbiol. Biotechnol. 1991, 35, 530–535. [Google Scholar]
- Hotimchenko, S.V. Fatty acid composition of algae from habitats with varying amounts of illumination. Russ. J. Mar. Biol. 2002, 28, 218–220. [Google Scholar] [CrossRef]
- Hold, S.L.; Kraan, S. Bioactive compounds in seaweed: Functional food applications and legislation. J. Appl. Phycol. 2011, 23, 543–597. [Google Scholar] [CrossRef]
- Kaneda, T. Iso- and anteiso-fatty acids in bacteria; biosynthesis, function, and taxonomic significance. Microbiol. Rev. 1991, 55, 288–302. [Google Scholar] [PubMed]
- Silva, M.; Vieira, L.M.M.; Almeida, A.P.; Silva, A.M.S.; Seca, A.M.L.; Barreto, M.C.; Neto, A.I.; Pedro, P.; Pinto, E.; Kijjoa, A. Chemical study and biological activity evaluation of two azorean macroalgae: Ulva rigida and Gelidium microdon. Oceanography 2013, 1, 102. [Google Scholar] [CrossRef]
- Knittelfelder, O.L.; Weberhofer, B.P.; Eichmann, T.O.; Kohlwein, S.D.; Rechberger, G.N. A versatile ultra-high performance LC-MS method for lipid profiling. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2014, 951–952, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Roussakis, C.; Gratas, C.; Audouin, A.F.; le Boterff, J.; Dabouis, C.; André, M.J.; Moyon, E.; Vo, N.H.; Pradal, G.; Verbist, J.F. Study of in vitro drug sensitivity on a newly established cell line from a primary bronchial epidermoid carcinoma of human origin (NSCLCN6). Anticancer Res. 1991, 11, 2239–2244. [Google Scholar] [PubMed]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kendel, M.; Wielgosz-Collin, G.; Bertrand, S.; Roussakis, C.; Bourgougnon, N.; Bedoux, G. Lipid Composition, Fatty Acids and Sterols in the Seaweeds Ulva armoricana, and Solieria chordalis from Brittany (France): An Analysis from Nutritional, Chemotaxonomic, and Antiproliferative Activity Perspectives. Mar. Drugs 2015, 13, 5606-5628. https://doi.org/10.3390/md13095606
Kendel M, Wielgosz-Collin G, Bertrand S, Roussakis C, Bourgougnon N, Bedoux G. Lipid Composition, Fatty Acids and Sterols in the Seaweeds Ulva armoricana, and Solieria chordalis from Brittany (France): An Analysis from Nutritional, Chemotaxonomic, and Antiproliferative Activity Perspectives. Marine Drugs. 2015; 13(9):5606-5628. https://doi.org/10.3390/md13095606
Chicago/Turabian StyleKendel, Melha, Gaëtane Wielgosz-Collin, Samuel Bertrand, Christos Roussakis, Nathalie Bourgougnon, and Gilles Bedoux. 2015. "Lipid Composition, Fatty Acids and Sterols in the Seaweeds Ulva armoricana, and Solieria chordalis from Brittany (France): An Analysis from Nutritional, Chemotaxonomic, and Antiproliferative Activity Perspectives" Marine Drugs 13, no. 9: 5606-5628. https://doi.org/10.3390/md13095606
APA StyleKendel, M., Wielgosz-Collin, G., Bertrand, S., Roussakis, C., Bourgougnon, N., & Bedoux, G. (2015). Lipid Composition, Fatty Acids and Sterols in the Seaweeds Ulva armoricana, and Solieria chordalis from Brittany (France): An Analysis from Nutritional, Chemotaxonomic, and Antiproliferative Activity Perspectives. Marine Drugs, 13(9), 5606-5628. https://doi.org/10.3390/md13095606