Brown Algae Padina sanctae-crucis Børgesen: A Potential Nutraceutical
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. General
4.2. Collection, Extraction and Iolation
4.3. Fatty Acids Transesterification
4.4. Experimental Animals
4.5. Cytotoxicity Assay
4.6. Oxidant and Antioxidant Evaluation
4.7. Acute Toxicity Studies
4.8. Micronucleus Test
4.9. Statistical Analysis
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Seaweeds for Food and Industrial Aplications. Available online: https://cdn.intechopen.com/pdfs-wm/41694.pdf (accessed on 30 June 2017).
- Blunt, J.W.; Copp, B.R.; Munro, M.H.; Northcote, P.T.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2010, 27, 165–237. [Google Scholar] [CrossRef] [PubMed]
- Abad, M.J.; Bedoya, L.M.; Bermejo, P. Natural marine anti-inflammatory products. Med. Chem. 2008, 8, 740–754. [Google Scholar] [CrossRef]
- Tseng, C.K.; Chang, C.F. Chinese seaweeds in herbal medicine. Hydrobiologia 1984, 1, 152–154. [Google Scholar]
- Lopez, A.; Gerwick, W.H. Ptilodene, a novel icosanoid inhibitor of 5-lipoxygenase and Na+/K+ ATPase from the marine alga Ptilota filicina. Tetrahedron Lett. 1988, 29, 1505–1506. [Google Scholar] [CrossRef]
- Abourrichie, A.; Charrouf, M.; Berrada, M.; Bennamara, A.; Chaib, N.; Francisco, C. Antimicrobial activities and cytotoxicity of the brown alga Cystoseira tamariscifolia. Fitoterapia 1999, 70, 611–614. [Google Scholar] [CrossRef]
- Türkez, H.; Gürbüz, H.; Aydin, E.; Aslan, A.; Dirican, E. The evaluation of the genotoxic and oxidative damage potentials of Ulothrixtenuissima (Kutz.) in vitro. Toxicol. Ind. Health 2012, 28, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, J.L. The dual roles of nutrients as anti-oxidants and prooxidants: Their effects on tumor cell growth. J. Nutr. 1996, 126 (Suppl. S4), 1221S–1227S. [Google Scholar] [PubMed]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine; Oxford University Press: New York, NY, USA, 2007; p. 851. [Google Scholar]
- Cornish, M.L.; Garbary, D.J. Antioxidants from macroalgae: Potencial applications in human health and nutrition. Algae 2010, 25, 155–171. [Google Scholar] [CrossRef]
- Balboa, E.M.; Conde, E.; Moure, A.; Falqué, E.; Domiínguez, H. In vitro antioxidant properties of crude extracts and copounds from brown algae. Food Chem. 2013, 138, 1764–1785. [Google Scholar] [CrossRef] [PubMed]
- Nagai, T.; Yukimoto, T. Preparation and functional properties of beverages made from sea algae. Food Chem. 2003, 81, 327–332. [Google Scholar] [CrossRef]
- López-López, I.; Bastida, S.; Ruiz-Capillas, C.; Bravo, L.; Larrea, M.T.; Sánchez-Muniz, F.; Cofrades, S.; Jiménez-Colmenero, F. Composition and antioxidant capacity of low-salt meat emulsion model systems containing edible seaweeds. Meat Sci. 2009, 83, 492–498. [Google Scholar] [CrossRef] [PubMed]
- AlgaeBase. World-Wide Electronic Publication, National University of Ireland, Galway. Available online: http://www.algaebase.org (accessed on 1 June 2017).
- Teixeira, V.L.; Tomassini, T.; Kelecom, A. Produtos naturais de organismos marinhos: Uma revisão sobre os diterpenos da alga Dictyota sp. Quím. Nova 1985, 8, 302–313. [Google Scholar]
- Zipcodezoo. Database. Available online: http://zipcodezoo.com/Key/Chromista/Padina_Genus.asp (accessed on 5 June 2017).
- Novaczek, I. A Guide to the Common and Edible and Medicinal Sea Plants of the Pacific Island; University of South Pacific: Suva, Fiji Island, 2001; p. 40. [Google Scholar]
- Pavia, D.L.; Lampman, G.M.; Kriz, G.S. Introduction to Spectroscopy—A Guide for Students of Organic Chemistry, 3rd ed.; Brooks/Cole: Pacific Grove, CA, USA, 2010; pp. 136–149. [Google Scholar]
- Gonzalez, A.G.; Martin, J.D.; Norte, M.; Rivera, P.; Perales, A.; Fayos, J. Structure and absolute configurations of Dictyota sp. diterpenes. Tetrahedron 1983, 39, 3355–3357. [Google Scholar] [CrossRef]
- Crews, P.; Klein, T.E.; Hogue, E.R.; Myers, B.L. Tricyclic diterpenes from the brown algae Dictyota divaricata and Dictyota linearis. J. Org. Chem. 1982, 47, 811–815. [Google Scholar] [CrossRef]
- Melos, J.L.R.; Silva, L.B.; Peres, M.T.L.P.; Mapeli, A.M.; Faccenda, O.; Anjos, H.H.; Torres, T.G.; Tiviroli, S.C.; Batista, A.L.; Almeida, F.G.N.; et al. Constituintes químicos e avaliação do potencial alelopático de Adiantum tetraphyllum HUMB. & BONPL. EX. WILLD (PTERIDACEAE). Quím. Nova 2007, 30, 292–297. [Google Scholar]
- Tomaz, A.C.A.; Nogueira, R.B.S.S.; Pinto, D.S.; Agra, M.F.; Souza, M.F.V.; Da-Cunha, E.V.L. Chemical constiuents from Richardia grandiflora (Cham. & Schltdl.) Steud. (Rubiaceae). Braz. J. Pharmacogn. 2008, 18, 47–52. [Google Scholar]
- Jerz, G. Structural Chracterization of 132-hydroxy-(132-S)-phaephytin-A from leaves and stems of Amaranthus tricolor isolated by high- speed countercurrent chromatography. Innov. Food Sci. Emerg. Tecnol. 2007, 8, 413–418. [Google Scholar] [CrossRef]
- Paula, V.F.; Barbosa, L.C.A.; Piló-Veloso, D.; Demuner, A.J.; Howarth, O. Constituintes químicos da casca de Ochroma lagopus Swartz (Bombacaceae). Eclét. Quím. 1998, 23, 45–57. [Google Scholar] [CrossRef]
- Ferreira, V.F.; Rocha, D.R.; Silva, F.C. Potencialidades e oportunidades na química da sacarose e outros açúcares. Quím. Nova 2009, 32, 623–638. [Google Scholar] [CrossRef]
- Oliveira, P.R.N.; Testa, G.; Sena, S.B.; Costa, W.F.; Sarragioto, M.H.; Santin, S.M.O.; Souza, M.C. Saponinas triterpênicas das raizes de Guettarda pohliana Müll. Arg. (Rubiaceae). Quím. Nova 2008, 31, 755–758. [Google Scholar] [CrossRef]
- Maia, E.L.; Rodrigues-Amaya, D.B.R. Avaliação de um método simples e econômico para metilação de ácidos graxos com lipídios de diversas espécies de peixes. Rev. Inst. Adolfo Lutz 1993, 53, 27–35. [Google Scholar]
- Arbos, K.A.; Claro, L.M.; Borges, L.; Santos, C.A.M.; Weffort-Santos, M. Human erythrocytes as a system for evaluating the antioxidant capacity of vegetable extracts. Nutr. Res. 2008, 28, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Evans, G.O. Animal Hematotoxicology: A Practical Guide for Toxicologists and Biomedical Researchers, 1st ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2009. [Google Scholar]
- Saastamoinen, M.; Kumpulainen, J.; Nummels, S. Genetic and environmental variation in oil content and fatty acid composition of oats. Cereal Chem. 1989, 66, 269–300. [Google Scholar]
- Servel, M.O.; Claire, C.; Derrien, A.; Coiffard, L.; De Roeck-Holtzhauer, D.Y. Fatty and composition of some marine microalgas. Phytochemistry 1994, 36, 691–693. [Google Scholar] [CrossRef]
- Benatti, P.; Peluso, G.; Nicolai, R.; Calvani, M. Polyunsaturated Fatty Acids: Biochemical, Nutritional and Epigenetic Properties. J. Am. Coll. Nutr. 2004, 23, 281–302. [Google Scholar] [CrossRef] [PubMed]
- Parker, G.B.; Gibson, N.A.; Brotchie, H.; Heruc, G.; Rees, A.M.; Hadzi-Pavlovic, D. Omega-3 Fatty Acids and Mood Disorders. Am. J. Psychiatry 2006, 969–978. [Google Scholar] [CrossRef] [PubMed]
- Vieira, M.A.R. Caracterização dos Ácidos Graxos das Sementes e Compostos Voláteis dos Frutos de Espécies do Gênero Passiflora; Dissertação de Mestrado, Faculdade de Ciências Agronômicas da Unesp: Botucatu-SP, Brazil, 2006. [Google Scholar]
- Sharma, P.; Sharma, J.D. In vitro hemolysis of human erythrocytes by plant extracts with antiplasmodial activity. J. Ethnophamacol. 2001, 74, 239–243. [Google Scholar] [CrossRef]
- Aparicio, R.M.; García-Celma, M.J.; Vinardell, M.P.; Mitjans, M. In vitro studies of the hemolytic activity of microemulsions in human erythrocytes. J. Pharm. Biomed. Anal. 2005, 39, 1063–1067. [Google Scholar] [CrossRef] [PubMed]
- Lexis, L.A.; Fassett, R.G.; Coombes, J.S. α-Tocopherol and α-lipoic acid enhance the erythrocyte antioxidant defence in cyclosporine A-treated rats. Basic Clin. Pharmacol. Toxicol. 2006, 98, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Castañeda, J.R.; Muntané, J.; Muñoz, M.C.; Bujalance, I.; Montilla, P.; Tunez, I. Estradiol and catecholestrogens protect against Adriamycin-induced oxidative stress in erythrocytes of ovariectomized rats. Toxicol. Lett. 2006, 160, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.C.; Cavalcanti, B.C.; Amorim, R.C.; Lucena, J.F.; Quadros, D.S.; Tadei, W.P.; Montenegro, R.C.; Costa-Lotufo, L.V.; Pessoa, C.; Moraes, M.O.; et al. Biological activity of neosergeolide and isobrucein B (and two semi-synthetic derivatives) isolated from the Amazonian medicinal plant Picrolemma sprucei (Simaroubaceae). Mem. Inst. Oswaldo Cruz. 2009, 104, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Nussbaum, R.L.; Mcinnes, R.R.; Willard, H.F. Thompson & Thopson Genética Médica; Elsevier: Rio de Janeiro, Brazil, 2007. [Google Scholar]
- Ito, N.; Hirose, M.; Fukushima, S.; Tsuda, H.; Shirai, T.; Tatematsu, M. Studies on antioxidants: Their carcinogenic and modifying effects on chemical carcinogenesis. Food Chem. Toxicol. 1986, 24, 1071–1082. [Google Scholar] [CrossRef]
- Safer, A.M.; Al-Nughamish, A.J. Hepatotoxicity induced by the antioxidant food additive butylated hydroxytoluene (BHT) in rats: An electron microscopical study. Histol. Histopathol. 1999, 14, 391–406. [Google Scholar] [PubMed]
- Kranl, K.; Schlesier, K.; Bitsch, R.; Hermann, H.; Rohe, M.; Böhm, V. Comparing antioxidative food additives and secondary plant products—Use of different assays. Food Chem. 2005, 93, 171–175. [Google Scholar] [CrossRef]
- Cao, G.; Booth, S.L.; Prior, R.L. Food-borne nitrates and nitrites as a cause of methemoglobinemia. Southeast Asian J. Trop. Med. Public Health 1996, 27, 189–192. [Google Scholar]
- Leonard, S.S.; Cutler, D.; Ding, M.; Vallyathan, V.; Castranova, V.; Shi, X. Antioxidant properties of fruit and vegetable juices: More to the story than ascorbic acid. Ann. Clin. Lab. Sci. 2002, 32, 193–200. [Google Scholar] [PubMed]
- Long, L.H.; Halliwell, B. Oxidation and Generation of Hydrogen Peroxide by Thiol Compounds in Commonly Used Cell Culture Media. Biochem. Biophys. Res. Commun. 2001, 286, 991–994. [Google Scholar] [CrossRef] [PubMed]
- Morrisey, P.A.; O’Brien, N.M. Dietary antioxidants in health and disease. Int. Dairy J. 1998, 8, 463–472. [Google Scholar] [CrossRef]
- Amornlterdpison, D.; Peerapornpisal, Y.; Taesotikul, T.; Janjai, U.; Nualchareo, M.; Kanjanapothi, D. Antioxidant activity of Padina minor Yamada. KMITL Sci. Technol. J. 2007, 7, 1–7. [Google Scholar]
- Khaleo, N.; Hiba, M.; Asma, C. Antooxidant and antifungal activities of Padina pavonica and Sargassum vulgare from Lebanese Mediterraneum Coast. Adv. Environ. Biol. 2012, 6, 42–48. [Google Scholar]
- Murugan, K.; Iyer, V.V. Differential growth inhibition of cancer cell lines and antioxidant activity of extracts of red, brown and green marine algae. In Vitro Cell Dev. Biol. Anim. 2013, 49, 324–334. [Google Scholar] [CrossRef] [PubMed]
- Kanagarajjeevitha; Damahe, J.; Das, S.; Chowdhury, T.R.; Khora, S.S. In vitro antioxidant and cytotoxic activity of brown algae Padina boergesenii. Int. J. Drug Dev. Res. 2014, 6, 110–119. [Google Scholar]
- Chia, Y.Y.; Kanthimathi, M.S.; Khoo, K.S.; Rajarajeswaran, J.; Cheng, H.M.; Yap, W.S. Antioxidant and cytotoxic activities of these species of tropical seaweeds. BMC Complement. Altern. Med. 2015, 15, 339–353. [Google Scholar] [CrossRef] [PubMed]
- Murugan, A.C.; Vallal, D.; Karim, M.R.; Govidan, N.; Yusoff, M.B.M.; Rahman, M.M. In vitro antiradical and neuroprotective activity of polyphenolic extract from marine algae Padina autralis. J. Chem. Pharm. Res. 2015, 7, 355–362. [Google Scholar]
- Pandey, M.; Verma, R.K.; Saraf, S.A. Nutraceuticals: New era of medicine and health. Asian J. Pharm. Clin. Res. 2010, 3, 11–15. [Google Scholar]
- Kim, H.-R.; Lee, M.-S. Potential Utilization of Seaweed as Nutraceuticals. Available online: http://www.fftc.agnet.org/library.php?func=view&id=20140410165940&type_id=2 (accessed on 11 July 2017).
- Christaki, E.; Bonos, E.; Giannenas, I.; Florou-Paneri, P. Functional properties of carotenoids originating from algae. J. Sci. Food Agric. 2013, 93, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Schiar, V.P.P.; Santos, D.B.; Ludtke, D.S.; Vargas, F.; Paixão, M.W.; Nogueira, C.W.; Zeni, G.; Rocha, B.T. Screening of potentially toxic chalcogens in erythrocytes. Toxicology In Vitro 2007, 21, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Twaij, H.A.A.; Kery, A.; Al Khazraji, N.K. Some pharmacological, toxicological and phytochemical investigations on Centaurea phyllocephala. J. Ethnopharmacol. 1983, 9, 299–314. [Google Scholar] [CrossRef]
- Hayashi, M.; Macgregor, J.T.; Gatehouse, D.G.; Blakey, D.H.; Dertinger, S.D.; Abramsson-Zetterberg, L.; Krishna, G.; Morita, T.; Russo, A.; Asano, N.; et al. In vivo erythrocyte micronucleus assay III. Validation and regulatory acceptance of automated scoring and the use of rat peripheral blood reticulocytes, with discussion of non-hematopoietic target cells and a single dose-level limit test. Mutat. Res. 2007, 627, 10–30. [Google Scholar] [CrossRef] [PubMed]
- | - | 1Hx13C HMQC | 1Hx13C HMBC | 1Hx1H COSY | 1Hx1H NOESY |
---|---|---|---|---|---|
δC | δH | - | - | - | |
C | - | ||||
1 | 154.3 | - | - | - | - |
5 | 42.3 | - | - | - | - |
8 | 156.2 | - | - | - | - |
9 | 87.0 | - | - | - | - |
12 | 47.0 | - | - | - | - |
14 | 82.1 | - | - | - | - |
CH | |||||
4 | 81.1 | 3.43 (brd) | C-2, C-14 | - | - |
7 | 120.9 | 5.60 (dd, J = 4.5 and 9.5 Hz) | C-5, C-6, C-9, C-12, | - | - |
17 | 35.2 | 1.99 (hept, J = 7.0 Hz) | C-9, C-10, C-18, C-19 | - | H-7 |
CH2 | |||||
2 | 27.8 | 2.89 (dt, J = 5.0 and 13.5 Hz) 2.02 (m) | C-1, C-3, C-15 C-1, C-3, C-4, C-14, C-15 | H-3 | - |
3 | 32.0 | 1.92 (m) 1.73 (m) | - | H-2 | - |
6 | 32.5 | 3.33 (dd, J = 4.5 and 15.5 Hz) 1.67 (dd, J = 9.5 and 15.5 Hz) | C-7, C-8, C-14, C-16 C-4, C-5, C-7, C-8, C-14 | H-7 | H-7 |
10 | 29.9 | 1.42 (m) 1.79 (m) | C-8, C-9, C-11, C-12 | - | - |
11 | 42.3 | 1.79 (m) 1.42 (m) | C-20 C-8, C-9, C-12 | - | - |
13 | 45.0 | 1.89 (d, J = 14.5 Hz) 1.76 (d, J = 14.5 Hz) | C-11, C-12, C-14, C-20 C-11, C-12, C-14, C-20 | - | - |
15 | 109.5 | 4.89 (s) 4.76 (s) | C-1, C-2, C-14 C-1, C-2, C-14 | H-2 | - |
CH3 | |||||
16 | 20.0 | 0.81 (s) | C-4, C-5, C-6, C-14 | H-4 | H-4 |
18 | 17.7 | 1.01 (d, J = 7.0 Hz) | C-9, C-17, C-19 | H-17 | - |
19 | 19.5 | 0.83 (d, J = 7.0 Hz) | C-9, C-17, C-18 | H-17 | - |
20 | 24.5 | 1.22 (s) | C-8, C-11, C-12, C-13 | - | H-6 |
Saturated Fatty Acids (%) | Unsaturated Fatty Acids (%) |
---|---|
myristic acid (6.02) | oleic acid (1.61) |
palmitic acid (68.84) | linolenic acid (9.75) |
stearic acid (2.87) | linoleic acid(0.73) |
Total Saturated fatty acids = 77.73% | Total Unsaturated fatty acids = 12.09% |
Groups | Sex | Dose (mg/kg) | Water Consumption (mL) | Feed Consumption (g) | Initial Weight (g) | Final Weight (g) |
---|---|---|---|---|---|---|
Control | M | - | 54.82 ± 2.00 | 43.71 ± 1.2 | 32.32 ± 1.13 | 38.42 ± 1.54 |
F | 49.64 ± 1.23 | 41.75 ± 1.14 | 34.70 ± 1.20 | 34.42 ± 1.06 | ||
ME | M | 2000 | 52.86 ± 2.08 | 39.90 ± 0.89 | 35.55 ± 0.56 | 39.16 ± 1.76 |
F | 47.86 ± 1.63 | 39.29 ± 1.16 | 35.40 ± 0.67 | 34.97 ± 1.33 |
Groups | Sex | Dose (mg/kg) | Heart (mg/g) | Liver (mg/g) | Kidneys (mg/g) | Thymus (mg/g) | Spleen (mg/g) |
---|---|---|---|---|---|---|---|
Control | M | - | 3.92 ± 0.19 | 65.25 ± 2.20 | 13.58 ± 0.57 | 4.68 ± 0.30 | 2.17 ± 0.16 |
F | 4.38 ± 0.30 | 63.34 ± 5.54 | 11.72 ± 0.69 | 4.40 ± 0.27 | 2.80 ± 0.32 | ||
ME | M | 2000 | 3.92 ± 0.12 | 61.84 ± 2.00 | 12.86 ± 0.61 | 4.78 ± 0.31 | 1.95 ± 0.40 |
F | 4.23 ± 0.21 | 57.81 ± 3.32 | 11.38 ± 0.49 | 5.11± 0.47 | 3.54 ± 0.34 |
Groups | Sex | Aspartate Aminotransferase (U/L) | Alanine Aminotransferase (U/L) | Urea (mg/dL) | Creatinine (mg/dL) |
---|---|---|---|---|---|
Control | M | 169.80 ± 9.31 | 51.00 ± 4.16 | 40.75 ± 2.29 | 0.21 ± 0.04 |
F | 138.80 ± 10.85 | 72.60 ± 19.63 | 49.75 ± 3.97 | 0.56 ± 0.07 | |
ME | M | 233.30 ± 33.36 | 60.33 ± 4.77 | 42.50 ± 1.44 | 0.24 ± 0.01 |
F | 93.67 ± 27.51 | 78.67 ± 23.67 | 50.00 ± 5.51 | 0.19 ± 0.02 |
Parameters | Sex | Control | ME (2000 mg/kg) |
---|---|---|---|
Erythrocytes (106/mm3) | M | 8.59 ± 0.21 | 8.55 ± 0.16 |
F | 8.90 ± 0.26 | 9.58 ± 0.16 a | |
Hemoglobin (g/dL) | M | 14.32 ± 0.37 | 13.65 ± 0.30 |
F | 13.73 ± 0.64 | 14.62 ± 0.06 | |
Hematocrit (%) | M | 41.35 ± 1.40 | 40.80 ± 0.69 |
F | 41.67 ± 1.89 | 44.63 ± 1.16 | |
MCV (fm3) | M | 48.00 ± 0.68 | 47.83± 1.01 |
F | 45.83 ± 1.49 | 46.67 ± 1.15 | |
MCH (pg) | M | 16.68 ± 0.32 | 16.00 ± 0.44 |
F | 15.42 ± 0.41 | 15.58 ± 0.22 | |
MCHC (g/dL) | M | 34.75 ± 0.82 | 33.45 ± 0.45 |
F | 32.83 ± 0.40 | 33.45 ± 0.36 | |
Total leucocytes (103/mm3) | M | 7.55 ± 0.90 | 14.65 ± 1.56 a |
F | 7.82 ± 0.47 | 3.98 ± 0.18 a | |
Lymphocytes | M | 70.60 ± 1.72 | 55.33 ± 4.70 |
F | 71.67 ± 4.72 | 75.50 ± 4.47 a | |
Neutrophils | M | 30.67 ± 4.59 | 41.00 ± 4.56 |
F | 21.83 ± 5.12 | 20.67 ± 3.61 | |
Monocytes | M | 3.60 ± 0.68 | 3.67 ± 0.72 |
F | 6.50 ± 0.72 | 4.60 ± 1.36 | |
Eosinophils | M | 1.00 ± 0.0 | 0.0 ± 0.0 |
F | 0.0 ± 0.0 | 0.0 ± 0.0 |
Groups | Dose (mg/kg) | Micronucleated Cells |
---|---|---|
Control | - | 2.50 ± 0.43 |
Cyclophosphamide | 50 | 17.67 ± 1.38 a |
ME | 2000 | 2.33 ± 0.21 b |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nogueira, R.B.S.S.; Tomaz, A.C.A.; Pessoa, D.R.; Xavier, A.L.; Pita, J.C.L.R.; Sobral, M.V.; Pontes, M.L.C.; Pessôa, H.L.F.; Diniz, M.F.F.M.; Miranda, G.E.C.; et al. Brown Algae Padina sanctae-crucis Børgesen: A Potential Nutraceutical. Mar. Drugs 2017, 15, 251. https://doi.org/10.3390/md15100251
Nogueira RBSS, Tomaz ACA, Pessoa DR, Xavier AL, Pita JCLR, Sobral MV, Pontes MLC, Pessôa HLF, Diniz MFFM, Miranda GEC, et al. Brown Algae Padina sanctae-crucis Børgesen: A Potential Nutraceutical. Marine Drugs. 2017; 15(10):251. https://doi.org/10.3390/md15100251
Chicago/Turabian StyleNogueira, Raquel B. S. S., Anna Cláudia A. Tomaz, Déborah R. Pessoa, Aline L. Xavier, João Carlos L. R. Pita, Marianna V. Sobral, Marcela L. C. Pontes, Hilzeth L. F. Pessôa, Margareth F. F. M. Diniz, George Emmanuel C. Miranda, and et al. 2017. "Brown Algae Padina sanctae-crucis Børgesen: A Potential Nutraceutical" Marine Drugs 15, no. 10: 251. https://doi.org/10.3390/md15100251