Synthesis and Evaluation of a Sodium Alginate-4-Aminosalicylic Acid Based Microporous Hydrogel for Potential Viscosupplementation for Joint Injuries and Arthritis-Induced Conditions
Abstract
:1. Introduction
2. Results Discussion
2.1. Physicochemical Properties of Alg-4-ASA Conjugate
2.2. Spectroscopic Characterization of Alg-4-ASA Derivatives
2.3. Powder X-ray Diffraction Evaluation
2.4. Thermal Analysis of the Alg-4-ASA Conjugate
2.5. Ultrasonication Induced Gelation of Alg-4-ASA Conjugates
2.6. Stress Responsiveness of Alg-4-ASA Hydrogel by Rheological Evaluation
2.7. Morphological and In Vitro Cytotoxicity of the Alg-4-ASA Conjugate
2.8. In Vitro Drug Release Evaluation
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Sodium Alginate-4-Aminosalicylic Acid Amide Derivative (Alg-4-ASA)
3.3. Spectral Characterization of the Synthesized Amide Conjugate
3.4. Thermal Analysis of the Synthesized Amide Conjugate
3.5. Preparation of the Microporous Hydrogel
3.6. Surface Morphological and In Vitro Cytotoxicity Evaluation of the Microporous Hydrogel
3.7. Rheological Evaluation of Modified Hydrogel
3.8. In Vitro Drug Release Evaluation
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pose-Vilarnovo, B.; Rodríguez-Tenreiro, C.; Rosa Dos Santos, J.F.; Vázquez-Doval, J.; Concheiro, A.; Alvarez-Lorenzo, C. Modulating drug release with cyclodextrins in hydroxypropyl methylcellulose gels and tablets. J. Control. Release 2004, 94, 351–363. [Google Scholar] [CrossRef] [PubMed]
- Joshi, M.D.; Müller, R.H. Lipid nanoparticles for parenteral delivery of actives. Eur. J. Pharm. Biopharm. 2009, 71, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Jagur-Grodzinski, J. Polymeric gels and hydrogels for biomedical and pharmaceutical applications. Polym. Adv. Technol. 2010, 21, 27–47. [Google Scholar] [CrossRef]
- García-González, C.A.; Argemí, A.; Sousa, A.R.S.D.; Duarte, C.M.M.; Saurina, J.; Domingo, C. Encapsulation efficiency of solid lipid hybrid particles prepared using the PGSS® technique and loaded with different polarity active agents. J. Supercrit. Fluids 2010, 54, 342–347. [Google Scholar] [CrossRef]
- Huang, H.; Yuan, W.; Chen, X.D. Microencapsulation based on emulsification for producing pharmaceutical products: A literature review. Asia Pac. J. Chem. Eng. 2006, 14, 515–544. [Google Scholar]
- Malafaya, P.B.; Silva, G.A.; Reis, R.L. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv. Drug Deliv. Rev. 2007, 59, 207–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondiah, P.J.; Choonara, Y.E.; Kondiah, P.P.D.; Marimuthu, T.; Kumar, P.; du Toit, L.C.; Pillay, V. A review of injectable polymeric hydrogel systems for application in bone tissue engineering. Molecules 2016, 21, 1580. [Google Scholar] [CrossRef] [PubMed]
- Alsberg, E.; Anderson, K.W.; Albeiruti, A.; Rowley, J.A.; Mooney, D.J. Engineering growing tissues. Proc. Natl. Acad. Sci. USA 2002, 99, 12025–12030. [Google Scholar] [CrossRef] [PubMed]
- Kenley, R.; Marden, L.; Turek, T.; Jin, L.; Ron, E.; Hollinger, J.O. Osseous regeneration in the rat calvarium using novel delivery systems for recombinant human bone morphogenetic protein-2 (rhBMP-). J. Biomed. Mater. Res. 1994, 28, 1139–1147. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.K.; Ma, P.X. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials 2001, 22, 511–521. [Google Scholar] [CrossRef]
- Shang, Q.; Wang, Z.; Liu, W.; Shi, Y.; Cui, L.; Cao, Y.J. Tissue-engineered bonerepair of sheep cranial defects with autologous bone marrow stromal cells. J. Craniofacial Surg. 2001, 12, 586–593. [Google Scholar] [CrossRef]
- Prasad, K.; Kadokawa, J. Alginate-based blends and nano/micro-beads. In Alginates: Biology & Applications Microbiology Monographs; Rehm, H.A.B., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 175–210. [Google Scholar]
- Stark, N.; Streckenbach, M.S.; Gilchrist, S.; Schwenke, T.; Thomas, B. Synthetic Synovial Fluid Compositions and Methods for Making the Same. U.S. Patent 8,716,204 B2, 6 May 2014. [Google Scholar]
- Pelletier, S.; Hubert, P.; Payan, E.; Marchal, P.; Choplin, L.; Dellacherie, E. Amphiphilic derivatives of sodium alginate and hyaluronate for cartilage repair: Rheological properties. J. Biomed. Mater. Res. 2001, 54, 102–108. [Google Scholar] [CrossRef]
- Balazs, E.A.; Denlinger, J.L. Viscosupplementation: A new concept in the treatment of osteoarthritis. J. Rheumatol. Suppl. 1993, 39, 3–9. [Google Scholar] [PubMed]
- Migliore, A.; Granata, M. Intra-articular use of hyaluronic acid in the treatment of osteoarthritis. Clin. Interv. Aging 2008, 3, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Borzacchiello, A.; Mayol, L.; Schiavinato, A.; Ambrosio, L. Effect of hyaluronic acid amide derivative on equine synovial fluid viscoelasticity. J. Biomed. Mater. Res. Part A 2008, 92, 1162–1170. [Google Scholar] [CrossRef] [PubMed]
- Boateng, J.S.; Matthews, K.H.; Stevens, H.N.E.; Eccleston, G.M. Wound healing dressings and drug delivery systems: A review. J. Pharm. Sci. 2008, 97, 2892–2923. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, D.M.; Wozniak, D.J. Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis. Mol. Microbiol. 2005, 56, 309–322. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, H.; Shirley, S.; Zimmermann, U. Alginate-based encapsulation of cells: Past, present and future. Curr. Diabetes Rep. 2007, 7, 314–320. [Google Scholar] [CrossRef]
- Ghidoni, I.; Chlapanidas, T.; Bucco, M.; Crovato, F.; Marazzi, M.; Vigo, D. Alginate cell encapsulation: New advances in reproduction and cartilage regenerative medicine. Cytotechnology 2008, 58, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.Y.; Mooney, D.J. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 2012, 37, 106–126. [Google Scholar] [CrossRef] [PubMed]
- Soonshiong, P.; Feldman, E.; Nelson, R.; Heintz, R.; Yao, Q.; Yao, W. Long-termreversal of diabetes by the injection of immunoprotected islets. Proc. Natl. Acad. Sci. USA 1993, 90, 5843. [Google Scholar] [CrossRef]
- George, M.; Abraham, E. Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan—A review. J. Control. Release 2006, 114, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Tønnesen, H.H.; Karlsen, J. Alginate in drug delivery systems. Drug Dev. Ind. Pharm. 2002, 28, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Chhatbar, M.U.; Prasad, K.; Chejara, D.R.; Siddhanta, A.K. Synthesis of sodium alginate based sprayable new soft gel system. Soft Matter 2012, 8, 1837–1844. [Google Scholar] [CrossRef]
- Chejara, D.R.; Kondaveeti, S.; Prasad, K.; Siddhanta, A.K. Studies on the structure-property relationship of sodium alginate based thixotropic hydrogels. RSC Adv. 2013, 3, 15744–15751. [Google Scholar] [CrossRef]
- Chejara, D.R.; Mabrouk, M.; Badhe, R.V.; Mulla, J.A.S.; Kumar, P.; Choonara, Y.E.; du Toit, L.C.; Pillay, V. A Bio-injectable algin-aminocaproic acid thixogel with tri-stimuli responsiveness. Carbohydr. Polym. 2016, 135, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.G. The relation of characterization of group frequency in FTIR and molecular structure. In Techniques and Applications of Modern FTIR Spectroscopy; Science Press: Beijing, China, 1994; p. 618. [Google Scholar]
- Kondiah, P.P.D.; Choonara, Y.E.; Tomar, T.; Tyagi, C.; Kumar, P.; du Toit, L.C.; Marimuthu, T.; Modi, G.; Pillay, V. Development of a Gastric Absorptive, Immediate Responsive, Oral Protein-Loaded Versatile Polymeric Delivery System. AAPS PharmSciTech 2017. [Google Scholar] [CrossRef] [PubMed]
- Garidel, P.; Schott, H. Fourier-Transform Midinfrared Spectroscopy for Analysisand Screening of Liquid Protein Formulations. Bioprocess Int. 2006, 4, 40–46. [Google Scholar]
- Mackie, W. Semi-quantitative estimation of the composition of alginates by infra-redspectroscopy. Carbohydr. Res. 1971, 20, 413–415. [Google Scholar] [CrossRef]
- Kondiah, P.P.D.; Tomar, T.; Tyagi, C.; Choonara, Y.E.; Modi, G.; du Toit, L.C.; Kumar, P.; Pillay, V. A Novel pH-Sensitive Interferon-β (INF-β) Oral Delivery System for Application in Multiple Sclerosis. Int. J. Pharm. 2013, 456, 459–472. [Google Scholar] [CrossRef] [PubMed]
- Larson, R.G. The Structure and Rheology of Complex Fluids; Oxford University Press: New York, NY, USA, 1999. [Google Scholar]
- Chaudhary, J.P.; Chejara, D.R.; Makwana, D.; Prasad, K.; Meena, R. Agarose based multifunctional materials: Evaluation of thixotropy, self-healability and stretchability. Carbohydr. Polym. 2014, 114, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Liu, Z.; Li, N.; Wang, X.; Zhou, F.; Liu, W. Hairy polyelectrolyte brushes-grafted thermosensitive microgels as artificial synovial fluid for simultaneous biomimetic lubrication and arthritis treatment. ACS Appl. Mater. Interfaces 2014, 6, 20452–20463. [Google Scholar] [CrossRef] [PubMed]
- Garai, A.; Nandi, A.K. Rheology of polyaniline-dinonylnaphthalene di sulfonic acid (DNNDSA) montmorillonite clay nanocomposites in the sol state: Shear thinning versus pseudo-solid behavior. J. Nanosci. Nanotechnol. 2008, 8, 1842–1851. [Google Scholar] [CrossRef] [PubMed]
- Garai, A.; Nandi, A.K. Rheology of (±)-camphor-10-sulfonic acid doped polyaniline-m-cresol conducting gel nano composites. J. Polym. Sci. Part B Polym. Phys. 2008, 46, 28–40. [Google Scholar] [CrossRef]
- Kondiah, P.J.; Choonara, Y.E.; Kondiah, P.P.D.; Kumar, P.; Marimuthu, T.; du Toit, L.C.; Pillay, V. Development of an injectable pseudo-bone thermo-gel for application in small bone fractures. Int. J. Pharm. 2017, 520, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Vermonden, T.; Besseling, N.A.M.; van Steenbergen, M.J.; Hennink, W.E. Rheological studies of thermosensitive triblock copolymer hydrogels. Langmuir 2006, 22, 10180–10184. [Google Scholar] [CrossRef] [PubMed]
- Patnaik, S.; Sharma, A.K.; Garg, B.S.; Gandhi, R.P.; Gupta, K.C. Photoregulation of drug release in Azo-dextran nanogels. Int. J. Pharm. 2007, 342, 184–193. [Google Scholar] [CrossRef] [PubMed]
Samples a | Yield (% w/w) | Shear Viscosity (mPas) b | Thixotropic Area, Ar (%) c |
---|---|---|---|
Na-Alg | NA | 339.22 | 0.59 |
Alg-ASA (1:0.5) | 59.0 | 1040.20 | 24.83 |
Alg-ASA (1:1) | 66.0 | 8095.30 | 26.23 |
Alg-ASA (1:2) | 73.0 | NA | NA |
Assignment (δ ppm) | Na-Alg | 4-ASA | Alg-ASA (1:1) |
---|---|---|---|
C-1 MM | 102.7 | NA | 102.5 |
C-2 MM | 72.3 | NA | 72.7 |
C-3 MM | 72.8 | NA | 71.3 |
C-4 MM | 79.3 | NA | 77.2 |
C-5 MM | 77.3 | NA | 72.8 |
C-6 MM | 176.5 | NA | 176.5 |
C-1 GG | 101.4 | NA | 101.4 |
C-2 GG | 66.2 | NA | 63.9 |
C-3 GG | 71.5 | NA | 67.5 |
C-4 GG | 81.5 | NA | 79.3 |
C-5 GG | 68.9 | NA | 65.7 |
C-6 GG | 177.2 | NA | 176.5 |
C-1′ | NA | 109.7 | 110.3 |
C-2′ | NA | 131.2 | 131.5 |
C-3′ | NA | 109.7 | 110.3 |
C-4′ | NA | 151.5 | 155.4 |
C-5′ | NA | 103.3 | 104.4 |
C-6′ | NA | 158.7 | 156.8 |
C-7′ | NA | 169.6 | 166.1 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chejara, D.R.; Mabrouk, M.; Kumar, P.; Choonara, Y.E.; Kondiah, P.P.D.; Badhe, R.V.; Toit, L.C.d.; Bijukumar, D.; Pillay, V. Synthesis and Evaluation of a Sodium Alginate-4-Aminosalicylic Acid Based Microporous Hydrogel for Potential Viscosupplementation for Joint Injuries and Arthritis-Induced Conditions. Mar. Drugs 2017, 15, 257. https://doi.org/10.3390/md15080257
Chejara DR, Mabrouk M, Kumar P, Choonara YE, Kondiah PPD, Badhe RV, Toit LCd, Bijukumar D, Pillay V. Synthesis and Evaluation of a Sodium Alginate-4-Aminosalicylic Acid Based Microporous Hydrogel for Potential Viscosupplementation for Joint Injuries and Arthritis-Induced Conditions. Marine Drugs. 2017; 15(8):257. https://doi.org/10.3390/md15080257
Chicago/Turabian StyleChejara, Dharmesh R., Mostafa Mabrouk, Pradeep Kumar, Yahya E. Choonara, Pierre P. D. Kondiah, Ravindra V. Badhe, Lisa C. du Toit, Divya Bijukumar, and Viness Pillay. 2017. "Synthesis and Evaluation of a Sodium Alginate-4-Aminosalicylic Acid Based Microporous Hydrogel for Potential Viscosupplementation for Joint Injuries and Arthritis-Induced Conditions" Marine Drugs 15, no. 8: 257. https://doi.org/10.3390/md15080257
APA StyleChejara, D. R., Mabrouk, M., Kumar, P., Choonara, Y. E., Kondiah, P. P. D., Badhe, R. V., Toit, L. C. d., Bijukumar, D., & Pillay, V. (2017). Synthesis and Evaluation of a Sodium Alginate-4-Aminosalicylic Acid Based Microporous Hydrogel for Potential Viscosupplementation for Joint Injuries and Arthritis-Induced Conditions. Marine Drugs, 15(8), 257. https://doi.org/10.3390/md15080257