The Anti-Cancer Effects of Frondoside A
Abstract
:1. Background
2. Structure of Frondoside A
3. Effects of Frondoside A on Cancer Cell Proliferation and Viability
4. Effects of Frondoside A on Cancer Growth
5. Effects of Frondoside A on Cell Cycle
6. Effects of Frondoside A on Programmed Cell Death
7. Anti-Angiogenic Effects of Frondoside A
8. Effects of Frondoside A on Migration and Invasion
9. Effects of Frondoside A on Multidrug Resistance
10. Interactions with Other Anticancer Drugs
11. Effects of Frondoside A on the Immune System
12. Pharmacokinetics of Frondoside A and Route of Administration
13. Toxicity of Frondoside A
14. Mechanisms of Action
15. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Adrian, T.E. Novel marine-derived anti-cancer agents. Curr. Pharm. Des. 2007, 13, 3417–3426. [Google Scholar] [CrossRef] [PubMed]
- Correia-da-Silva, M.; Sousa, E.; Pinto, M.M.M.; Kijjoa, A. Anticancer and cancer preventive compounds from edible marine organisms. Semin. Cancer Biol. 2017, 66, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Tang, W. Chinese medicinal materials from the sea. Abstr. Chin. Med. 1987, 1, 571–600. [Google Scholar]
- Pangestuti, R.; Arifin, Z. Medicinal and health benefit effects of functional sea cucumbers. J. Trad. Complim. Med. 2017. [Google Scholar] [CrossRef]
- Guo, Y.; Ding, Y.; Xu, F.; Liu, B.; Kou, Z.; Xiao, W.; Zhu, J. Systems pharmacology-based drug discovery for marine resources: An example using sea cucumber (Holothurians). J. Ethnopharmacol. 2015, 165, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.X.; Himaya, S.W.; Kim, S.K. Triterpenoids of marine origin as anti-cancer agents. Molecules 2013, 18, 7886–7909. [Google Scholar] [CrossRef] [PubMed]
- Wargasetia, T.L.; Widodo. Mechanisms of cancer cell killing by sea cucumber-derived compounds. Investig. New Drugs 2017, 35, 820–826. [Google Scholar] [CrossRef] [PubMed]
- Janakiram, N.B.; Mohammed, A.; Rao, C.V. Sea Cucumbers Metabolites as Potent Anti-Cancer Agents. Mar. Drugs 2015, 13, 2909–2923. [Google Scholar] [CrossRef] [PubMed]
- Park, J.I.; Bae, H.R.; Kim, C.G.; Stonik, V.A.; Kwak, J.Y. Relationships between chemical structures and functions of triterpene glycosides isolated from sea cucumbers. Front. Chem. 2014, 2, 77. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Ye, X.; Huang, H.; Peng, R.; Su, Z.; Lian, X.Y.; Zhang, Z. Bioactive sulfated saponins from sea cucumber Holothuria moebii. Planta Med. 2015, 81, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Roginsky, A.B.; Ding, X.Z.; Woodward, C.; Collin, P.; Newman, R.A.; Bell, R.H.; Adrian, T.E. Review of the apoptosis pathways in pancreatic cancer and the anti-apoptotic effects of the novel sea cucumber compound, Frondoside A. Ann. N. Y. Acad. Sci. 2008, 1138, 181–198. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.O.; Shastina, V.V.; Shin, S.W.; Xu, Q.; Park, J.I.; Rasskazov, V.A.; Avilov, S.A.; Fedorov, S.N.; Stonik, V.A.; Kwak, J.Y. Differential effects of triterpene glycosides, frondoside A and cucumarioside A2-2 isolated from sea cucumbers on caspase activation and apoptosis of human leukemia cells. FEBS Lett. 2009, 583, 697–702. [Google Scholar] [CrossRef] [PubMed]
- Al Marzouqi, N.; Iratni, R.; Nemmar, A.; Arafat, K.; Al Sultan, M.A.; Yasin, J.; Collin, P.; Mester, J.; Adrian, T.E.; Attoub, S. Frondoside A inhibits human breast cancer cell survival, migration, invasion and the growth of breast tumor xenografts. Eur. J. Pharmacol. 2011, 668, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Kundu, N.; Collin, P.D.; Goloubeva, O.; Fulton, A.M. Frondoside A inhibits breast cancer metastasis and antagonizes prostaglandin E receptors EP4 and EP2. Breast Cancer Res. Treat. 2012, 132, 1001–1008. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Kim, Y.H.; Kim, Y.; Lee, S.J. Frondoside A has an anti-invasive effect by inhibiting TPA-induced MMP-9 activation via NF-κB and AP-1 signaling in human breast cancer cells. Int. J. Oncol. 2012, 41, 933–940. [Google Scholar] [CrossRef] [PubMed]
- Attoub, S.; Arafat, K.; Gélaude, A.; Al Sultan, M.A.; Bracke, M.; Collin, P.; Takahashi, T.; Adrian, T.E.; De Wever, O. Frondoside A suppressive effects on lung cancer survival, tumor growth, angiogenesis, invasion, and metastasis. PLoS ONE 2013, 8, e53087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kundu, N.; Ma, X.; Kochel, T.; Goloubeva, O.; Staats, P.; Thompson, K.; Martin, S.; Reader, J.; Take, Y.; Collin, P.; Fulton, A. Prostaglandin E receptor EP4 is a therapeutic target in breast cancer cells with stem-like properties. Breast Cancer Res. Treat. 2014, 143, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Dyshlovoy, S.A.; Menchinskaya, E.S.; Venz, S.; Rast, S.; Amann, K.; Hauschild, J.; Otte, K.; Kalinin, V.I.; Silchenko, A.S.; Avilov, S.A.; et al. The marine triterpene glycoside frondoside A exhibits activity in vitro and in vivo in prostate cancer. Int. J. Cancer 2016, 138, 2450–2465. [Google Scholar] [CrossRef] [PubMed]
- Dyshlovoy, S.A.; Madanchi, R.; Hauschild, J.; Otte, K.; Alsdorf, W.H.; Schumacher, U.; Kalinin, V.I.; Silchenko, A.S.; Avilov, S.A.; Honecker, F.; et al. The marine triterpene glycoside frondoside A induces p53-independent apoptosis and inhibits autophagy in urothelial carcinoma cells. BMC Cancer 2017, 17, 93. [Google Scholar] [CrossRef] [PubMed]
- Dyshlovoy, S.A.; Rast, S.; Hauschild, J.; Otte, K.; Alsdorf, W.H.; Madanchi, R.; Kalinin, V.I.; Silchenko, A.S.; Avilov, S.A.; Dierlamm, J.; et al. Frondoside A induces AIF-associated caspase-independent apoptosis in Burkitt lymphoma cells. Leuk. Lymphoma 2017, 58, 2905–2915. [Google Scholar] [CrossRef] [PubMed]
- Sajwani, F.H.; Collin, P.; Adrian, T.E. Frondoside A potentiates the effects of conventional therapeutic agents in acute leukemia. Leukem. Res. 2017, 63, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Aminin, D.L.; Menchinskaya, E.S.; Pisliagin, E.A.; Silchenko, A.S.; Avilov, S.A.; Kalinin, V.I. Anticancer activity of sea cucumber triterpene glycosides. Mar. Drugs 2015, 13, 1202–1223. [Google Scholar] [CrossRef] [PubMed]
- Adrian, T.E.; Collin, P. Anticancer Glycoside Compounds. U.S. Patent 7144867, 5 December 2005. [Google Scholar]
- Alsdorf, W.H.; Dyshlovoy, S.; Otte, K.; Hausschild, J.; Bokemeyer, C.; Honecker, F.; von Amsberg, G. Cytotoxic activity and molecular mechanisms of action of the marine triterpene glycoside frondoside A in germ cell tumors. Oncol. Res. Treat. 2016, 39 (Suppl. 3), 214. [Google Scholar]
- Al Shemaili, J.; Mensah-Brown, E.; Parekh, K.; Thomas, S.A.; Attoub, S.; Hellman, B.; Nyberg, F.; Adem, A.; Collin, P.; Adrian, T.E. Frondoside A enhances the antiproliferative effects of gemcitabine in pancreatic cancer. Eur. J. Cancer 2014, 50, 1391–1398. [Google Scholar] [CrossRef] [PubMed]
- Al Shemaili, J.; Parekh, K.A.; Newman, R.A.; Hellman, B.; Woodward, C.; Adem, A.; Collin, P.; Adrian, T.E. Pharmacokinetics in Mouse and Comparative Effects of Frondosides in Pancreatic Cancer. Mar. Drugs 2016, 14, 6. [Google Scholar] [CrossRef] [PubMed]
- Silchenko, A.S.; Avilov, S.A.; Kalinin, V.I.; Kalinovsky, A.I.; Dmitrenok, P.S.; Fedorov, S.N.; Stepanov, V.G.; Dong, Z.; Stonik, V.A. Constituents of the sea cucumber Cucumaria okhotensis. Structures of okhotosides B1-B3 and cytotoxic activities of some glycosides from this species. J. Nat. Prod. 2008, 71, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Aminin, D.L.; Agafonova, I.G.; Kalinin, V.I.; Silchenko, A.S.; Avilov, S.A.; Stonik, V.A.; Collin, P.D.; Woodward, C. Immunomodulatory properties of frondoside A, a major triterpene glycoside from the North Atlantic commercially harvested sea cucumber Cucumaria frondosa. J. Med. Food 2008, 11, 443–453. [Google Scholar] [CrossRef] [PubMed]
- Aminin, D.L.; Koy, C.; Dmitrenok, P.S.; Müller-Hilke, B.; Koczan, D.; Arbogast, B.; Silchenko, A.A.; Kalinin, V.I.; Avilov, S.A.; Stonik, V.A.; et al. Immunomodulatory effects of holothurian triterpene glycosides on mammalian splenocytes determined by mass spectrometric proteome analysis. J. Proteomics 2009, 72, 886–906. [Google Scholar] [CrossRef] [PubMed]
- Aminin, D.L.; Silchenko, A.S.; Avilov, S.A.; Stepanov, V.G.; Kalinin, V.I. Cytotoxic action of triterpene glycosides from sea cucumbers from the genus Cucumaria on mouse spleen lymphocytes. Inhibition of nonspecific esterase. Nat. Prod. Commun. 2009, 4, 773–776. [Google Scholar] [PubMed]
- Aminin, D.L.; Silchenko, A.S.; Avilov, S.A.; Stepanov, V.G.; Kalinin, V.I. Immunomodulatory action of monosulfated triterpene glycosides from the sea cucumber Cucumaria okhotensis: Stimulation of activity of mouse peritoneal macrophages. Nat. Prod. Commun. 2010, 5, 1877–1880. [Google Scholar] [PubMed]
- Holt, D.M.; Ma, X.; Kundu, N.; Collin, P.D.; Fulton, A.M. Modulation of host natural killer cell functions in breast cancer via prostaglandin E2 receptors EP2 and EP4. J. Immunother. 2012, 35, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Kovalchuk, S.N.; Kozhemyako, V.B.; Atopkina, L.N.; Silchenko, A.S.; Avilov, S.A.; Kalinin, V.I.; Rasskazov, V.A.; Aminin, D.L. activity of triterpene glycosides in yeast two-hybrid assay. J. Steroid Biochem. Mol. Biol. 2006, 101, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Mazeĭka, A.N.; Popov, A.M.; Kalinin, V.I.; Avilov, S.A.; Sil’chenko, A.S.; Kostetskiĭ, E. Complexation between triterpene glycosides of holothurians and cholesterol is the basis of lipid-saponin carriers of subunit protein antigens. Biofizika 2008, 53, 826–835. [Google Scholar] [PubMed]
- Menchinskaya, E.S.; Aminin, D.L.; Avilov, S.A.; Silchenko, A.S.; Andryjashchenko, P.V.; Kalinin, V.I.; Stonik, V.A. Inhibition of tumor cells multidrug resistance by cucumarioside A2-2, frondoside A and their complexes with cholesterol. Nat. Prod. Commun. 2013, 8, 1377–1380. [Google Scholar] [PubMed]
- Nguyen, B.C.Q.; Yoshimura, K.; Kumazawa, S.; Tawata, S.; Maruta, H. Frondoside A from sea cucumber and nymphaeols from Okinawa propolis: Natural anti-cancer agents that selectively inhibit PAK1 in vitro. Drug Discov. Ther. 2017, 11, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Leist, M.; Jaattela, M. Four deaths and a funeral: From caspases to alternative mechanisms. Nat. Rev. Mol. Cell Biol. 2001, 2, 589–598. [Google Scholar] [CrossRef] [PubMed]
- Sperandio, S.; de Belle, I.; Bredesen, D.E. An alternative, nonapoptotic form of programmed cell death. Proc. Natl. Acad. Sci. USA 2000, 97, 14376–14381. [Google Scholar] [CrossRef] [PubMed]
- Turmaine, M.; Raza, A.; Mahal, A.; Mangiarini, L.; Bates, G.P.; Davies, S.W. Nonapoptotic neurodegeneration in a transgenic mouse model of Huntington’s disease. Proc. Natl. Acad. Sci. USA 2000, 97, 8093–8097. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.Y.; Baehrecke, E.H. Steroid regulation of autophagic programmed cell death during development. Development 2001, 128, 1443–1455. [Google Scholar] [PubMed]
- Holler, N.; Zaru, R.; Micheau, O.; Thome, M.; Attinger, A.; Valitutti, S.; Bodmer, J.L.; Schneider, P.; Seed, B.; Tschopp, J. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat. Immunol. 2000, 1, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Los, M.; Mozoluk, M.; Ferrari, D.; Stepczynska, A.; Stroh, C.; Renz, A.; Herceg, Z.; Wang, Z.Q.; Schulze-Osthoff, K. Activation and caspase-mediated inhibition of PARP: A molecular switch between fibroblast necrosis and apoptosis in death receptor signaling. Mol. Biol. Cell 2002, 13, 978–988. [Google Scholar] [CrossRef] [PubMed]
- Vercammen, D.; Brouckaert, G.; Denecker, G.; Van de Craen, M.; Declercq, W.; Fiers, W.; Vandenabeele, P. Dual signaling of the Fas receptor: Initiation of both apoptotic and necrotic cell death pathways. J. Exp. Med. 1998, 188, 919–930. [Google Scholar] [CrossRef] [PubMed]
- Denecker, G.; Vercammen, D.; Steemans, M.; Vanden Berghe, T.; Brouckaert, G.; Van Loo, G.; Zhivotovsky, B.; Fiers, W.; Grooten, J.; Declercq, W.; Vandenabeele, P. Death receptor-induced apoptotic and necrotic cell death: Differential role of caspases and mitochondria. Cell Death Differ. 2001, 8, 829–840. [Google Scholar] [CrossRef] [PubMed]
- Foghsgaard, L.; Wissing, D.; Mauch, D.; Lademann, U.; Bastholm, L.; Boes, M.; Elling, F.; Leist, M.; Jäättelä, M. Cathepsin B acts as a dominant execution protease in tumor cell apoptosis induced by tumor necrosis factor. J. Cell Biol. 2001, 153, 999–1010. [Google Scholar] [CrossRef] [PubMed]
- Schulze-Osthoff, K.; Bakker, A.C.; Vanhaesebroeck, B.; Schulze-Osthoff, K.; Bakker, A.C.; Vanhaesebroeck, B.; Beyaert, R.; Jacob, W.A.; Fiers, W. Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation. J. Biol. Chem. 1992, 267, 5317–5323. [Google Scholar] [PubMed]
- McCarthy, N.J.; Whyte, M.K.; Gilbert, C.S.; Evan, G.I. Inhibition of Ced3/ICE-related proteases does not prevent cell death induced by oncogenes, DNA damage, or the Bcl-2 homologue Bak. J. Cell Biol. 1997, 136, 215–227. [Google Scholar] [CrossRef] [PubMed]
- Borner, C.; Monney, L. Apoptosis without caspases: An inefficient molecular guillotine? Cell Death Differ. 1999, 6, 497–507. [Google Scholar] [CrossRef] [PubMed]
- Déas, O.; Dumont, C.; MacFarlane, M.; Rouleau, M.; Hebib, C.; Harper, F.; Hirsch, F.; Charpentier, B.; Cohen, G.M.; Senik, A. Caspase-independent cell death induced by antiCD2 or staurosporine in activated human peripheral T lymphocytes. J. Immunol. 1998, 161, 3375–3383. [Google Scholar] [PubMed]
- Miller, T.M.; Moulder, K.L.; Knudson, C.M.; Creedon, D.J.; Deshmukh, M.; Korsmeyer, S.J.; Johnson, E.M. Bax deletion further orders the cell death pathway in cerebellar granule cells and suggests a caspase-independent pathway to cell death. J. Cell Biol. 1997, 139, 205–217. [Google Scholar] [CrossRef] [PubMed]
- Xiang, J.; Chao, D.T.; Korsmeyer, S.J. BAX-induced cell death may not require interleukin 1 beta-converting enzyme-like proteases. Proc. Natl. Acad. Sci. USA 1996, 93, 14559–14563. [Google Scholar] [CrossRef] [PubMed]
- Daugas, E.; Susin, S.A.; Zamzami, N.; Ferri, K.F.; Irinopoulou, T.; Larochette, N.; Prévost, M.C.; Leber, B.; Andrews, D.; Penninger, J.; Kroeme, G. Mitochondrionuclear translocation of AIF in apoptosis and necrosis. FASEB J. 2000, 14, 729–739. [Google Scholar] [CrossRef] [PubMed]
- Arnoult, D.; Tatischeff, I.; Estaquier, J.; Girard, M.; Sureau, F.; Tissier, J.P.; Grodet, A.; Dellinger, M.; Traincard, F.; Kahn, A.; et al. On the evolutionary conservation of the cell death pathway: Mitochondrial release of an apoptosis-inducing factor during Dictyostelium discoideum cell death. Mol. Biol. Cell 2001, 12, 3016–3030. [Google Scholar] [CrossRef] [PubMed]
- Al Shemaili, J.; Parekh, K.; Thomas, S.A.; Kelly, D.L.; Ding, X.Z.; Attoub, S.; Collin, S.P.; Adrian, T.E. Studies on the Mechanism of Action of Frondoside A in Pancreatic Cancer. Pancreatology 2013. [Google Scholar] [CrossRef]
- Kumar, R.; Gururaj, A.E.; Barnes, C.J. p21-Activated kinases in cancer. Nat. Rev. Cancer 2006, 6, 459–471. [Google Scholar] [CrossRef] [PubMed]
- Rane, C.; Minden, A. P21 activated kinases: Structure, regulation, and functions. Small GTPases 2014, 5, e28003. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Jia, G.; Li, Y.; Liu, J.; Luo, J.; Zhang, J.; Xu, G.; Chen, G. Clinicopathological signature of p21-activated kinase 1 in prostate cancer and its regulation of proliferation and autophagy via the mTOR signaling pathway. Oncotarget 2017, 8, 22563–22580. [Google Scholar] [CrossRef] [PubMed]
- Nheu, T.; He, H.; Hirokawa, Y.; Walker, F.; Wood, J.; Maruta, H. PAK is essential for RAS-induced upregulation of cyclin D1 during the G1 to S phase transition. Cell Cycle 2004, 3, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Huynh, N.; Wang, K.; Yim, M.; Dumesny, C.J.; Sandrin, M.S.; Baldwin, G.S.; Nikfarjam, M.; He, H. Depletion of p21-ctivated kinase 1 up-regulates the immune system of APC∆14/+ mice and inhibits intestinal tumorigenesis. BMC Cancer 2017, 17, 431. [Google Scholar] [CrossRef] [PubMed]
- Dou, Y.; Luo, J.; Wu, X.; Wei, Z.; Tong, B.; Yu, J.; Wang, T.; Zhang, X.; Yang, Y.; Yuan, X.; et al. Curcumin attenuates collagen-induced inflammatory response through the “gut-brain axis”. J. Neuroinflamm. 2018, 15, 6. [Google Scholar] [CrossRef] [PubMed]
- Gomes, N.G.; Dasari, R.; Chandra, S.; Kiss, R.; Kornienko, A. Marine Invertebrate Metabolites with Anticancer Activities: Solutions to the “Supply Problem”. Mar. Drugs 2016, 14, 5. [Google Scholar] [CrossRef] [PubMed]
Cell Line | Cancer Origin | Approximate IC50 µM | Hours Treated | Notes | Ref. |
---|---|---|---|---|---|
MiaPaca-2 | Pancreas | 0.5 | 24 | [23] | |
AsPC-1 | Pancreas | 1.0 | 24 | [25] | |
S2013 | Pancreas | 1.0 | 24 | [25] | |
MDA-MB-231 | Breast | 1.2 | 48 | Triple receptor negative | [13] |
MCF-10A | Breast | 5.0 | 48 | Non-Malignant | [13] |
66.1 | Breast | 0.5 | 24 | [14] | |
MDA-MB-231 | Breast | 0.3 | 24 | Three-dimensional culture | [17] |
MDA-MB-435 | Breast | 2.5 | 24 | [16] | |
MCF-7 | Breast | 2.0 | 24 | [16] | |
LNM35 | Lung | 1.5 | 24 | Met Sub-line of NCI-H460 | [16] |
A549 | Lung | 2.5 | 24 | [16] | |
NCI-H460 | Lung | 2.5 | 24 | Luciferase expressing cells | [16] |
LNM35 | Lung | 0.6 | 72 | [34] | |
HepG2 | Liver | 1.5 | 24 | [16] | |
DLD-1 | Colon | 1.2 | 48 | [23] | |
PC-1 | Prostate | 0.3 | 48 | [23] | |
PC-3 | Prostate | 1.3 | 48 | [18] | |
DU145 | Prostate | 1.0 | 48 | [18] | |
LNCaP | Prostate | 0.3 | 48 | [18] | |
22Rv1 | Prostate | 0.1 | 48 | [18] | |
VCaP | Prostate | 0.2 | 48 | [18] | |
MRC-9 | Fibroblast | 4.5 | 48 | Non-Malignant | [18] |
HEK293 | Embryonic Kidney | 1.9 | 48 | Non-Malignant | [18] |
HUVEC | Umbilical Vascular Endothelial | 1.6 | 48 | Non-Malignant | [18] |
HT-1197 | Bladder | 2.3 | 48 | [19] | |
486p | Bladder | 1.1 | 48 | [19] | |
RT4 | Bladder | 0.6 | 48 | [19] | |
RT112 | Bladder | 0.5 | 48 | [19] | |
T24 | Bladder | 1.5 | 48 | [19] | |
TCC-SUP | Bladder | 1.1 | 48 | [19] | |
BL-2 | Burkitt Lymphoma | 0.2 | 48 | [20] | |
CA46 | Burkitt Lymphoma | 0.2 | 48 | [20] | |
Daudi | Burkitt Lymphoma | 0.2 | 48 | [20] | |
Raji | Burkitt Lymphoma | 0.5 | 48 | [20] | |
DG-75 | Burkitt Lymphoma | 0.2 | 48 | [20] | |
EB1 | Burkitt Lymphoma | 0.6 | 48 | [20] | |
Namalwa | Burkitt Lymphoma | 0.2 | 48 | [20] | |
Ramos | Burkitt Lymphoma | 0.1 | 48 | [20] | |
HL-60 | Promyelocytic Leukemia | 0.5 | 24 | [12] | |
CCRF-CEM | T-Lymphoblastic Leukemia | 1.5 | 48 | [21] | |
THP-1 | Monocytic Leukemia | 3.0 | 48 | [21] | |
HL-60 | Promyelocytic Leukemia | 2.5 | 48 | [21] | |
NNCIT | Metastatic Germ Cell Tumor | 0.5 | Not reported | Cisplatin-resistant sublines equally sensitive | [24] |
2102EP | Metastatic Germ Cell Tumor | 0.5 | [24] |
Cell Line | Cancer Origin | Dose | Outcome | Ref. |
---|---|---|---|---|
AsPC-1 | Pancreas | 10 µg/kg/day | Tumor size 56% of control at 32 days | [11] |
AsPC-1 | Pancreas | 100 µg/kg/day + gemcitabine | Tumor size 13% of control at 30 days and combination had greater effect than either drug alone | [23] |
S2013 | Pancreas | 100 µg/kg/day + gemcitabine | Tumor size 21% of control at 30 days and combination had greater effect than either drug alone | [23] |
MDA-MB-231 | Breast | 100 µg/kg/day | Tumor size 4% of control at 27 days | [13] |
LNM35 | Lung | 10 µg/kg/day | Tumor size 56% of control at 25 days | [16] |
LNM35 | Lung | 1000 µg/kg/day | Tumor size 55% of control at 25 days | [16] |
LNM35 | Lung | 100 µg/kg/day + cisplatin | Tumor size 32% of control at 10 days and combination had greater effect than either drug alone | [16] |
PC-3 | Prostate | 100 µg/kg/day | Tumor size 58% of control at 30 days and reduced number of lung metastases | [18] |
DU145 | Prostate | 800 µg/kg/day | Tumor size 47% of control at 25 days, abolished lung metastases and reduced circulating tumor cells | [18] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adrian, T.E.; Collin, P. The Anti-Cancer Effects of Frondoside A. Mar. Drugs 2018, 16, 64. https://doi.org/10.3390/md16020064
Adrian TE, Collin P. The Anti-Cancer Effects of Frondoside A. Marine Drugs. 2018; 16(2):64. https://doi.org/10.3390/md16020064
Chicago/Turabian StyleAdrian, Thomas E., and Peter Collin. 2018. "The Anti-Cancer Effects of Frondoside A" Marine Drugs 16, no. 2: 64. https://doi.org/10.3390/md16020064
APA StyleAdrian, T. E., & Collin, P. (2018). The Anti-Cancer Effects of Frondoside A. Marine Drugs, 16(2), 64. https://doi.org/10.3390/md16020064