Daily Intake of Protein from Cod Residual Material Lowers Serum Concentrations of Nonesterified Fatty Acids in Overweight Healthy Adults: A Randomized Double-Blind Pilot Study
Abstract
:1. Introduction
2. Results
2.1. Participant Characteristics
2.2. Estimated Energy and Macronutrients Intake and Physical Activity
2.3. Concentrations of Circulating Markers of Glucose Regulation
2.4. mRNA Expressions in Subcutaneous Adipose Tissue
3. Discussion
4. Materials and Methods
4.1. Participants, Study Design, and Ethics
4.2. Intervention and Protocol for Study Visits
4.3. Production, Analyses, and Contents of Intervention Tablets
4.4. Estimation of Energy and Macronutrient Intakes from Dietary Records, and Estimation of Physical Activity
4.5. Serum Analyses
4.6. Analyses of mRNA Expression in Subcutaneous Adipose Tissue
4.7. Outcome Measurements
4.8. Sample Size
4.9. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Roberto, C.A.; Swinburn, B.; Hawkes, C.; Huang, T.T.; Costa, S.A.; Ashe, M.; Zwicker, L.; Cawley, J.H.; Brownell, K.D. Patchy progress on obesity prevention: Emerging examples, entrenched barriers, and new thinking. Lancet 2015, 385, 2400–2409. [Google Scholar] [CrossRef]
- The GBD 2015 Obesity Collaborators. Health effects of overweight and obesity in 195 countries over 25 years. N. Engl. J. Med. 2017, 377, 13–27. [Google Scholar]
- Kahn, S.E.; Hull, R.L.; Utzschneider, K.M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006, 444, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Van Horn, L.; McCoin, M.; Kris-Etherton, P.M.; Burke, F.; Carson, J.A.S.; Champagne, C.M.; Karmally, W.; Sikand, G. The evidence for dietary prevention and treatment of cardiovascular disease. J. Am. Diet. Assoc. 2008, 108, 287–331. [Google Scholar] [CrossRef] [PubMed]
- Kromhout, D.; Bosschieter, E.B.; de Lezenne Coulander, C. The inverse relation between fish consumption and 20-year mortality from coronary heart disease. N. Engl. J. Med. 1985, 312, 1205–1209. [Google Scholar] [CrossRef] [PubMed]
- Lavigne, C.; Marette, A.; Jacques, H. Cod and soy proteins compared with casein improve glucose tolerance and insulin sensitivity in rats. Am. J. Physiol. Endocrinol. Metab. 2000, 278, E491–E500. [Google Scholar] [CrossRef] [PubMed]
- Ouellet, V.; Marois, J.; Weisnagel, S.J.; Jacques, H. Dietary cod protein improves insulin sensitivity in insulin-resistant men and women: A randomized controlled trial. Diabetes Care 2007, 30, 2816–2821. [Google Scholar] [CrossRef] [PubMed]
- Vikoren, L.A.; Nygard, O.K.; Lied, E.; Rostrup, E.; Gudbrandsen, O.A. A randomised study on the effects of fish protein supplement on glucose tolerance, lipids and body composition in overweight adults. Br. J. Nutr. 2013, 109, 648–657. [Google Scholar] [CrossRef] [PubMed]
- Drotningsvik, A.; Mjos, S.A.; Hogoy, I.; Remman, T.; Gudbrandsen, O.A. A low dietary intake of cod protein is sufficient to increase growth, improve serum and tissue fatty acid compositions, and lower serum postprandial glucose and fasting non-esterified fatty acid concentrations in obese zucker fa/fa rats. Eur. J. Nutr. 2015, 54, 1151–1160. [Google Scholar] [CrossRef] [PubMed]
- Richardsen, R.; Nystøyl, R.; Strandheim, G.; Marthinussen, A. Report: Analysis of Marine Residual Raw Material; SINTEF: Trondheim, Norway, 2016. [Google Scholar]
- Bechtel, P. Properties of stickwater from fish processing byproducts. J. Aquat. Food Prod. Technol. 2005, 14, 25–38. [Google Scholar] [CrossRef]
- Lavigne, C.; Tremblay, F.; Asselin, G.; Jacques, H.; Marette, A. Prevention of skeletal muscle insulin resistance by dietary cod protein in high fat-fed rats. Am. J. Physiol. Endocrinol. Metab. 2001, 281, E62–E71. [Google Scholar] [CrossRef] [PubMed]
- Hagen, I.V.; Helland, A.; Bratlie, M.; Brokstad, K.A.; Rosenlund, G.; Sveier, H.; Mellgren, G.; Gudbrandsen, O.A. High intake of fatty fish, but not of lean fish, affects serum concentrations of tag and hdl-cholesterol in healthy, normal-weight adults: A randomised trial. Br. J. Nutr. 2016, 116, 648–657. [Google Scholar] [CrossRef] [PubMed]
- Helland, A.; Bratlie, M.; Hagen, I.V.; Mjos, S.A.; Sornes, S.; Halstensen, A.I.; Brokstad, K.A.; Sveier, H.; Rosenlund, G.; Mellgren, G.; et al. High intake of fatty fish, but not of lean fish, improved postprandial glucose regulation and increased the n-3 pufa content in the leucocyte membrane in healthy overweight adults: A randomised trial. Br. J. Nutr. 2017, 117, 1368–1378. [Google Scholar] [CrossRef] [PubMed]
- Roden, M.; Price, T.B.; Perseghin, G.; Petersen, K.F.; Rothman, D.L.; Cline, G.W.; Shulman, G.I. Mechanism of free fatty acid-induced insulin resistance in humans. J. Clin. Investig. 1996, 97, 2859–2865. [Google Scholar] [CrossRef] [PubMed]
- Ranganathan, G.; Unal, R.; Pokrovskaya, I.; Yao-Borengasser, A.; Phanavanh, B.; Lecka-Czernik, B.; Rasouli, N.; Kern, P.A. The lipogenic enzymes dgat1, fas, and lpl in adipose tissue: Effects of obesity, insulin resistance, and tzd treatment. J. Lipid Res. 2006, 47, 2444–2450. [Google Scholar] [CrossRef] [PubMed]
- Lewis, G.F.; Carpentier, A.; Adeli, K.; Giacca, A. Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr. Rev. 2002, 23, 201–229. [Google Scholar] [CrossRef] [PubMed]
- Piatti, P.M.; Monti, L.D.; Valsecchi, G.; Magni, F.; Setola, E.; Marchesi, F.; Galli-Kienle, M.; Pozza, G.; Alberti, K.G. Long-term oral l-arginine administration improves peripheral and hepatic insulin sensitivity in type 2 diabetic patients. Diabetes Care 2001, 24, 875–880. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Giacca, A.; Lewis, G.F. Oral taurine but not n-acetylcysteine ameliorates nefa-induced impairment in insulin sensitivity and beta cell function in obese and overweight, non-diabetic men. Diabetologia 2008, 51, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Lynch, C.J.; Adams, S.H. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat. Rev. Endocrinol. 2014, 10, 723–736. [Google Scholar] [CrossRef] [PubMed]
- Balk, E.M.; Lichtenstein, A.H.; Chung, M.; Kupelnick, B.; Chew, P.; Lau, J. Effects of omega-3 fatty acids on serum markers of cardiovascular disease risk: A systematic review. Atherosclerosis 2006, 189, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Ramel, A.; Martinez, A.; Kiely, M.; Morais, G.; Bandarra, N.M.; Thorsdottir, I. Beneficial effects of long-chain n-3 fatty acids included in an energy-restricted diet on insulin resistance in overweight and obese european young adults. Diabetologia 2008, 51, 1261–1268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedberg, C.E.; Janssen, M.J.; Heine, R.J.; Grobbee, D.E. Fish oil and glycemic control in diabetes. A meta-analysis. Diabetes Care 1998, 21, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Ryan, J.T.; Ross, R.P.; Bolton, D.; Fitzgerald, G.F.; Stanton, C. Bioactive peptides from muscle sources: Meat and fish. Nutrients 2011, 3, 765–791. [Google Scholar] [CrossRef] [PubMed]
- Drotningsvik, A.; Mjos, S.A.; Pampanin, D.M.; Slizyte, R.; Carvajal, A.; Remman, T.; Hogoy, I.; Gudbrandsen, O.A. Dietary fish protein hydrolysates containing bioactive motifs affect serum and adipose tissue fatty acid compositions, serum lipids, postprandial glucose regulation and growth in obese zucker fa/fa rats. Br. J. Nutr. 2016, 116, 1336–1345. [Google Scholar] [CrossRef] [PubMed]
- Jao, C.-L.; Hung, C.-C.; Tung, Y.-S.; Lin, P.-Y.; Chen, M.-C.; Hsu, K.-C. The development of bioactive peptides from dietary proteins as a dipeptidyl peptidase iv inhibitor for the management of type 2 diabetes. BioMedicine 2015, 5, 14. [Google Scholar] [CrossRef] [PubMed]
- Nordisk Metodikkomite for Næringsmidler. Method No. 71 Salmonella; Nordisk Metodikkomite for Næringsmidler: Oslo, Norway, 1999. [Google Scholar]
- Cohen, S.A.; Michaud, D.P. Synthesis of a fluorescent derivatizing reagent, 6-aminoquinolyl-n-hydroxysuccinimidyl carbamate, and its application for the analysis of hydrolysate amino acids via high-performance liquid chromatography. Anal. Biochem. 1993, 211, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.L. Determination of the tryptophan content of feedingstuffs with particular reference to cereals. J. Sci. Food Agric. 1967, 18, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Bidlingmeyer, B.A.; Cohen, S.A.; Tarvin, T.L.; Frost, B. A new, rapid, high-sensitivity analysis of amino acids in food type samples. J. Assoc. Off. Anal. Chem. 1987, 70, 241–247. [Google Scholar] [PubMed]
- Oterhals, A.; Nygard, E. Reduction of persistent organic pollutants in fishmeal: A feasibility study. J. Agric. Food Chem. 2008, 56, 2012–2020. [Google Scholar] [CrossRef] [PubMed]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Matthews, J.N.; Altman, D.G.; Campbell, M.J.; Royston, P. Analysis of serial measurements in medical research. BMJ 1990, 300, 230–235. [Google Scholar] [CrossRef] [PubMed]
Cod-PC (n = 16) | Cod-PCW (n = 14) | Control (n = 12) | p | ||||
---|---|---|---|---|---|---|---|
Characteristics | Mean | SD | Mean | SD | Mean | SD | |
Women/Men | 8/8 | 7/7 | 4/8 | 0.62 | |||
Age (years) | 40.1 | 12.7 | 45.0 | 12.0 | 41.1 | 11.1 | 0.52 |
BMI (kg/m2) | 33.3 | 4.4 | 34.2 | 5.0 | 35.0 | 4.7 | 0.86 |
Body weight (kg) | 100.6 | 15.6 | 104.5 | 16.2 | 108.0 | 17.1 | 0.49 |
Fat (%) | 35.6 | 7.9 | 37.2 | 10.4 | 35.1 | 9.1 | 0.77 |
Smoke/snus * | 3 | 2 | 3 | 0.89 |
Baseline | 8 Weeks | p† | p‡ | p§ | |||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | ||||
Energy intake, kcal | 0.11 | ||||||
Cod-PC | 2111 | 829 | 2422 | 798 | 0.011 | ||
Cod-PCW | 2002 | 335 | 2239 | 576 | 0.068 | ||
Control | 2033 | 602 | 2008 | 491 | 0.94 | ||
Protein 1, E% | 0.30 | ||||||
Cod-PC | 17 | 3 | 18 | 3 | 0.65 | ||
Cod-PCW | 18 | 2 | 16 | 3 | 0.12 | ||
Control | 18 | 3 | 18 | 3 | 0.77 | ||
Fat, E% | 0.044 | ||||||
Cod-PC | 38 | 11 | 39 | 7 | 0.21 | 0.22 A | |
Cod-PCW | 40 | 7 | 36 | 5 | 0.037 | 0.24 B | |
Control | 38 | 3 | 37 | 5 | 0.66 | 0.013 C | |
Carbohydrates, E% | 0.20 | ||||||
Cod-PC | 40 | 10 | 38 | 9 | 0.30 | ||
Cod-PCW | 39 | 8 | 40 | 6 | 0.36 | ||
Control | 37 | 5 | 39 | 5 | 0.24 | ||
Dietary fibre, g | 0.56 | ||||||
Cod-PC | 19 | 5 | 21 | 8 | 0.38 | ||
Cod-PCW | 19 | 5 | 19 | 4 | 0.64 | ||
Control | 17 | 4 | 18 | 5 | 0.56 |
Baseline | Week 8 | p† | p‡ | |||
---|---|---|---|---|---|---|
Parameters | Mean | SD | Mean | SD | ||
Glucose (mmol/L) | 0.56 | |||||
Cod-PC | 5.4 | 0.5 | 5.4 | 0.5 | 0.48 | |
Cod-PCW | 5.2 | 0.4 | 5.3 | 0.4 | 0.55 | |
Control | 5.7 | 0.7 | 5.6 | 0.7 | 0.42 | |
Glucose 120 min (mmol/L) | 0.29 | |||||
Cod-PC | 5.1 | 1.0 | 4.7 | 1.1 | 0.022 | |
Cod-PCW | 4.8 | 0.7 | 4.8 | 0.7 | 0.90 | |
Control | 5.5 | 0.8 | 5.4 | 0.9 | 0.66 | |
NEFA (mmol/L) | 0.065 | |||||
Cod-PC | 0.6 | 0.2 | 0.5 | 0.2 | 0.017 | |
Cod-PCW | 0.5 | 0.1 | 0.6 | 0.2 | 0.48 | |
Control | 0.5 | 0.1 | 0.5 | 0.1 | 0.93 | |
Insulin (pmol/L) | 0.053 | |||||
Cod-PC | 85.8 | 35.6 | 97.0 | 36.8 | 0.014 | |
Cod-PCW | 92.0 | 37.7 | 92.0 | 37.7 | 0.99 | |
Control | 111.8 | 54.9 | 109.6 | 61.0 | 0.49 | |
Insulin 120 min (pmol/L) | 0.95 | |||||
Cod-PC | 315.8 | 159.5 | 311.3 | 180.2 | 0.88 | |
Cod-PCW | 270.8 | 144.7 | 278.9 | 136.1 | 0.83 | |
Control | 417.7 | 264.1 | 409.3 | 229.9 | 0.86 | |
GLP-1 (pmol/L) | 0.90 | |||||
Cod-PC | 2.9 | 1.0 | 3.1 | 0.7 | 0.15 | |
Cod-PCW | 2.7 | 0.7 | 3.0 | 0.7 | 0.17 | |
Control | 3.2 | 1.0 | 3.6 | 1.3 | 0.11 |
Baseline | Week 8 | p† | p‡ | p§ | |||
---|---|---|---|---|---|---|---|
mRNA | Mean | SD | Mean | SD | |||
DGAT1 | 0.02 | ||||||
Cod-PC | 2.14 | 0.52 | 2.55 | 0.63 | 0.0012 | 0.0059 A | |
Cod-PCW | 2.25 | 0.49 | 2.36 | 0.44 | 0.24 | 0.20 B | |
Control | 2.29 | 0.49 | 2.25 | 0.73 | 0.54 | 0.11 C | |
DGAT2 | 0.037 | ||||||
Cod-PC | 2.02 | 0.48 | 2.45 | 0.65 | 0.0012 | 0.012 A | |
Cod-PCW | 2.15 | 0.61 | 2.27 | 0.51 | 0.16 | 0.25 B | |
Control | 2.20 | 0.53 | 2.2 | 0.82 | 0.71 | 0.14 C | |
LPL | 0.21 | ||||||
Cod-PC | 0.99 | 0.25 | 1.11 | 0.23 | 0.014 | ||
Cod-PCW | 1.01 | 0.29 | 1.04 | 0.19 | 0.42 | ||
Control | 1.05 | 0.27 | 1.05 | 0.41 | 0.68 | ||
CD36 | 0.36 | ||||||
Cod-PC | 1.10 | 0.26 | 1.18 | 0.29 | 0.23 | ||
Cod-PCW | 1.10 | 0.26 | 1.18 | 0.29 | 0.43 | ||
Control | 1.25 | 0.33 | 1.22 | 0.34 | 0.50 |
mg/Tablet | Cod-PC | Cod-PCW | Control |
---|---|---|---|
Residual material | 522 | 522 | 0 |
Sorbitol | 209 | 209 | 209 |
Microcrystalline cellulose | 209 | 209 | 641 |
Tricalcium phosphate | 10 | 10 | 10 |
Magnesium stearate | 10 | 10 | 10 |
Total tablet weight | 960 | 960 | 870 |
mg/Day | Cod-PC | Cod-PCW | Control |
---|---|---|---|
Amino acids | |||
Arginine | 380.2 | 380.2 | <LOD |
Glycine | 501.1 | 639.4 | <LOD |
Histidine | 126.1 | 108.9 | <LOD |
Isoleucine | 241.9 | 207.4 | <LOD |
Leucine | 432.0 | 362.9 | <LOD |
Lysine | 449.3 | 414.7 | <LOD |
Methionine | 190.1 | 169.3 | <LOD |
Phenylalanine | 224.6 | 190.1 | <LOD |
Taurine | 120.0 | 230.0 | <LOD |
Threonine | 259.2 | 241.9 | <LOD |
Tryptophan | 86.4 | 60.5 | <LOD |
Fatty acids | |||
18:2n-6 | 7.9 | 6.2 | <LOD |
18:3n-3 | 2.4 | 1.4 | <LOD |
20:5n-3 | 31.0 | 24.9 | <LOD |
22:5n-3 | 3.2 | 2.8 | <LOD |
22:6n-3 | 53.3 | 41.5 | <LOD |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vildmyren, I.; Cao, H.J.V.; Haug, L.B.; Valand, I.U.; Eng, Ø.; Oterhals, Å.; Austgulen, M.H.; Halstensen, A.; Mellgren, G.; Gudbrandsen, O.A. Daily Intake of Protein from Cod Residual Material Lowers Serum Concentrations of Nonesterified Fatty Acids in Overweight Healthy Adults: A Randomized Double-Blind Pilot Study. Mar. Drugs 2018, 16, 197. https://doi.org/10.3390/md16060197
Vildmyren I, Cao HJV, Haug LB, Valand IU, Eng Ø, Oterhals Å, Austgulen MH, Halstensen A, Mellgren G, Gudbrandsen OA. Daily Intake of Protein from Cod Residual Material Lowers Serum Concentrations of Nonesterified Fatty Acids in Overweight Healthy Adults: A Randomized Double-Blind Pilot Study. Marine Drugs. 2018; 16(6):197. https://doi.org/10.3390/md16060197
Chicago/Turabian StyleVildmyren, Iselin, Huy John Vu Cao, Lina Bowitz Haug, Ida Ulrikke Valand, Øyvin Eng, Åge Oterhals, Maren Hoff Austgulen, Alfred Halstensen, Gunnar Mellgren, and Oddrun A. Gudbrandsen. 2018. "Daily Intake of Protein from Cod Residual Material Lowers Serum Concentrations of Nonesterified Fatty Acids in Overweight Healthy Adults: A Randomized Double-Blind Pilot Study" Marine Drugs 16, no. 6: 197. https://doi.org/10.3390/md16060197
APA StyleVildmyren, I., Cao, H. J. V., Haug, L. B., Valand, I. U., Eng, Ø., Oterhals, Å., Austgulen, M. H., Halstensen, A., Mellgren, G., & Gudbrandsen, O. A. (2018). Daily Intake of Protein from Cod Residual Material Lowers Serum Concentrations of Nonesterified Fatty Acids in Overweight Healthy Adults: A Randomized Double-Blind Pilot Study. Marine Drugs, 16(6), 197. https://doi.org/10.3390/md16060197