Bright Spots in the Darkness of Cancer: A Review of Starfishes-Derived Compounds and Their Anti-Tumor Action
Abstract
:1. Introduction
2. Acanthaster planci (Valvatida: Acanthasteridae)
3. Anthenea (Valvatida: Oreasteridae)
4. Archaster typicus (Valvatida: Archasteridae)
5. Asterias amurensis (Forcipulatida: Asteriidae)
6. Asterina pectinifera (Valvatida: Asterinidae)
7. Asteropsis carinifera (Valvatida: Asteropseidae)
8. Astropecten (Paxillosida: Astropectinidae)
9. Certonardoa semiregularis (Valvatida: Ophidiasteridae)
10. Choriaster granulatus (Valvatida: Oreasteridae)
11. Craspidaster hesperus (Paxillosida: Astropectinidae)
12. Ctenodiscus crispatus (Paxillosida: Ctenodiscidae)
13. Culcita novaeguineae (Valvatida: Oreasteridae)
14. Echinaster luzonicus (Spinulosida: Echinasteridae)
15. Henricia leviuscula (Spinulosida: Echinasteridae)
16. Hippasteria phrygiana (Valvatida: Goniasteridae)
17. Leptasterias ochotensis (Forcipulatida: Asteriidae)
18. Lethasterias fusca (Forcipulatida: Asteriidae)
19. Narcissia canariensis (Valvatida: Ophidiasteridae)
20. Pentaceraster gracilis (Valvatida: Oreasteridae)
21. Focusing on Cytotoxic Potential and the Mechanism of Action
22. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fitzmaurice, C. Global Burden of Disease Cancer Collaboration Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 2006 to 2016: A systematic analysis for the Global Burden of Disease study. J. Clin. Oncol. 2018, 36, 1568. [Google Scholar]
- Pfeffer, C.M.; Singh, A.T. Apoptosis: A Target for Anticancer Therapy. Int. J. Mol. Sci. 2018, 19, 448. [Google Scholar] [CrossRef] [PubMed]
- Feinberg, A.P.; Ohlsson, R.; Henikoff, S. The epigenetic progenitor origin of human cancer. Nat. Rev. Genet. 2006, 7, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Demain, A.L.; Vaishnav, P. Natural products for cancer chemotherapy. Microb. Biotechnol. 2011, 4, 687–699. [Google Scholar] [CrossRef] [PubMed]
- Aung, T.; Qu, Z.; Kortschak, R.; Adelson, D. Understanding the Effectiveness of Natural Compound Mixtures in Cancer through Their Molecular Mode of Action. Int. J. Mol. Sci. 2017, 18, 656. [Google Scholar] [CrossRef]
- Cragg, G.M.; Pezzuto, J.M. Natural Products as a Vital Source for the Discovery of Cancer Chemotherapeutic and Chemopreventive Agents. Med. Princ. Pract. 2016, 25, 41–59. [Google Scholar] [CrossRef]
- Malve, H. Exploring the ocean for new drug developments: Marine pharmacology. J. Pharm. Bioallied Sci. 2016, 8, 83. [Google Scholar] [CrossRef]
- Jimeno, J.; Faircloth, G.; Sousa-Faro, J.; Scheuer, P.; Rinehart, K. New Marine Derived Anticancer Therapeutics—A Journey from the Sea to Clinical Trials. Mar. Drugs 2004, 2, 14–29. [Google Scholar] [CrossRef]
- Lindequist, U. Marine-Derived Pharmaceuticals—Challenges and Opportunities. Biomol. Ther. 2016, 24, 561–571. [Google Scholar] [CrossRef]
- Amemiya, C.T.; Miyake, T.; Rast, J.P. Echinoderms. Curr. Biol. 2005, 15, R944–R946. [Google Scholar] [CrossRef] [Green Version]
- Khotimchenko, Y. Pharmacological Potential of Sea Cucumbers. Int. J. Mol. Sci. 2018, 19, 1342. [Google Scholar] [CrossRef] [PubMed]
- Pangestuti, R.; Arifin, Z. Medicinal and health benefit effects of functional sea cucumbers. J. Tradit. Complement. Med. 2018, 8, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Mah, C.L.; Blake, D.B. Global Diversity and Phylogeny of the Asteroidea (Echinodermata). PLoS ONE 2012, 7, e35644. [Google Scholar] [CrossRef] [PubMed]
- Malyarenko, T.; Malyarenko, O.; Kicha, A.; Ivanchina, N.; Kalinovsky, A.; Dmitrenok, P.; Ermakova, S.; Stonik, V. In Vitro Anticancer and Proapoptotic Activities of Steroidal Glycosides from the Starfish Anthenea aspera. Mar. Drugs 2018, 16, 420. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.-X.; Kang, Y.-F.; Han, H. Three New Cytotoxic Polyhydroxysteroidal Glycosides from Starfish Craspidaster hesperus. Mar. Drugs 2016, 14, 189. [Google Scholar] [Green Version]
- Ivanchina, N.V.; Kicha, A.A.; Malyarenko, T.V.; Stonik, V.A. Recent studies of polar steroids from starfish: structures, biological activities and biosynthesis. In Advances in Natural Products Discovery; Chap. 6; Gomes, A.R., Rocha-Santos, T., Duarte, A.C., Eds.; Chemistry Research and Applications; Nova Publishers: New York, NY, USA, 2017. [Google Scholar]
- Dong, G.; Xu, T.; Yang, B.; Lin, X.; Zhou, X.; Yang, X.; Liu, Y. Chemical Constituents and Bioactivities of Starfish. Chem. Biodivers. 2011, 8, 740–791. [Google Scholar] [CrossRef]
- Kicha, A.A.; Dinh, T.H.; Ivanchina, N.V.; Malyarenko, T.V.; Kalinovsky, A.I.; Popov, R.S.; Ermakova, S.P.; Tran, T.T.T.; Doan, L.P. Three New Steroid Biglycosides, Plancisides A, B, and C, from the Starfish Acanthaster planci. Nat. Prod. Commun. 2014, 9. [Google Scholar] [CrossRef]
- Craig Howe, SC7586. Photo of Acanthaster Planci. Available online: https://sealifecollection.org/p/7586 (accessed on 28 August 2019).
- Mutee, F. Apoptosis induced in human breast cancer cell line by Acanthaster planci starfish extract compared to tamoxifen. Afr. J. Pharm. Pharmacol. 2012, 6, 129–134. [Google Scholar] [CrossRef]
- Lee, C.-C.; Hsieh, H.J.; Hwang, D.-F. Cytotoxic and apoptotic activities of the plancitoxin I from the venom of crown-of-thorns starfish (Acanthaster planci) on A375.S2 cells: Cytotoxic and apoptotic activities of starfish venom. J. Appl. Toxicol. 2015, 35, 407–417. [Google Scholar]
- Lee, C.-C.; Hsieh, H.J.; Hsieh, C.-H.; Hwang, D.-F. Plancitoxin I from the venom of crown-of-thorns starfish (Acanthaster planci) induces oxidative and endoplasmic reticulum stress associated cytotoxicity in A375.S2 cells. Exp. Mol. Pathol. 2015, 99, 7–15. [Google Scholar] [CrossRef]
- Lee, C.-C.; Hsieh, H.J.; Hsieh, C.-H.; Hwang, D.-F. Antioxidative and anticancer activities of various ethanolic extract fractions from crown-of-thorns starfish (Acanthaster planci). Environ. Toxicol. Pharmacol. 2014, 38, 761–773. [Google Scholar] [CrossRef] [PubMed]
- Ha, D.T.; Kicha, A.A.; Kalinovsky, A.I.; Malyarenko, T.V.; Popov, R.S.; Malyarenko, O.S.; Ermakova, S.P.; Thuy, T.T.T.; Long, P.Q.; Ivanchina, N.V. Asterosaponins from the tropical starfish Acanthaster planci and their cytotoxic and anticancer activities in vitro. Nat. Prod. Res. 2019. [Google Scholar] [CrossRef] [PubMed]
- Ma, N.; Tang, H.F.; Qiu, F.; Lin, H.W.; Tian, X.R.; Zhang, W. A new polyhydroxysteroidal glycoside from the starfish Anthenea chinensis. Chin. Chem. Lett. 2009, 20, 1231–1234. [Google Scholar] [CrossRef]
- Ma, N.; Tang, H.-F.; Qiu, F.; Lin, H.-W.; Tian, X.-R.; Yao, M.-N. Polyhydroxysteroidal Glycosides from the Starfish Anthenea chinensis. J. Nat. Prod. 2010, 73, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Kicha, A.A.; Ha, D.T.; Ivanchina, N.V.; Malyarenko, T.V.; Kalinovsky, A.I.; Dmitrenok, P.S.; Ermakova, S.P.; Malyarenko, O.S.; Hung, N.A.; Thuy, T.T.T.; et al. Six New Polyhydroxysteroidal Glycosides, Anthenosides S1 - S6, from the Starfish Anthenea sibogae. Chem. Biodivers. 2018, 15, e1700553. [Google Scholar] [CrossRef] [PubMed]
- Fairoz, M.; Rozaimi, M.; Nastasia, W.F. Records of sea star (Echinodermata, Asteroidea) diversity in a disturbed tropical seagrass meadow. AMZ 2018, 16, 243–254. [Google Scholar]
- Malyarenko, T.; Ivanchina, N.; Malyarenko, O.; Kalinovsky, A.; Dmitrenok, P.; Evtushenko, E.; Minh, C.; Kicha, A. Two New Steroidal Monoglycosides, Anthenosides A1 and A2, and Revision of the Structure of Known Anthenoside A with Unusual Monosaccharide Residue from the Starfish Anthenea aspera. Molecules 2018, 23, 1077. [Google Scholar] [CrossRef]
- Bos, A.R.; Gumanao, G.S.; van Katwijk, M.M.; Mueller, B.; Saceda, M.M.; Tejada, R.L.P. Ontogenetic habitat shift, population growth, and burrowing behavior of the Indo-Pacific beach star, Archaster typicus (Echinodermata; Asteroidea). Mar. Biol. 2011, 158, 639–648. [Google Scholar] [CrossRef]
- iNaturalist.org. Available online: https://www.inaturalist.org/observations/7459612 (accessed on 28 August 2019).
- Kicha, A.A.; Ivanchina, N.V.; Huong, T.T.T.; Kalinovsky, A.I.; Dmitrenok, P.S.; Fedorov, S.N.; Dyshlovoy, S.A.; Long, P.Q.; Stonik, V.A. Two new asterosaponins, archasterosides A and B, from the Vietnamese starfish Archaster typicus and their anticancer properties. Bioorg. Med. Chem. Lett. 2010, 20, 3826–3830. [Google Scholar] [CrossRef]
- Shah, F.; Surati, S. “Asterias amurensis” (On-Line), Animal Diversity Web. 2013. Available online: https://animaldiversity.org/accounts/Asterias_amurensis/ (accessed on 27 October 2019 ).
- Commons.wikimedia.org. Available online: https://commons.wikimedia.org/wiki/File:海星(正面).JPGG (accessed on 28 August 2019).
- Du, L.; Li, Z.-J.; Xu, J.; Wang, J.-F.; Xue, Y.; Xue, C.-H.; Takahashi, K.; Wang, Y.-M. The anti-tumor activities of cerebrosides derived from sea cucumber Acaudina molpadioides and starfish Asterias amurensis in vitro and in vivo. J. Oleo Sci. 2012, 61, 321–330. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Y.-M.; Feng, T.-Y.; Zhang, B.; Sugawara, T.; Xue, C.-H. Isolation and Anti-Fatty Liver Activity of a Novel Cerebroside from the Sea Cucumber Acaudina molpadioides. Biosci. Biotechnol. Biochem. 2011, 75, 1466–1471. [Google Scholar] [CrossRef] [PubMed]
- Oku, H.; Wongtangtintharn, S.; Iwasaki, H.; Inafuku, M.; Shimatani, M.; Toda, T. Tumor specific cytotoxicity of glucosylceramide. Cancer Chemother. Pharmacol. 2007, 60, 767–775. [Google Scholar] [CrossRef] [PubMed]
- Zigmond, E.; Zangen, S.W.; Pappo, O.; Sklair-Levy, M.; Lalazar, G.; Zolotaryova, L.; Raz, I.; Ilan, Y. β-Glycosphingolipids improve glucose intolerance and hepatic steatosis of the Cohen diabetic rat. Am. J. Physiol. Endocrinol. Metab. 2009, 296, E72–E78. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, Y.; Tao, H.; Peng, X.; Liu, P.; Zhu, W. Cerebrosides of the Halotolerant Fungus Alternaria raphani Isolated from a Sea Salt Field. J. Nat. Prod. 2009, 72, 1695–1698. [Google Scholar] [CrossRef]
- Flickr.com. Available online: https://www.flickr.com/photos/a_semenov/6055892593 (accessed on 28 August 2019).
- Lou, H.; Gao, Y.; Zhai, M.; Qi, Y.; Chen, L.; Lv, H.; Yu, J.; Li, Y. A novel peptide from α5 helix of Asterina pectinifera cyclin B conjugated to HIV-Tat49–57 with cytotoxic and apoptotic effects against human cancer cells. Bioorg. Med. Chem. Lett. 2008, 18, 4633–4637. [Google Scholar] [CrossRef]
- McGrath, C.F.; Pattabiraman, N.; Kellogg, G.E.; Lemcke, T.; Kunick, C.; Sausville, E.A.; Zaharevitz, D.W.; Gussio, R. Homology Model of the CDK1/cyclin B Complex. J. Biomol. Struct. Dyn. 2005, 22, 493–502. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.; Zheng, J.; Huang, R.; Wang, Y.; Xu, T.; Zhou, X.; Liu, Q.; Zeng, F.; Ju, H.; Yang, X.; et al. Polyhydroxy Steroids and Saponins from China Sea Starfish Asterina pectinifera and Their Biological Activities. Chem. Pharm. Bull. 2010, 58, 856–858. [Google Scholar] [CrossRef]
- Malyarenko, O.S.; Malyarenko, T.V.; Kicha, A.A.; Ivanchina, N.V.; Ermakova, S.P. Effects of Polar Steroids from the Starfish Patiria (=Asterina) pectinifera in Combination with X-Ray Radiation on Colony Formation and Apoptosis Induction of Human Colorectal Carcinoma Cells. Molecules 2019, 24, 3154. [Google Scholar] [CrossRef]
- Nam, K.-S.; Shon, Y.-H. Chemopreventive effects of polysaccharides extract from Asterina pectinifera on HT-29 human colon adenocarcinoma cells. BMB Rep. 2009, 42, 277–280. [Google Scholar] [CrossRef]
- Nam, K.-S.; Kim, C.-H.; Shon, Y.-H. Breast Cancer Chemopreventive Activity of Polysaccharides from Starfish in vitro. J. Microbiol. Biotechnol. 2006, 16, 1405–1409. [Google Scholar]
- Lee, K.-S.; Shin, J.-S.; Nam, K.-S. Cancer chemopreventive effects of starfish polysaccharide in human breast cancer cells. Biotechnol. Bioprocess. Eng. 2011, 16, 987–991. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Kim, E.-K.; Hwang, J.-W.; Kim, J.-S.; Kim, H.; Dong, X.; Natarajan, S.B.; Moon, S.-H.; Jeon, B.-T.; Park, P.-J. Fermented Asterina pectinifera with Cordyceps militaris Mycelia Induced Apoptosis in B16F10 Melanoma Cells. In Taurine 10; Lee, D.-H., Schaffer, S.W., Park, E., Kim, H.W., Eds.; Springer: Dordrecht, The Netherlands, 2017; Volume 975, pp. 1141–1152. [Google Scholar]
- Inventaire National du Patrimoine Naturel (INPN). Available online: https://inpn.mnhn.fr/espece/cd_nom/529966 (accessed on 28 August 2019).
- Malyarenko, T.V.; Kicha, A.A.; Ivanchina, N.V.; Kalinovsky, A.I.; Dmitrenok, P.S.; Ermakova, S.P.; Stonik, V.A. Cariniferosides A–F and other steroidal biglycosides from the starfish Asteropsis carinifera. Steroids 2011, 76, 1280–1287. [Google Scholar] [CrossRef] [PubMed]
- Malyarenko, T.V.; Kicha, A.A.; Ivanchina, N.V.; Kalinovskii, A.I.; Dmitrenok, P.S.; Ermakova, S.P.; Minkh, C.V. Asteropsiside A and other asterosaponins from the starfish Asteropsis carinifera. Russ. Chem. Bull. 2012, 61, 1986–1991. [Google Scholar] [CrossRef]
- Commons.wikimedia.org. Available online: https://commons.wikimedia.org/wiki/File:Astropecten_polyacanthus.jpg (accessed on 28 August 2019).
- Thao, N.P.; Cuong, N.X.; Luyen, B.T.T.; Nam, N.H.; Cuong, P.V.; Thanh, N.V.; Nhiem, N.X.; Hanh, T.T.H.; Kim, E.-J.; Kang, H.-K.; et al. Steroidal Constituents from the Starfish Astropecten polyacanthus and Their Anticancer Effects. Chem. Pharm. Bull. 2013, 61, 1044–1051. [Google Scholar] [CrossRef] [PubMed]
- Vien, L.T.; Hanh, T.T.H.; Hong, P.T.; Thanh, N.V.; Huong, T.T.; Cuong, N.X.; Nam, N.H.; Thung, D.C.; Kiem, P.V.; Minh, C.V. Polar steroid derivatives from the Vietnamese starfish Astropecten polyacanthus. Nat. Prod. Res. 2018, 32, 54–59. [Google Scholar] [CrossRef]
- Pourvali, N. Intertidal Echinoderms (Astroidea, Echinoidea, Ophiuroidea) from Hormuz Island in the Strait of Hormuz (Persian Gulf, Iran). Mar. Biodivers. Rec. 2015, 2015, 50. [Google Scholar] [CrossRef]
- Thao, N.P.; Luyen, B.T.T.; Kim, E.-J.; Kang, H.-K.; Kim, S.; Cuong, N.X.; Nam, N.H.; Kiem, P.V.; Minh, C.V.; Kim, Y.H. Asterosaponins from the Starfish Astropecten monacanthus Suppress Growth and Induce Apoptosis in HL-60, PC-3, and SNU-C5 Human Cancer Cell Lines. Biol. Pharm. Bull. 2014, 37, 315–321. [Google Scholar] [CrossRef]
- Thao, N.P.; Cuong, N.X.; Luyen, B.T.T.; Thanh, N.V.; Nhiem, N.X.; Koh, Y.-S.; Ly, B.M.; Nam, N.H.; Kiem, P.V.; Minh, C.V.; et al. Anti-inflammatory Asterosaponins from the Starfish Astropecten monacanthus. J. Nat. Prod. 2013, 76, 1764–1770. [Google Scholar] [CrossRef]
- Wang, W.; Jang, H.; Hong, J.; Lee, C.-O.; Bae, S.-J.; Shin, S.; Jung, J.H. New cytotoxic sulfated saponins from the starfish Certonardoa semiregularis. Arch. Pharm. Res. 2005, 28, 285–289. [Google Scholar] [CrossRef]
- Wang, W.; Li, F.; Park, Y.; Hong, J.; Lee, C.-O.; Kong, J.Y.; Shin, S.; Im, K.S.; Jung, J.H. Bioactive Sterols from the Starfish Certonardoa semiregularis. J. Nat. Prod. 2003, 66, 384–391. [Google Scholar] [CrossRef]
- Wang, W.; Li, F.; Alam, N.; Liu, Y.; Hong, J.; Lee, C.-K.; Im, K.S.; Jung, J.H. New Saponins from the Starfish Certonardoa semiregularis. J. Nat. Prod. 2002, 65, 1649–1656. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Li, F.; Hong, J.; Lee, C.-O.; Cho, H.Y.; Im, K.S.; Jung, J.H. Four New Saponins from the Starfish Certonardoa semiregularis. Chem. Pharm. Bull. 2003, 51, 435–439. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Hong, J.; Lee, C.-O.; Im, K.S.; Choi, J.S.; Jung, J.H. Cytotoxic Sterols and Saponins from the Starfish Certonardoa semiregularis. J. Nat. Prod. 2004, 67, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Jang, H.; Hong, J.; Lee, C.-O.; Im, K.S.; Bae, S.-J.; Jung, J.H. Additional Cytotoxic Sterols and Saponins from the Starfish Certonardoa semiregularis. J. Nat. Prod. 2004, 67, 1654–1660. [Google Scholar] [CrossRef]
- Jungledragon.com. Available online: https://www.jungledragon.com/image/69746/choriaster_granulatus.html (accessed on 28 August 2019).
- Ivanchina, N.V.; Kicha, A.A.; Malyarenko, T.V.; Ermolaeva, S.D.; Yurchenko, E.A.; Pislyagin, E.A.; Van Minh, C.; Dmitrenok, P.S. Granulatosides D, E and other polar steroid compounds from the starfish Choriaster granulatus. Their immunomodulatory activity and cytotoxicity. Nat. Prod. Res. 2019, 33, 2623–2630. [Google Scholar] [CrossRef]
- Lane, D.J.W.; Vandenspiegel, D.; Singapore Science Centre. A Guide to Sea Stars and Other Echinoderms of Singapore; Singapore Science Centre: Singapore, 2003. [Google Scholar]
- iNaturalist.org. Available online: https://www.inaturalist.org/taxa/349594-Craspidaster-hesperus (accessed on 28 August 2019).
- Sea Star|Echinoderm|Britannica.com. Available online: https://www.britannica.com/animal/sea-star (accessed on 3 October 2019).
- Flickr.com. Available online: https://www.flickr.com/photos/crappywildlifephotography/1473849241 (accessed on 28 August 2019).
- Quang, T.H.; Lee, D.S.; Han, S.J.; Kim, I.C.; Yim, J.H.; Kim, Y.C.; Oh, H. Steroids from the Cold Water Starfish Ctenodiscus crispatus with Cytotoxic and Apoptotic Effects on Human Hepatocellular Carcinoma and Glioblastoma Cells. Bull. Korean Chem. Soc. 2014, 35, 2335–2341. [Google Scholar] [CrossRef]
- Western Australian Museum Collections. Available online: http://museum.wa.gov.au/online-collections/names/Culcita-novaeguineae (accessed on 28 August 2019).
- Tang, H.-F.; Yi, Y.-H.; Li, L.; Sun, P.; Zhang, S.-Q.; Zhao, Y.-P. Bioactive Asterosaponins from the Starfish Culcita novaeguineae. J. Nat. Prod. 2005, 68, 337–341. [Google Scholar] [CrossRef]
- Zhou, J.; Cheng, G.; Cheng, G.; Tang, H.; Zhang, X. Novaeguinoside II inhibits cell proliferation and induces apoptosis of human brain glioblastoma U87MG cells through the mitochondrial pathway. Brain Res. 2011, 1372, 22–28. [Google Scholar] [CrossRef]
- Tang, H.-F.; Yi, Y.-H.; Li, L.; Sun, P.; Zhang, S.-Q.; Zhao, Y.-P. Three New Asterosaponins from the Starfish Culcita novaeguineae and their Bioactivity. Planta Med. 2005, 71, 458–463. [Google Scholar] [CrossRef]
- Cheng, G.; Zhang, X.; Tang, H.-F.; Zhang, Y.; Zhang, X.-H.; Cao, W.-D.; Gao, D.-K.; Wang, X.-L.; Jin, B. Asterosaponin 1, a cytostatic compound from the starfish Culcita novaeguineae, functions by inducing apoptosis in human glioblastoma U87MG cells. J. Neurooncol. 2006, 79, 235–241. [Google Scholar] [CrossRef]
- Tang, H.-F.; Cheng, G.; Wu, J.; Chen, X.-L.; Zhang, S.-Y.; Wen, A.-D.; Lin, H.-W. Cytotoxic Asterosaponins Capable of Promoting Polymerization of Tubulin from the Starfish Culcita novaeguineae. J. Nat. Prod. 2009, 72, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Ngoan, B.T.; Hanh, T.T.H.; Vien, L.T.; Diep, C.N.; Thao, N.P.; Thao, D.T.; Thanh, N.V.; Cuong, N.X.; Nam, N.H.; Thung, D.C.; et al. Asterosaponins and glycosylated polyhydroxysteroids from the starfish Culcita novaeguineae and their cytotoxic activities. J. Asian Nat. Prod. Res. 2015, 17, 1010–1017. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Li, H.; Wang, M.; Liu, Y.; Feng, Y.; Liu, K.; Tang, H. Cytotoxic Polyhydroxysteroidal Glycosides from Starfish Culcita novaeguineae. Mar. Drugs 2018, 16, 92. [Google Scholar] [CrossRef] [PubMed]
- Commons.wikimedia.org. Available online: https://commons.wikimedia.org/wiki/File:Luzon_Sea_Star_(Echinaster_luzonicus)_with_Comb_Jellies_(Coeloplana_astericola)_(red_and_white_patches)_Tanjung_Kubur,_Lembeh_Strait,_Sulawesi,_Indonesia.jpg (accessed on 28 August 2019).
- Malyarenko, O.; Dyshlovoy, S.; Kicha, A.; Ivanchina, N.; Malyarenko, T.; Carsten, B.; Gunhild, V.; Stonik, V.; Ermakova, S. The Inhibitory Activity of Luzonicosides from the Starfish Echinaster luzonicus against Human Melanoma Cells. Mar. Drugs 2017, 15, 227. [Google Scholar] [CrossRef] [PubMed]
- Flickr.com. Available online: https://www.flickr.com/photos/85180530@N02/28196905180 (accessed on 28 August 2019).
- Fedorov, S.N.; Shubina, L.K.; Kicha, A.A.; Ivanchina, N.V.; Kwak, J.Y.; Jin, J.O.; Bode, A.M.; Dong, Z.; Stonik, V.A. Proapoptotic and Anticarcinogenic Activities of Leviusculoside G from the Starfish Henricia leviuscula and Probable Molecular Mechanism. Nat. Prod. Commun. 2008, 3. [Google Scholar] [CrossRef]
- iNaturalist.org. Available online: https://www.inaturalist.org/photos/10219414 (accessed on 28 August 2019).
- Kicha, A.A.; Kalinovsky, A.I.; Ivanchina, N.V.; Malyarenko, T.V.; Dmitrenok, P.S.; Ermakova, S.P.; Stonik, V.A. Four New Asterosaponins, Hippasteriosides A–D, from the Far Eastern Starfish Hippasteria kurilensis. Chem. Biodivers. 2011, 8, 166–175. [Google Scholar] [CrossRef]
- Levina, E.V.; Kalinovsky, A.I.; Andriyashenko, P.V.; Dmitrenok, P.S.; Aminin, D.L.; Stonik, V.A. Phrygiasterol, a Cytotoxic Cyclopropane-Containing Polyhydroxysteroid, and Related Compounds from the Pacific Starfish Hippasteria p hrygiana. J. Nat. Prod. 2005, 68, 1541–1544. [Google Scholar] [CrossRef]
- Malyarenko, T.V.; Kicha, A.A.; Ivanchina, N.V.; Kalinovsky, A.I.; Popov, R.S.; Vishchuk, O.S.; Stonik, V.A. Asterosaponins from the Far Eastern starfish Leptasterias ochotensis and their anticancer activity. Steroids 2014, 87, 119–127. [Google Scholar] [CrossRef]
- Malyarenko, T.; Malyarenko Vishchuk, O.; Ivanchina, N.; Kalinovsky, A.; Popov, R.; Kicha, A. Four New Sulfated Polar Steroids from the Far Eastern Starfish Leptasterias ochotensis: Structures and Activities. Mar. Drugs 2015, 13, 4418–4435. [Google Scholar] [CrossRef] [Green Version]
- Ivanchina, N.V.; Kalinovsky, A.I.; Kicha, A.A.; Malyarenko, T.V.; Dmitrenok, P.S.; Ermakova, S.P.; Stonik, V.A. Two New Asterosaponins from the Far Eastern Starfish Lethasterias fusca. Nat. Prod. Commun. 2012, 7. [Google Scholar] [CrossRef]
- Logbookimmersioni.it. Available online: http://www.logbookimmersioni.it/biologia/narcissia-canariensis/stella-marina-canaria/ (accessed on 28 August 2019).
- Farokhi, F.; Wielgosz-Collin, G.; Clement, M.; Kornprobst, J.-M.; Barnathan, G. Cytotoxicity on Human Cancer Cells of Ophidiacerebrosides Isolated from the African Starfish Narcissia canariensis. Mar. Drugs 2010, 8, 2988–2998. [Google Scholar] [PubMed]
- Vien, L.T.; Ngoan, B.T.; Hanh, T.T.H.; Vinh, L.B.; Thung, D.C.; Thao, D.T.; Thanh, N.V.; Cuong, N.X.; Nam, N.H.; Kiem, P.V.; et al. Steroid glycosides from the starfish Pentaceraster gracilis. J. Asian Nat. Prod. Res. 2017, 19, 474–480. [Google Scholar] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [Google Scholar] [PubMed] [Green Version]
- Mohammad, R.M.; Muqbil, I.; Lowe, L.; Yedjou, C.; Hsu, H.-Y.; Lin, L.-T.; Siegelin, M.D.; Fimognari, C.; Kumar, N.B.; Dou, Q.P.; et al. Broad targeting of resistance to apoptosis in cancer. Semin. Cancer Biol. 2015, 35, S78–S103. [Google Scholar] [PubMed]
- Wong, R.S. Apoptosis in cancer: From pathogenesis to treatment. J. Exp. Clin. Cancer Res. 2011, 30, 87. [Google Scholar] [PubMed]
- Wang, J.; Han, H.; Chen, X.; Yi, Y.; Sun, H. Cytotoxic and Apoptosis-Inducing Activity of Triterpene Glycosides from Holothuria scabra and Cucumaria frondosa against HepG2 Cells. Mar. Drugs 2014, 12, 4274–4290. [Google Scholar]
- Aminin, D.; Menchinskaya, E.; Pisliagin, E.; Silchenko, A.; Avilov, S.; Kalinin, V. Anticancer Activity of Sea Cucumber Triterpene Glycosides. Mar. Drugs 2015, 13, 1202–1223. [Google Scholar]
- Cuong, N.X.; Vien, L.T.; Hoang, L.; Hanh, T.T.H.; Thao, D.T.; Thanh, N.V.; Nam, N.H.; Thung, D.C.; Kiem, P.V.; Minh, C.V. Cytotoxic triterpene diglycosides from the sea cucumber Stichopus horrens. Bioorg. Med. Chem. Lett. 2017, 27, 2939–2942. [Google Scholar]
- Li, C.; Haug, T.; Moe, M.K.; Styrvold, O.B.; Stensvåg, K. Centrocins: Isolation and characterization of novel dimeric antimicrobial peptides from the green sea urchin, Strongylocentrotus droebachiensis. Dev. Comp. Immunol. 2010, 34, 959–968. [Google Scholar]
- Solstad, R.G.; Li, C.; Isaksson, J.; Johansen, J.; Svenson, J.; Stensvåg, K.; Haug, T. Novel Antimicrobial Peptides EeCentrocins 1, 2 and EeStrongylocin 2 from the Edible Sea Urchin Echinus esculentus Have 6-Br-Trp Post-Translational Modifications. PLoS ONE 2016, 11, e0151820. [Google Scholar]
- Spinello, A.; Cusimano, M.; Schillaci, D.; Inguglia, L.; Barone, G.; Arizza, V. Antimicrobial and Antibiofilm Activity of a Recombinant Fragment of β-Thymosin of Sea Urchin Paracentrotus lividus. Mar. Drugs 2018, 16, 366. [Google Scholar]
- Kim, C.-H.; Go, H.-J.; Oh, H.Y.; Park, J.B.; Lee, T.K.; Seo, J.-K.; Elphick, M.R.; Park, N.G. Identification of a novel antimicrobial peptide from the sea star Patiria pectinifera. Dev. Comp. Immunol. 2018, 86, 203–213. [Google Scholar] [PubMed]
- Pereira, R.B.; Evdokimov, N.M.; Lefranc, F.; Valentão, P.; Kornienko, A.; Pereira, D.M.; Andrade, P.B.; Gomes, N.G.M. Marine-Derived Anticancer Agents: Clinical Benefits, Innovative Mechanisms, and New Targets. Mar. Drugs 2019, 17, 329. [Google Scholar] [Green Version]
- Steiner, N.; Ribatti, D.; Willenbacher, W.; Jöhrer, K.; Kern, J.; Marinaccio, C.; Aracil, M.; García-Fernández, L.F.; Gastl, G.; Untergasser, G.; et al. Marine compounds inhibit growth of multiple myeloma in vitro and in vivo. Oncotarget 2015, 6, 8200–8209. [Google Scholar] [PubMed] [Green Version]
- Krishnan, G.S.; Rajagopal, V.; Antony Joseph, S.R.; Sebastian, D.; Savarimuthu, I.; Selvaraj, K.R.N.; Thobias, A.F. In vitro, In silico and In vivo Antitumor Activity of Crude Methanolic Extract of Tetilla dactyloidea (Carter, 1869) on DEN Induced HCC in a Rat Model. Biomed. Pharmacother. 2017, 95, 795–807. [Google Scholar]
- Yuan, L.; Huang, X.; Zhou, K.; Zhu, X.; Huang, B.; Qiu, S.; Cao, K.; Xu, L. Sea cucumber extract TBL-12 inhibits the proliferation, migration, and invasion of human prostate cancer cells through the p38 mitogen-activated protein kinase and intrinsic caspase apoptosis pathway. Prostate 2019, 79, 826–839. [Google Scholar]
- Xiao, G.; Shao, X.; Zhu, D.; Yu, B. Chemical synthesis of marine saponins. Nat. Prod. Rep. 2019, 36, 769–787. [Google Scholar]
- Singh, K.M.; Kanase, H. Marine pharmacology: Potential, challenges, and future in India. J. Med Sci. 2018, 38, 49. [Google Scholar]
Species | Bioactive Molecules |
---|---|
Order Paxillosida Family Astropectinide | |
Astropecten polyacanthus | Steroids: Astropectenols A–D 5α-cholest-7-ene-3β,6α-diol 5α-cholest-8(14)-ene-3β,7α-diol 5α-cholest-7,9(11)-diene-3β-ol Glycosylated polyhydroxysteroid: Polyacanthoside A Triseramide (20R,24S)-3β,6α,8,15β,24-pentahydroxy-5α-cholestane Marthasteroside B Psilasteroside |
Astropecten monacanthus | Asterosaponins: Astrosteriosides A–D; Psilasteroside; Marthasteroside B |
Craspidaster hesperus | Polyhydroxysteroidal glycosides: Hesperuside A–C Novaeguinoside A |
Family Ctenodiscidae | |
Ctenodiscus crispatus | (22E,24ξ)-26,27-bisnor-24-methyl-5α-cholest-22-en 3β,5,6β,15α,25-pentol 25-O-sulfate (22E,24R,25R)-24-methyl-5α-cholest-22-en-3β,5,6β,15α,25,26-hexol 26-O-sulfate (28R)-24-ethyl-5α-cholesta-3β,5,6β,8,15α,28,29-heptaol-24-sulfate (25S)-5α-cholestane-3β,5,6β,15α,16β,26-hexaol Δ7-sitosterol |
Order Forcipulatida Family Asteriidae | |
Asterias amurensis | Cerebrosides |
Leptasterias ochotensis | Asterosaponins: Leptasteriosides A–F Asterogenins: (23S)-6α,23-Dihydroxy-5 α-cholesta-9(11),20(21)-dien-3 β-yl sulfate, sodium salt; (22E)-6α-Hydroxy-5 α-cholesta-9(11),20(22)-dien-23-one-3 β-yl sulfate, sodium salt Sulfated steroid monoglycosides: Leptaochotensosides A–C Sulfated polyhydroxylated steroid: (24S)-5α-cholestane 3β,6β,15α,24-tetraol 24-O-sulfate |
Lethasterias fusca | Lethasteriosides A, B Thornasteroside A Anasteroside A Luidiaquinoside |
Order Spinulosida Family Echinasteridae | |
Echinaster luzonicus | Luzonicoside A, Luzonicoside D |
Henricia leviuscula | Leviusculoside G |
Order Valvatida Family Acanthasteridae | |
Acanthaster planci | Plancitoxin protein Asterosaponin Acanthaglycoside G Pentareguloside G Acanthaglycoside A Maculatoside (or luidiaglycoside B) Plancisides A–C |
Family Archasteridae | |
Archaster typicus | Archasterosides A, B Regularoside A |
Family Asterinidae | |
Asterina pectinifera | (25S)-5α-cholestane-3β,6α,7α,8,15α,16β-hexahydroxyl-26-O-14′Z-eicosenoate (25S)-5α-cholestane-3β,6α,7α,8,15α,16β,26-heptol (25S)-5α-cholestane-3β,4β,6α,7α,8,15α,16β,26-octol (25S)-5α-cholestane-3β,4β,6α,7α,8,15β,16β,26-octol Cholest-7-en-3-sodium sulfate (24S)-5α-cholestane-3β,6α,8,15α,24-pentol Asterosaponins P1-2 Cyclin B Polysaccarides |
Family Asteropseidae | |
Asteropsis carinifera | Steroidal biglycosides: Cariniferosides A–F Asterosaponins: Asteropsiside A, Regularoside A, Thornasteroside A |
Family Goniasteridae | |
Hippasteria phrygiana (H. kurilensis) | Hippasteriosides A–D Phrygiasterol Borealoside C |
Family Ophidiasteridae | |
Certonardoa semiregularis | Certonardosterols Certonardosides A–J Certonardosides K–N Certonardosides P2 and I3 |
Narcissia canariensis | Glycosphingolipids: Ophidiacerebrosides |
Family Oreasteridae | |
Anthenea chinensis | Polyhydroxysteroidal glycosides: Anthenoside A, Anthenosides B–K |
Anthenea sibogae | Anthenosides S1–S6 |
Anthenea aspera | Anthenosides E, G, J, K, S1, S4, S6 Anthenosides A1 and A2 |
Choriaster granulatus | Granulatosides D and E, Linckoside L4, Echinasteroside B, Echinasterosides C, E and F, desulfated Echinasteroside A, 22,23-Dihydroechinasteroside A, desulfated Echinasteroside B, Linckoside B, Linckoside E, Linckoside F, Laeviuscoloside D, Granulatoside A, Steroid Heptaol |
Culcita novaeguineae | Asterosaponins: Novaeguinosides I and II, Regularoside B Asterosaponin 1, Asterosaponin 2, Asterosaponin 3, Novaeguinosides A–D, Novaeguinoside E Polyhydroxy steroidal glycosides: Culcinosides A–D, Linckoside B, Halityloside A, Halityloside B, Culcitoside C5, Halityloside D, Halityloside E, Echinasteroside C, Linckoside F, Linckoside L |
Pentaceraster gracilis | Pentacerosides A and B Nodososide (5α,25S)-cholestane-3β,6α,815β,16β,26-hexol 3-O-[(2-O-methyl)-β-D-xylopyranoside] Maculatoside Protoreasteroside |
Compounds | Species | Tumor Cell Lines | Mechanism of Action | IC50 |
---|---|---|---|---|
Crude extract | Acanthaster planci | Human breast cancer MCF-7 cell lines | Induction of apoptosis | 15.6 µg·mL−1 |
Plancitoxin I | A375.S2 melanoma cells | Inhibition of cell growth, induction of apoptosis mediated by mitochondrial membrane and p38 pathway | 5.67 µg·mL−1 | |
Butanol fraction | A375.S2 | Induction of apoptosis and necrosis | 112.65 µg·mL−1 | |
Anthenoside A | Anthenea chinensis | human leukemia K-562, hepatoma BEL-7402, glioblastoma U87MG cells | - | |
Anthenosides B–K | K-562, BEL-7402 cells | - | ||
Anthenosides J–K | Anthenea aspera | human melanoma RPMI-7951, breast adenocarcinoma T-47D, colorectal carcinoma HT-29 | Induction of apoptosis | 89, 91, and 85 µM |
Archasterosides A | Archaster typicus | human cancer HeLa cells, mouse epidermal JB6 P+ Cl41 cells | - | 24 μM |
Archasterosides B | human cancer HeLa cells, mouse epidermal JB6 P+ Cl41 cells | Induction of p53- and AP-1-dependent transcriptional activities | 14 μM | |
Regularoside A | human cancer HeLa cells, mouse epidermal JB6 P+ Cl41 cells | - | 110 μM | |
Methanol extract 5α-cholest-7,9(11)-diene-3β-ol | Astropecten polyacanthus | HL-60 leukemia cells, PC-3 prostate cancer cells | Induction of apoptosis via regulation of apoptosis-related proteins and via the down-regulation of ERK1/2 pathway and C-myc | 8.29 µg·mL−1 25.42 µg·mL−1 2.70 μM |
(20R,24S)-3β,6α,8,15β,24-pentahydroxy-5α-cholestane | HepG2 (hepatoma cancer), KB (epidermoid carcinoma), LNCaP (prostate cancer), MCF7 (breast cancer), SK-Mel2 (melanoma) | - | 18.03–21.59 μM | |
Methanol extract Astrosterioside D | Astropecten monacanthus | HL-60, PC-3, SNU-C5 colorectal cancer cells | Induction of apoptosis via the inactivation of PI3K/AKT and ERK 1/2 MAPK pathways and down-regulation of C-myc | 0.84–3.96 µg·mL−1 4.31–5.21 µg·mL−1 |
Cerebrosides (AAC) | Asterias amurensis | murine sarcoma cells (S180) | Induction of mitochondria-mediated apoptosis | 216.36 μM |
Peptides derived from the motifs of cyclin B | Asterina pectinifera | HCT-116 human colon adenocarcinoma and EC-9706 esophageal carcinoma cells | Induction of apoptosis | 100 μM |
(25S)-5α-cholestane-3β,4β,6α,7α,8,15β,16β,26-octol Asterosaponin P1 Cholest-7-en-3-sodium sulfate | HepG2, DLD-1, HCT 116, and HT-29 cells DLD-1, HCT 116, and HT-29 cells HepG2 | - - Radiosensitizing activity through apoptosis induction | 0.2 μM 150 μM 4 μM 1.6 μM | |
Fermented A. pectinifera with mushroom mycelia C. militaris (FACM) | B16F10 murine melanoma cells | Induction of apoptosis | 0.25–0.2 µg·mL−1 | |
Regularoside A Thornasteroside A | Asteropsis carinifera | T-47D human breast cancer, RPMI-7951 human malignant melanoma, HCT-116 human colon cancer cells | - | 169, 117, 142 μM 82, 35, 70 μM |
Certonardosterols | Certonardoa semiregularis | A549, SK-OV-3, SK-MEL-2, XF498, HCT15 | - | - |
15-keto sterol | Unspecified | - | - | |
Certonardoside C | SK-MEL-2 | 3.8 µg·mL−1 | ||
Certonardosides L | A549 SK-OV-3 SK-MEL-2 XF498 HCT15 | - | 7.5, 6.8, 5.8, 6.4, 3.9 µg·mL−1 | |
Certonardosides M | A549 SK-OV-3 SK-MEL-2 XF498 HCT15 | - | >30, >30, 9.7, 25.4, 43.4 µg·mL−1 | |
Certonardosides N | A549 SK-OV-3 SK-MEL-2 XF498 HCT15 | - | 8.0, 8.4, 7.7, 7.2, 8.2 µg·mL−1 | |
Certonardosides P2 | SK-MEL-2 | - | - | |
Granulatosides D, Echinasterosides F, desulfated Echinasteroside B Laeviuscoloside D | Choriaster granulatus | Murine splenocytes | - | 4.7 ± 1.2 4.6 ± 0.3 4.5 ± 0.4 2.2 ± 0.3μM |
Hesperuside A | Craspidaster hesperus | leukemia MOLT-4, hepatoma BEL-7402 human lung cancer A-549 | - | 3.62 ± 1.08 2.59 ± 0.94 5.26 ± 0.36µM |
Hesperuside B | leukemia MOLT-4, hepatoma BEL-7402 human lung cancer A-549 | - | 1.84 ± 0.65 0.68 ± 0.12 2.67 ± 0.54 | |
Hesperuside C | leukemia MOLT-4, hepatoma BEL-7402 human lung cancer A-549 | - | 2.40 ± 0.73 2.12 ± 0.81 5.72 ± 0.82 μM | |
(25S)-5α-cholestane-3β,5,6β,15α,16β,26-hexaol | Ctenodiscus crispatus | HepG2, U87MG | Inhibition of cell growth and induction of apoptosis | 10–200 μM |
Asterosaponin 1 | Culcita novaeguineae | U87MG cells | Inhibition of cell growth | 4.3 µg·mL−1 |
Asterosaponin 1 Asterosaponin 3 | K-562, BEL-7402 | - | 3.57 µg·mL−1; 2.55 µg·mL−1; 3.75 µg·mL−1; 1,89 µg·mL−1; | |
Novaeguinosides A | K-562, BEL-7402 | - | 3.0 ± 0.6, 2.4 ± 0.3 µM | |
Novaeguinosides B | K-562, BEL-7402 | - | 7.9 ± 1.5, 9.5 ± 1.1 µM | |
Novaeguinosides C | K-562, BEL-7402 | - | 1.3 ± 0.2 0.7 ± 0.1µM | |
Novaeguinosides D | K-562, BEL-7402 | - | 4.6 ± 0.5 4.1 ± 1.0µM | |
Culcinoside A | human glioblastoma cell lines (U87, U251, and SHG44) | - | 9.35 ± 0.46 11.28 ± 0.65 8.04 ± 0.32µM | |
Phrygiasterol | Hippasteria phrygiana | Ehrlich carcinoma cells | Inhibition of growth | 50 µg·mL−1 |
Leptasterioside A Leptasterioside B Leptasterioside C | Leptasterias ochotensis | T-47D cells | - | 2 10 23 μM |
Ophidiacerebrosides | Narcissia canariensis | KMS-11 multiple myeloma, HCT-116 colorectal adenocarcinoma GBM glioblastoma multiforme | - | ~20 μM |
Maculatoside | Pentaceraster gracilis | Hep-G2 SK-Mel2 | - | 16.75 ± 0.69 μM 19.44 ± 1.45 μM |
Compound | Biological Effect |
---|---|
CAV (protein toxin from the venom of A. planci) | Anti-proliferative effect on A375.S2 cell line |
Acanthaglycoside A Maculatoside | Inhibition of colony formation of HT-29 and MDA-MB-231 cell lines; prevention of the migration of MDA-MB-231 cells |
Anthenosides A2 | Reduction of T-47D cell colony number |
Polysaccharides (from A. pectinifera) | Chemopreventive effect on human colon adenocarcinoma and human breast cancer cells |
Cariniferoside F, Halityloside A 6-O-sulfate, 4′-O-methylhalityloside A 6-O-sulfate | Inhibition of colony formation of RPMI-7951 and T-47D cell lines |
Regularoside A Thornasteroside A | Inhibition of colony formation of HCT-116, RPMI-7951 and T-47D cells |
Luzonicoside A | Inhibition of proliferation, migration and colony formation of RPMI-7951 and SK-MEL-28 cell lines |
Hippasterioside D | Reduction of colony number and colony size of HT-29 cells |
Leptasterioside A | Inhibition of colony formation of T-47D cells |
Leptaochotensoside A | Reduction of colony formation of T-47D cells |
Lethasteriosides A | Inhibition of colony formation of T-47D, HCT-116 and RPMI-7951 cell lines |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazzara, V.; Arizza, V.; Luparello, C.; Mauro, M.; Vazzana, M. Bright Spots in the Darkness of Cancer: A Review of Starfishes-Derived Compounds and Their Anti-Tumor Action. Mar. Drugs 2019, 17, 617. https://doi.org/10.3390/md17110617
Lazzara V, Arizza V, Luparello C, Mauro M, Vazzana M. Bright Spots in the Darkness of Cancer: A Review of Starfishes-Derived Compounds and Their Anti-Tumor Action. Marine Drugs. 2019; 17(11):617. https://doi.org/10.3390/md17110617
Chicago/Turabian StyleLazzara, Valentina, Vincenzo Arizza, Claudio Luparello, Manuela Mauro, and Mirella Vazzana. 2019. "Bright Spots in the Darkness of Cancer: A Review of Starfishes-Derived Compounds and Their Anti-Tumor Action" Marine Drugs 17, no. 11: 617. https://doi.org/10.3390/md17110617
APA StyleLazzara, V., Arizza, V., Luparello, C., Mauro, M., & Vazzana, M. (2019). Bright Spots in the Darkness of Cancer: A Review of Starfishes-Derived Compounds and Their Anti-Tumor Action. Marine Drugs, 17(11), 617. https://doi.org/10.3390/md17110617