Characterization of Antifungal Lipopeptide Biosurfactants Produced by Marine Bacterium Bacillus sp. CS30
Abstract
:1. Introduction
2. Results
2.1. Isolation and Identification of Marine Bacterial Strain against M. grisea
2.2. Purification of the Antifungal Agents Produced by Bacillus sp. CS30
2.3. Mass Spectrometry Analysis of the Purified Antifungal Agents
2.4. Amino Acid Analysis of the Purified Antifungal Agent
2.5. ESI-QTOF-Mass/Mass Analysis of the Purified Antifungal Agents
2.6. Activity Assay of Surfactin CS30-1 and Surfactin CS30-2 against Plant Pathogen M. grisea
2.7. Ultrastructural and Morphological Changes of M. grisea Hyphae Caused by Surfactin CS30-1 and Surfactin CS30-2
2.8. Accumulation of ROS and Cell Death of M. grisea Caused by Surfactin CS30-1 and Surfactin CS30-2
2.9. Effect of Surfactin CS30-1 and Surfactin CS30-2 on the Plant Infection of M. grisea
3. Discussion
4. Materials and Methods
4.1. Strain Isolation, Culture Conditions, and Strain Identification
4.2. Screening of Bacteria Producing Antifungal Agent
4.3. Isolation and Purification of the Antifungal Agent
4.4. Activity Assay of the Purified Antifungal Agent against M. grisea
4.5. Amino Acid Analysis of the Purified Antifungal Agent
4.6. Structural Elucidation of the Antifungal Agent
4.7. Ultrastructural and Morphological Observation of Fungal Hyphae Caused by the Purified Antifungal Agent
4.8. ROS Detection in Fungal Cells Induced by the Purified Antifungal Agent
4.9. Effects of Purified Antifungal Agent on the Plant Infection of M. grisea
Author Contributions
Funding
Conflicts of Interest
References
- Zhao, H.B.; Shao, D.Y.; Jiang, C.M.; Shi, J.L.; Li, Q.; Huang, Q.S.; Rajoka, M.S.R.; Yang, H.; Jin, M.L. Biological activity of lipopeptides from Bacillus. Appl. Microbiol. Biot. 2017, 101, 5951–5960. [Google Scholar] [CrossRef]
- Banat, I.M.; Makkar, R.S.; Cameotra, S.S. Potential commercial applications of microbial surfactants. Appl. Microbiol. Biot. 2000, 53, 495–508. [Google Scholar] [CrossRef]
- Cochrane, S.A.; Vederas, J.C. Lipopeptides from Bacillus and Paenibacillus spp.: A gold mine of antibiotic candidates. Med. Res. Rev. 2016, 36, 4–31. [Google Scholar] [CrossRef]
- Ines, M.; Dhouha, G. Lipopeptide surfactants: Production, recovery and pore forming capacity. Peptides 2015, 71, 100–112. [Google Scholar] [CrossRef]
- Meena, K.R.; Kanwar, S.S. Lipopeptides as the antifungal and antibacterial agents: Applications in food safety and therapeutics. Biomed. Res. Int. 2015, 2015, 473050. [Google Scholar] [CrossRef]
- Lee, Y.; Phat, C.; Hong, S.C. Structural diversity of marine cyclic peptides and their molecular mechanisms for anticancer, antibacterial, antifungal, and other clinical applications. Peptides 2017, 95, 94–105. [Google Scholar] [CrossRef]
- Wang, S.J.; Wang, T.; Zhang, J.Q.; Xu, S.H.; Liu, H.L. Disruption of tumor cells using a pH–activated and thermosensitive antitumor lipopeptide containing a leucine zipper structure. Langmuir 2018, 34, 8818–8827. [Google Scholar] [CrossRef]
- De Souza, C.G.; Martins, F.I.C.C.; Zocolo, G.J.; Figueiredo, J.E.F.; Canuto, K.M.; de Brito, E.S. Simultaneous quantification of lipopeptide isoforms by UPLC-MS in the fermentation broth from Bacillus subtilis CNPMS22. Anal. Bioanal. Chem. 2018, 410, 6827–6836. [Google Scholar] [CrossRef]
- Basit, M.; Rasool, M.H.; Naqvi, S.A.R.; Waseem, M.; Aslam, B. Biosurfactants production potential of native strains of Bacillus cereus and their antimicrobial, cytotoxic and antioxidant activities. Pak. J. Pharm. Sci. 2018, 31, 251–256. [Google Scholar]
- Lawrance, A.; Balakrishnan, M.; Joseph, T.C.; Sukumaran, D.P.; Valsalan, V.N.; Gopal, D.; Ramalingam, K. Functional and molecular characterization of a lipopeptide surfactant from the marine sponge–associated eubacteria Bacillus licheniforrnis NIOT–AMIN06 of Andaman and Nicobar Islands, India. Mar. Pollut. Bull. 2014, 82, 76–85. [Google Scholar] [CrossRef]
- Ongena, M.; Jacques, P. Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends Microbiol. 2008, 16, 115–125. [Google Scholar] [CrossRef]
- Yang, H.; Li, X.; Li, X.; Yu, H.M.; Shen, Z.Y. Identification of lipopeptide isoforms by MALDI-TOF-MS/MS based on the simultaneous purification of iturin, fengycin, and surfactin by RP-HPLC. Anal. Bioanal. Chem. 2015, 407, 2529–2542. [Google Scholar] [CrossRef]
- Toral, L.; Rodriguez, M.; Bejar, V.; Sampedro, I. Antifungal activity of lipopeptides from Bacillus XT1 CECT 8661 against Botrytis cinerea. Front. Microbiol. 2018, 9, 1315. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.L.; Liu, S.L.A.; Mou, H.J.; Ma, Y.X.; Li, M.; Hu, X.K. Characterization of lipopeptide biosurfactants produced by Bacillus licheniformis MB01 from marine sediments. Front. Microbiol. 2017, 8, 871. [Google Scholar] [CrossRef]
- Kim, Y.T.; Park, B.K.; Kim, S.E.; Lee, W.J.; Moon, J.S.; Cho, M.S.; Park, H.Y.; Hwang, I.; Kim, S.U. Organization and characterization of genetic regions in Bacillus subtilis subsp krictiensis ATCC55079 associated with the biosynthesis of iturin and surfactin compounds. Plos ONE 2017, 12, e0188179. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.C.; Xue, Y.; Gao, W.N.; Li, J.H.; Zu, X.Y.; Fu, D.L.; Bai, X.F.; Zuo, Y.J.; Hu, Z.G.; Zhang, F.S. Bacillaceae–derived peptide antibiotics since 2000. Peptides 2018, 101, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Gudina, E.J.; Teixeira, J.A.; Rodrigues, L.R. Biosurfactants produced by marine microorganisms with therapeutic applications. Mar. Drugs 2016, 14, 38. [Google Scholar] [CrossRef]
- Cao, R.B.; Jin, W.H.; Shan, Y.Q.; Wang, J.; Liu, G.; Kuang, S.; Sun, C.M. Marine bacterial polysaccharide EPS11 inhibits cancer cell growth via blocking cell adhesion and stimulating anoikis. Mar. Drugs 2018, 16, 85. [Google Scholar] [CrossRef] [PubMed]
- Boka, B.; Manczinger, L.; Kecskemeti, A.; Chandrasekaran, M.; Kadaikunnan, S.; Alharbi, N.S.; Vagvolgyi, C.; Szekeres, A. Ion trap mass spectrometry of surfactins produced by Bacillus subtilis SZMC6179J reveals novel fragmentation features of cyclic lipopeptides. Rapid Commun. Mass Sp. 2016, 30, 1581–1590. [Google Scholar] [CrossRef]
- Sarwar, A.; Hassan, M.N.; Imran, M.; Iqbal, M.; Majeed, S.; Brader, G.; Sessitsch, A.; Hafeez, F.Y. Biocontrol activity of surfactin A purified from Bacillus NH–100 and NH–217 against rice bakanae disease. Microbiol. Res. 2018, 209, 1–13. [Google Scholar] [CrossRef]
- Zhang, L.L.; Sun, C.M. Fengycins, cyclic lipopeptides from marine Bacillus subtilis strains, kill the plant-pathogenic fungus Magnaporthe grisea by inducing reactive oxygen species production and chromatin condensation. Appl. Environ. Microb. 2018, 84, e00445-18. [Google Scholar] [CrossRef]
- Gu, Q.; Yang, Y.; Yuan, Q.M.; Shi, G.M.; Wu, L.M.; Lou, Z.Y.; Huo, R.; Wu, H.J.; Borriss, R.; Gao, X.W. Bacillomycin D produced by Bacillus amyloliquefaciens is involved in the antagonistic interaction with the plant–pathogenic fungus Fusarium graminearum. Appl. Environ. Microb. 2017, 83, e01075-17. [Google Scholar] [CrossRef]
- Fernandez, J.; Orth, K. Rise of a cereal killer: The biology of Magnaporthe oryzae biotrophic growth. Trends Microbiol. 2018, 26, 582–597. [Google Scholar] [CrossRef]
- Ali, G.S.; El–Sayed, A.S.A.; Patel, J.S.; Green, K.B.; Ali, M.; Brennan, M.; Norman, D. Ex Vivo application of secreted metabolites produced by soil-inhabiting Bacillus spp. efficiently controls foliar diseases Caused by Alternaria spp. Appl. Environ. Microb. 2016, 82, 478–490. [Google Scholar] [CrossRef]
- Ongena, M.; Jourdan, E.; Adam, A.; Paquot, M.; Brans, A.; Joris, B.; Arpigny, J.L.; Thonart, P. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 2007, 9, 1084–1090. [Google Scholar] [CrossRef]
- Mnif, I.; Ghribi, D. Lipopeptides biosurfactants: Mean classes and new insights for industrial, biomedical, and environmental applications. Biopolymers 2015, 104, 129–147. [Google Scholar] [CrossRef]
- Romano, A.; Vitullo, D.; Senatore, M.; Lima, G.; Lanzotti, V. Antifungal cyclic lipopeptides from Bacillus amyloliquefaciens strain BO5A. J. Nat. Prod. 2013, 76, 2019–2025. [Google Scholar] [CrossRef]
- Song, B.; Rong, Y.J.; Zhao, M.X.; Chi, Z.M. Antifungal activity of the lipopeptides produced by Bacillus amyloliquefaciens anti–CA against Candida albicans isolated from clinic. Appl. Microbiol. Biot. 2013, 97, 7141–7150. [Google Scholar] [CrossRef]
- Romano, A.; Vitullo, D.; Di Pietro, A.; Lima, G.; Lanzotti, V. Antifungal lipopeptides from Bacillus amyloliquefaciens strain BO7. J. Nat. Prod. 2011, 74, 145–151. [Google Scholar] [CrossRef]
- Cadenas, E.; Davies, K.J.A. Mitochondrial free radical generation, oxidative stress, and aging. Free Radical. Bio. Med. 2000, 29, 222–230. [Google Scholar] [CrossRef]
- Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS–mediated mechanisms: A radical therapeutic approach? Nat. Rev. Drug Discov. 2009, 8, 579–591. [Google Scholar] [CrossRef]
- Xiu, P.Y.; Liu, R.; Zhang, D.C.; Sun, C.M. Pumilacidin-like lipopeptides derived from marine bacterium Bacillus sp. strain 176 suppress the motility of Vibrio alginolyticus. Appl. Environ. Microb. 2017, 83, e00450-17. [Google Scholar] [CrossRef]
- Campanella, L.; Crescentini, G.; Avino, P. Simultaneous determination of cysteine, cystine and 18 other amino acids in various matrices by high–performance liquid chromatography. J. Chromatogr. A 1999, 833, 137–145. [Google Scholar] [CrossRef]
- Yang, S.Z.; Liu, X.Y.; Mu, B.Z. The McLafferty rearrangement in the Glu residue in a cyclic lipopeptide determined by Q–TOF MS/MS. J. Mass Spectrom. 2008, 43, 1673–1678. [Google Scholar] [CrossRef]
- Kumar, S.; Chandra, P.; Bajpai, V.; Singh, A.; Srivastava, M.; Mishra, D.K.; Kumar, B. Rapid qualitative and quantitative analysis of bioactive compounds from Phyllanthus amarus using LC/MS/MS techniques. Ind. Crop. Prod. 2015, 69, 143–152. [Google Scholar] [CrossRef]
- Kuang, S.; Liu, G.; Cao, R.B.; Zhang, L.L.; Yu, Q.; Sun, C.M. Mansouramycin C kills cancer cells through reactive oxygen species production mediated by opening of mitochondrial permeability transition pore. Oncotarget 2017, 8, 104057–104071. [Google Scholar] [CrossRef] [Green Version]
- Qi, G.F.; Zhu, F.Y.; Du, P.; Yang, X.F.; Qiu, D.W.; Yu, Z.N.; Chen, J.Y.; Zhao, X.Y. Lipopeptide induces apoptosis in fungal cells by a mitochondria–dependent pathway. Peptides 2010, 31, 1978–1986. [Google Scholar] [CrossRef]
- Goutam, J.; Sharma, G.; Tiwari, V.K.; Mishra, A.; Kharwar, R.N.; Ramaraj, V.; Koch, B. Isolation and characterization of “Terrein” an antimicrobial and antitumor compound from endophytic fungus Aspergillus terreus (JAS–2) associated from Achyranthus aspera Varanasi, India. Front. Microbiol. 2017, 8, 1334. [Google Scholar] [CrossRef]
Purification Step | Volume (mL) | Specific Activity (AU/mL) | Total Activity (AU) | Recovery (%) |
---|---|---|---|---|
Growth medium | 1000 | 50 | 5 × 104 | 100% |
Methanol extraction | 50 | 320 | 1.6 × 104 | 32% |
Sephadex LH-20 | 8 | 1200 | 9.6 × 103 | 19.2% |
RP-HPLC eluent 41.2 min | 1 | 1500 | 1.5 × 103 | 3% |
RP-HPLC eluent 42.7 min | 1.5 | 3000 | 4.5 × 103 | 9% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; Liu, G.; Zhou, S.; Sha, Z.; Sun, C. Characterization of Antifungal Lipopeptide Biosurfactants Produced by Marine Bacterium Bacillus sp. CS30. Mar. Drugs 2019, 17, 199. https://doi.org/10.3390/md17040199
Wu S, Liu G, Zhou S, Sha Z, Sun C. Characterization of Antifungal Lipopeptide Biosurfactants Produced by Marine Bacterium Bacillus sp. CS30. Marine Drugs. 2019; 17(4):199. https://doi.org/10.3390/md17040199
Chicago/Turabian StyleWu, Shimei, Ge Liu, Shengnan Zhou, Zhenxia Sha, and Chaomin Sun. 2019. "Characterization of Antifungal Lipopeptide Biosurfactants Produced by Marine Bacterium Bacillus sp. CS30" Marine Drugs 17, no. 4: 199. https://doi.org/10.3390/md17040199
APA StyleWu, S., Liu, G., Zhou, S., Sha, Z., & Sun, C. (2019). Characterization of Antifungal Lipopeptide Biosurfactants Produced by Marine Bacterium Bacillus sp. CS30. Marine Drugs, 17(4), 199. https://doi.org/10.3390/md17040199