Fishery Wastes as a Yet Undiscovered Treasure from the Sea: Biomolecules Sources, Extraction Methods and Valorization
Abstract
:1. The Problem of Fishery By-Catch or Processing By-Products
2. Typology of Fishery By-Catch and Processing By-Products
3. High Value Compounds (Active Metabolites or Bioactive Products) from Fishery By-Catch and/or Processing By-Products
3.1. Fish Proteins
3.2. Bioactive Peptides
3.3. Fish Protein Hydrolysate (FPH)
3.4. Antimicrobial Peptides Isolated from Fish
3.5. Enzymes
3.6. Collagen and Gelatin
3.7. Chitin and Chitosan
3.8. Lipids
3.9. Minerals
4. Fishery By-Catch or Processing By-Products as a Source of Probiotics
4.1. Fish Organs Probiotics
4.2. Fish Gastrointestinal Tract (GIT)
4.2.1. Bacterial Activities
4.2.2. Yeast Activities
4.3. Fish Skin and Gills
5. Methodologies/Technologies of Extraction
6. Fields of Application of Fishery By-Catch or Processing By-Products
6.1. In Food and Nutraceutical Industry
6.2. Applications in Pharmaceutical and Biomedical Industry
6.3. Applications in Fish Processing or Other Industrial Uses
7. Circular Economy in the Fishery Sector
- Emissions: in 2011, the world fishing fleet burned 40 billion liters of fuels and emitted 179 million tons of CO2-equivalent (CO2-eq) of greenhouse gasses (GHG), corresponding to 2.2 kg of CO2-eq per kg of fish and invertebrates [161].
- Waste production: biological and non biological wastes produced during fisheries activities represent a growing concern [6];
- Overfishing: the intensification of primary production activities endangers the fish stocks and marine life that depends on them [162].
- Ecodesign: each product and its production process must be designed to be further reused/recycled rather than disposed;
- Modularity and versatility: if a product is modular and versatile its use is strongly conservative again changing conditions (overcoming product obsolescence);
- Use of renewable energies: the use of renewable energy sources assures the sustainability of the process over time and non-renewable sources depletion;
- Ecosystem approach: the production processes must be designed accounting for all interactions with environment, so the products through “cradle-to-grave” environmental impact assessment;
- Materials recovery: the use of recycled materials must be recommended rather than virgin raw materials. In this framework, the use of fisheries by-catches or processing by-products, centrally falls in the strategic shift from the linear to the circular economy paradigm, providing elements to reduce the impact of fisheries sector, improving its economic performance.
7.1. The Biorefinery of Fisheries By-Catches or Processing By-products
7.2. Energy Production from Fishery By-Catch or Processing By-Products
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2018-Meeting the Sustainable Development Goals; FAO: Rome, Italy, 2018; pp. 1–227. [Google Scholar]
- Arvanitoyannis, I.S.; Kassaveti, A. Fish industry waste: Treatments, environmental impacts, current and potential uses. Int. J. Food Sci. Technol. 2008, 43, 726–745. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture-Sustainability in Action; FAO: Rome, Italy, 2020; pp. 1–224. [Google Scholar]
- European Parliament. The Fish Meal and Fish Oil Industry: Its Role in the Common Fisheries Policy; Directorate-General for Research: Luxembourg, 2004; pp. 1–148. [Google Scholar]
- Gasco, L.; Gai, F.; Maricchiolo, G.; Genovese, L.; Ragonese, S.; Bottari, T.; Caruso, G. Fishery Discard as a Source of food for reared or wild fish? The bottom trawling in the Mediterranean Sea as a case study. In Springer Briefs in Molecular Science; Springer Science and Business Media LLC: Berlin, Germany, 2018; pp. 29–48. [Google Scholar]
- Kelleher, K. Discards in the world’s marine fisheries. An update. In FAO Fisheries Technical Paper 470; FAO: Rome, Italy, 2005; pp. 1–134. [Google Scholar]
- Damalas, D. Mission impossible: Discard management plans for the EU Mediterranean fisheries under the reformed Common Fisheries Policy. Fish. Res. 2015, 165, 96–99. [Google Scholar] [CrossRef]
- Sardà, F.; Coll, M.; Heymans, J.J.; Stergiou, K.I. Overlooked impacts and challenges of the new European discard ban. Fish Fish. 2013, 16, 175–180. [Google Scholar] [CrossRef]
- Antelo, L.T.; Lopes, C.; Franco-Uría, A.; Alonso, A.A. Fish discards management: Pollution levels and best available removal techniques. Mar. Pollut. Bull. 2012, 64, 1277–1290. [Google Scholar] [CrossRef] [Green Version]
- Hall, S.J.; Mainprize, B.M. Managing by-catch and discards: How much progress are we making and how can we do better? Fish Fish. 2005, 6, 134–155. [Google Scholar] [CrossRef]
- Heath, M.R.; Cook, R.M.; Cameron, A.I.; Morris, D.J.; Speirs, D.C. Cascading ecological effects of eliminating fishery discards. Nat. Commun. 2014, 5, 3893. [Google Scholar] [CrossRef] [Green Version]
- Blanco, M.; Sotelo, C.G.; Chapela, M.J.; Martín, R.I.P. Towards sustainable and efficient use of fishery resources: Present and future trends. Trends Food Sci. Technol. 2007, 18, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-K.; Mendis, E. Bioactive compounds from marine processing byproducts-A review. Food Res. Int. 2006, 39, 383–393. [Google Scholar] [CrossRef]
- Rustad, T.; Storrø, I.; Slizyte, R. Possibilities for the utilisation of marine by-products. Int. J. Food Sci. Technol. 2011, 46, 2001–2014. [Google Scholar] [CrossRef]
- Ferraro, V.; Carvalho, A.P.; Piccirillo, C.; Santos, M.M.; Castro, P.M.L.; Pintado, M.E. Extraction of high added value biological compounds from sardine, sardine-type fish and mackerel canning residues-A review. Mater. Sci. Eng. C 2013, 33, 3111–3120. [Google Scholar] [CrossRef]
- Hayes, M.; Flower, D. Bioactive Peptides from Marine Processing Byproducts; Wiley: Hoboken, NJ, USA, 2013; pp. 57–71. [Google Scholar]
- Ms, R.V.B.; Al Hattab, A.G.A.A.H.M. Fish processing wastes as a potential source of proteins, amino acids and oils: A critical review. J. Microb. Biochem. Technol. 2013, 5, 107–129. [Google Scholar] [CrossRef] [Green Version]
- Utilization of Fish Waste; Informa UK Limited: London, UK, 2013; pp. 1–232.
- Caruso, G. Fishery wastes and by-products: A resource to be valorised. J. Fish. Sci. 2015, 9, 080–083. [Google Scholar]
- Wangkheirakpam, M.R.; Mahanand, S.S.; Majumdar, R.K.; Sharma, S.; Hidangmayum, D.D.; Netam, S. Fish waste utilization with reference to fish protein hydrolisate-A review. Fish. Technol. 2019, 56, 169–178. [Google Scholar]
- Wang, C.-H.; Doan, C.T.; Nguyen, V.B.; Nguyen, A.D.; Wang, S.-L. Reclamation of fishery processing waste: A mini-review. Molecules 2019, 24, 2234. [Google Scholar] [CrossRef] [Green Version]
- Lloret, J. Human health benefits supplied by Mediterranean marine biodiversity. Mar. Pollut. Bull. 2010, 60, 1640–1646. [Google Scholar] [CrossRef]
- Ideia, P.; Pinto, J.; Ferreira, R.; Figueiredo, L.; Spinola, V.; Castilho, P.C. Fish processing industry residues: A review of valuable products extraction and characterization methods. Waste Biomass-Valoris. 2019, 11, 3223–3246. [Google Scholar] [CrossRef]
- Al Khawli, F.; Pateiro, M.; Domínguez, R.; Lorenzo, J.M.; Gullón, P.; Kousoulaki, K.; Ferrer, E.; Berrada, H.; Barba, F.J. Innovative green technologies of intensification for valorization of seafood and their by-products. Mar. Drugs 2019, 17, 689. [Google Scholar] [CrossRef] [Green Version]
- Ferraro, V.; Cruz, I.B.; Jorge, R.F.; Malcata, F.X.; Pintado, M.E.; Castro, P.M. Valorisation of natural extracts from marine source focused on marine by-products: A review. Food Res. Int. 2010, 43, 2221–2233. [Google Scholar] [CrossRef]
- Li, W.; Liu, Y.; Jiang, W.; Yan, X. Proximate composition and nutritional profile of rainbow trout (Oncorhynchus mykiss) heads and Skipjack tuna (Katsuwonus Pelamis) heads. Molecules 2019, 24, 3189. [Google Scholar] [CrossRef] [Green Version]
- Harikrishna, N.; Mahalakshmi, S.; Kumar, K.K.; Reddy, G. Fish scales as potential substrate for production of alkaline protease and amino acid rich aqua hydrolyzate by Bacillus altitudinis GVC11. Indian J. Microbiol. 2017, 57, 339–343. [Google Scholar] [CrossRef]
- Jensen, I.J.; Maehre, H.K.; Tømmerås, S.; Eilertsen, K.E.; Olsen, R.L.; Elvevoll, E.O. Farmed Atlantic salmon (Salmo salar L.) is a good source of long chain omega-3 fatty acids. Nutr. Bull. 2012, 37, 25–29. [Google Scholar] [CrossRef]
- Subramanian, S.; MacKinnon, S.L.; Ross, N.W. A comparative study on innate immune parameters in the epidermal mucus of various fish species. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2007, 148, 256–263. [Google Scholar] [CrossRef]
- Dash, S.; Das, S.K.; Samal, J.; Thatoi, H.N. Epidermal mucus, a major determinant in fish health: A review. Iran. J. Vet. Res. 2018, 19, 72–81. [Google Scholar]
- Venugopal, V.; Lele, S.S. Nutraceuticals and Bioactive Compounds from Seafood Processing Waste; Springer Science and Business Media LLC: Berlin, Germany, 2015; pp. 1405–1425. [Google Scholar]
- Tacon, A.G.J.; Hasan, M.R.; Metian, M. Demand and supply of feed ingredients for farmed fish and crustaceans: Trends and prospects. In FAO Fisheries and Aquaculture Technical Paper 564; FAO: Rome, Italy, 2011; pp. 1–87. [Google Scholar]
- Choi, Y.-R.; Park, P.-J.; Choi, J.-H.; Moon, S.-H.; Kim, S.-K. Screening of biofunctional peptides from cod processing wastes. Appl. Biol. Chem. 2000, 43, 225–227. [Google Scholar]
- Je, J.-Y.; Park, P.-J.; Kwon, A.J.Y.; Kim, S.-K. A novel angiotensin I converting enzyme inhibitory peptide from Alaska pollack (Theragra chalcogramma) frame protein hydrolysate. J. Agric. Food Chem. 2004, 52, 7842–7845. [Google Scholar] [CrossRef]
- Gabriella, C.; Giulia, M.; Lucrezia, G.; Rosalba, C.; Gabriella, D.M.; Santi, D.; Pasqualina, L. Comparative study of antibacterial and haemolytic activities in sea bass, European eel and blackspot seabream. Open Mar. Biol. J. 2014, 8, 10–16. [Google Scholar] [CrossRef]
- Kristinsson, H.G.; Rasco, B.A. Fish protein hydrolysates: Production, biochemical, and functional properties. Crit. Rev. Food Sci. Nutr. 2000, 40, 43–81. [Google Scholar] [CrossRef]
- Vázquez, J.A.; Menduíña, A.; Nogueira, M.; Durán, A.I.; Sanz, N.; Valcarcel, J. Optimal production of protein hydrolysates from monkfish by-products: Chemical features and associated biological activities. Molecules 2020, 25, 4068. [Google Scholar] [CrossRef]
- Navarro-Peraza, R.S.; Osuna-Ruiz, I.; Lugo-Sánchez, M.E.; Pacheco-Aguilar, R.; Ramírez-Suárez, J.C.; Burgos-Hernández, A.; Martínez-Montaño, E.; Salazar-Leyva, J.A. Structural and biological properties of protein hydrolysates from seafood by-products: A review focused on fishery effluents. Food Sci. Technol. 2020, 40, 1–5. [Google Scholar] [CrossRef]
- Prabha, J.; Nithin, A.; Mariarose, L.; Vincent, S. Processing of nutritive fish protein hydrolysate from Leiognathus splendens. Int. J. Pept. Res. Ther. 2019, 26, 861–871. [Google Scholar] [CrossRef]
- Ishak, N.; Sarbon, N. A Review of protein hydrolysates and bioactive peptides deriving from wastes generated by fish processing. Food Bioprocess Technol. 2018, 11, 2–16. [Google Scholar] [CrossRef]
- Vázquez, J.A.; Sotelo, C.G.; Sanz, N.; Pérez-Martín, R.I.; Amado, I.R.; Valcarcel, J. Valorization of aquaculture by-products of salmonids to produce enzymatic hydrolysates: Process optimization, chemical characterization and evaluation of bioactives. Mar. Drugs 2019, 17, 676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazorra-Manzano, M.A.; Pacheco-Aguilar, R.; Ramírez-Suárez, J.C.; García-Sánchez, G.; Lugo-Sánchez, M.E. Endogenous proteases in pacific whiting (Merluccius productus) muscle as a processing aid in functional fish protein hydrolysate production. Food Bioprocess Technol. 2012, 5, 130–137. [Google Scholar] [CrossRef]
- Bui, X.D.; Vo, C.T.; Bui, V.C.; Pham, T.M.; Bui, T.T.H.; Nguyen-Sy, T.; Nguyen, T.D.P.; Chew, K.W.; Mukatova, M.D.; Chen, W.-H. Optimization of production parameters of fish protein hydrolysate from Sarda Orientalis black muscle (by-product) using protease enzyme. Clean Technol. Environ. Policy 2020, 1–10. [Google Scholar] [CrossRef]
- Villamil, O.; Váquiro, H.; Solanilla, J.F. Fish viscera protein hydrolysates: Production, potential applications and functional and bioactive properties. Food Chem. 2017, 224, 160–171. [Google Scholar] [CrossRef] [PubMed]
- Smith, V.J.; Desbois, A.P.; Dyrynda, E.A. Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae. Mar. Drugs 2010, 8, 1213–1262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, V.J.; Fernandes, J.M.O. Non-specific antimicrobial proteins of the innate system. In Fish Defences; Zaccone, G., Masseguer, J., García-Ayala, A., Kapoor, B.G., Eds.; Science Publishers: Enfield, NH, USA, 2009; Volume 1, pp. 241–275. [Google Scholar]
- Zhou, L.; Budge, S.M.; Ghaly, A.E.; Brooks, M.S.-L.; Dave, D. Extraction, purification and characterization of fish chymotrypsin: A review. Am. J. Biochem. Biotechnol. 2011, 7, 104–123. [Google Scholar] [CrossRef]
- Zhao, L.; Budge, S.M.; Ghaly, A.E.; Brooks, M.S.-L.; Dave, D. Extraction, purification and characterization of fish pepsin: A critical review. J. Food Process. Technol. 2011, 2, 750. [Google Scholar] [CrossRef] [Green Version]
- Nalinanon, S.; Benjakul, S.; Kishimura, H. Biochemical properties of pepsinogen and pepsin from the stomach of albacore tuna (Thunnus alalunga). Food Chem. 2010, 121, 49–55. [Google Scholar] [CrossRef]
- Kishimura, H.; Klomklao, S.; Benjakul, S.; Chun, B.-S. Characteristics of trypsin from the pyloric ceca of walleye pollock (Theragra chalcogramma). Food Chem. 2008, 106, 194–199. [Google Scholar] [CrossRef] [Green Version]
- Klomklao, S.; Kishimura, H.; Nonami, Y.; Benjakul, S. Biochemical properties of two isoforms of trypsin purified from the Intestine of skipjack tuna (Katsuwonus pelamis). Food Chem. 2009, 115, 155–162. [Google Scholar] [CrossRef]
- Castillo-Yañez, F.J.; Pacheco-Aguilar, R.; Garcia-Carreño, F.L.; Toro, M. de los A.N.-D. Characterization of acidic proteolytic enzymes from Monterey sardine (Sardinops sagax caerulea) viscera. Food Chem. 2004, 85, 343–350. [Google Scholar] [CrossRef]
- Castillo-Yáñez, F.J.; Pacheco-Aguilar, R.; García-Carreño, F.L.; Toro, M.D.L.; Ángeles, N.-D. Isolation and characterization of trypsin from pyloric caeca of Monterey sardine Sardinops sagax caerulea. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2005, 140, 91–98. [Google Scholar] [CrossRef]
- Espósito, T.S.; Amaral, I.P.G.; Buarque, D.S.; Oliveira, G.B.; Carvalho, L.B.; Bezerra, R.S. Fish processing waste as a source of alkaline proteases for laundry detergent. Food Chem. 2009, 112, 125–130. [Google Scholar] [CrossRef]
- Klomklao, S.; Kishimura, H.; Yabe, M.; Benjakul, S. Purification and characterization of two pepsins from the stomach of pectoral rattail (Coryphaenoides pectoralis). Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2007, 147, 682–689. [Google Scholar] [CrossRef] [PubMed]
- Ketnawa, S.; Benjakul, S.; Ling, T.C.; Alvarez, O.M.; Rawdkuen, S. Enhanced recovery of alkaline protease from fish viscera by phase partitioning and its application. Chem. Central J. 2013, 7, 79. [Google Scholar] [CrossRef] [Green Version]
- Simpson, B.K. Digestive proteinases from marine animals. In Seafood Enzymes: Utilization and Influence on Postharvest Seafood Quality; Haard, H.F., Simpson, B.K., Eds.; Marcel Dekker Inc.: New York, NY, USA, 2000; pp. 191–214. [Google Scholar]
- Khantaphant, S.; Benjakul, S. Purification and characterization of trypsin from the pyloric caeca of brownstripe red snapper (Lutjanus vitta). Food Chem. 2010, 120, 658–664. [Google Scholar] [CrossRef]
- Kurtovic, I.; Marshall, S.N.; Simpson, B. Isolation and characterization of a trypsin fraction from the pyloric ceca of chinook salmon (Oncorhynchus tshawytscha). Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2006, 143, 432–440. [Google Scholar] [CrossRef]
- Kishimura, H.; Hayashi, K.; Miyashita, Y.; Nonami, Y. Characteristics of trypsins from the viscera of true sardine (Sardinops melanostictus) and the pyloric ceca of arabesque greenling (Pleuroprammus azonus). Food Chem. 2006, 97, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Bougatef, A.; Souissi, N.; Fakhfakh, N.; Ellouz-Triki, Y.; Nasri, M. Purification and characterization of trypsin from the viscera of sardine (Sardina pilchardus). Food Chem. 2007, 102, 343–350. [Google Scholar] [CrossRef]
- Ali, N.E.H.; Hmidet, N.; Bougatef, A.; Nasri, R.; Nasri, M. A Laundry detergent-stable alkaline trypsin from striped seabream (Lithognathus mormyrus) viscera: Purification and characterization. J. Agric. Food Chem. 2009, 57, 10943–10950. [Google Scholar] [CrossRef]
- Barkia, A.; Bougatef, A.; Nasri, R.; Fetoui, E.; Balti, R.; Nasri, M. Trypsin from the viscera of Bogue (Boops boops): Isolation and characterisation. Fish Physiol. Biochem. 2009, 36, 893–902. [Google Scholar] [CrossRef] [PubMed]
- Ben Khaled, H.; Bougatef, A.; Balti, R.; Souissi, N.; Nasri, M.; Triki-Ellouz, Y. Isolation and characterisation of trypsin from sardinelle (Sardinella aurita) viscera. J. Sci. Food Agric. 2008, 88, 2654–2662. [Google Scholar] [CrossRef]
- Klomklao, S.; Benjakul, S.; Visessanguan, W.; Kishimura, H.; Simpson, B.K.; Saeki, H. Trypsins from yellowfin tuna (Thunnus albacores) spleen: Purification and characterization. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2006, 144, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Lamas, D.L. Societal role in cultivating and enhancing peat land ecosystem services: A case study of Hampangen forest in Central Kalimantan, Indonesia. J. Agric. Environ. Sci. 2016, 4, 8–17. [Google Scholar] [CrossRef] [Green Version]
- Murthy, L.N.; Phadke, G.G.; Unnikrishnan, P.; Annamalai, J.; Joshy, C.G.; Zynudheen, A.A.; Ravishankar, C.N. Valorization of fish viscera for crude proteases production and its use in bioactive protein hydrolysate preparation. Waste Biomass Valoris. 2017, 9, 1735–1746. [Google Scholar] [CrossRef]
- Mardina, V.; Fitriani, F.; Harmawan, T.; Hildayani, G.M. Valorization of Tongkol fish (Eutynnus Affinis) pancreas for enzyme lipase production. Elkawnie 2018, 4, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Fines, B.; Holt, G. Chitinase and apparent digestibility of chitin in the digestive tract of juvenile cobia, Rachycentron canadum. Aquaculture 2010, 303, 34–39. [Google Scholar] [CrossRef]
- Lim, Y.S.; Ok, Y.; Hwang, S.; Kwak, J.-Y.; Yoon, S. Marine collagen as a promising biomaterial for biomedical applications. Mar. Drugs 2019, 17, 467. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, M.I.A.; Barroso, L.G.R.; Sánchez, M.L. Collagen: A review on its sources and potential cosmetic applications. J. Cosmet. Dermatol. 2018, 17, 20–26. [Google Scholar] [CrossRef]
- Karim, A.; Bhat, R. Fish gelatin: Properties, challenges, and prospects as an alternative to mammalian gelatins. Food Hydrocoll. 2009, 23, 563–576. [Google Scholar] [CrossRef]
- Gómez-Guillén, M.C.; Turnay, J.; Fernández-Díaz, M.D.; Ulmo, N.; Lizarbe, M.; Montero, P. Structural and physical properties of gelatin extracted from different marine species: A comparative study. Food Hydrocoll. 2002, 16, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.-B.; Sun, K.-L.; Wang, Y.-M.; Chi, C.-F.; Wang, B. Eight collagen peptides from hydrolysate fraction of Spanish mackerel skins: Isolation, identification, and in vitro antioxidant activity evaluation. Mar. Drugs 2019, 17, 224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, S.; Dhillon, G.S. Recent trends in biological extraction of chitin from marine shell wastes: A review. Crit. Rev. Biotechnol. 2013, 35, 44–61. [Google Scholar] [CrossRef]
- Nguyen, V.B.; Chen, S.-P.; Nguyen, T.H.; Nguyen, M.T.; Tran, T.T.T.; Doan, C.T.; Nguyen, A.D.; Kuo, Y.-H.; Wang, S.-L. Novel efficient bioprocessing of marine chitins into active anticancer Prodigiosin. Mar. Drugs 2019, 18, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.-L.; Nguyen, V.B.; Doan, C.T.; Tran, T.N.; Nguyen, M.T.; Nguyen, A.D. Production and potential applications of bioconversion of chitin and protein-containing fishery byproducts into Prodigiosin: A review. Molecules 2020, 25, 2744. [Google Scholar] [CrossRef]
- Jayakumar, R.; Prabaharan, M.; Kumar, P.S.; Nair, S.; Tamura, H. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol. Adv. 2011, 29, 322–337. [Google Scholar] [CrossRef]
- Vázquez, J.A.; Amado, I.R.; Montemayor, M.I.; Fraguas, J.; González, P.; Murado, M.A. Chondroitin sulfate, hyaluronic acid and chitin/chitosan production using marine waste sources: Characteristics, applications and eco-friendly processes: A review. Mar. Drugs 2013, 11, 747–774. [Google Scholar] [CrossRef] [Green Version]
- Rubio-Rodríguez, N.; De Diego, S.M.; Beltrán, S.; Jaime, I.; Sanz, M.T.; Rovira, J. Supercritical fluid extraction of fish oil from fish by-products: A comparison with other extraction methods. J. Food Eng. 2012, 109, 238–248. [Google Scholar] [CrossRef] [Green Version]
- Cervera, M.; Ángel, R.; Venegas, E.V.; Bueno, R.P.R.; Medina, M.D.S.; Guerrero, J.L.G. Docosahexaenoic acid purification from fish processing industry by-products. Eur. J. Lipid Sci. Technol. 2015, 117, 724–729. [Google Scholar] [CrossRef]
- Cervera, M.R.; Villarreal-Rubio, M.B.; Valenzuela, R.; Valenzuela, A. Comparison of fatty acid profiles of dried and raw by-products from cultured and wild fishes. Eur. J. Lipid Sci. Technol. 2017, 119, 1600516. [Google Scholar] [CrossRef]
- Ishikawa, M.; Kato, M.; Mihori, T.; Watanabe, H.; Sakai, Y. Effect of vapor pressure on the rate of softening of fish bone by super-heated steam cooking. Nippon. SUISAN GAKKAISHI 1990, 56, 1687–1691. [Google Scholar] [CrossRef] [Green Version]
- Larsen, R.; Eilertsen, K.-E.; Elvevoll, E.O. Health benefits of marine foods and ingredients. Biotechnol. Adv. 2011, 29, 508–518. [Google Scholar] [CrossRef] [PubMed]
- Merrifield, D.L.; Rodiles, A. The fish microbiome and its interactions with mucosal tissues. In Mucosal Health in Aquaculture; Elsevier BV: Amsterdam, The Netherlands, 2015; pp. 273–295. [Google Scholar]
- Burr, G.; Gatlin, D.; Ricke, S. Microbial ecology of the gastrointestinal tract of fish and the potential application of prebiotics and probiotics in finfish aquaculture. J. World Aquac. Soc. 2005, 36, 425–436. [Google Scholar] [CrossRef]
- WHO/FAO. Probiotics in food. Health and nutritional properties and guidelines for evaluation. In FAO Food and Nutrition Paper, 85; WHO/FAO: Rome, Italy, 2006; pp. 1–56. [Google Scholar]
- Carnevali, O.; Zamponi, M.C.; Sulpizio, R.; Rollo, A.; Nardi, M.; Orpianesi, C.; Silvi, S.; Caggiano, M.; Polzonetti, A.M.; Cresci, A. Administration of probiotic strain to improve sea bream wellness during development. Aquac. Int. 2004, 12, 377–386. [Google Scholar] [CrossRef]
- Stavric, S.; Kornegay, E.T. Microbial probiotics for pigs and poultry. In Biotechnology in Animal Feeds and Animal Feeding; Wiley: Hoboken, NJ, USA, 2007; pp. 205–231. [Google Scholar]
- Merrifield, D.L.; Dimitroglou, A.; Foey, A.; Davies, S.J.; Baker, R.T.; Bøgwald, J.; Castex, M.; Ringø, E. The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture 2010, 302, 1–18. [Google Scholar] [CrossRef]
- Burbank, D.R.; LaPatra, S.E.; Fornshell, G.; Cain, K.D. Isolation of bacterial probiotic candidates from the gastrointestinal tract of rainbow trout, Oncorhynchus mykiss (Walbaum), and screening for inhibitory activity against Flavobacterium psychrophilum. J. Fish Dis. 2012, 35, 809–816. [Google Scholar] [CrossRef] [PubMed]
- Carnevali, O.; Maradonna, F.; Gioacchini, G. Integrated control of fish metabolism, wellbeing and reproduction: The role of probiotic. Aquaculture 2017, 472, 144–155. [Google Scholar] [CrossRef]
- Knipe, H.; Temperton, B.; Lange, A.; Bass, D.; Tyler, C.R. Probiotics and competitive exclusion of pathogens in shrimp aquaculture. Rev. Aquac. 2020, 1–29. [Google Scholar] [CrossRef]
- Avella, M.A.; Olivotto, I.; Silvi, S.; Ribecco, C.; Cresci, A.; Palermo, F.A.; Polzonetti, A.; Carnevali, O. Use of Enterococcus faecium to improve common sole (Solea solea) larviculture. Aquaculture 2011, 315, 384–393. [Google Scholar] [CrossRef]
- Mohapatra, S.; Chakraborty, T.; Kumar, V.; DeBoeck, G.; Mohanta, K. Aquaculture and stress management: A review of probiotic intervention. J. Anim. Physiol. Anim. Nutr. 2013, 97, 405–430. [Google Scholar] [CrossRef] [PubMed]
- Dawood, M.A.; Koshio, S.; Ishikawa, M.; El-Sabagh, M.; Esteban, M.Á.; Zaineldin, A.I. Probiotics as an environment-friendly approach to enhance red sea bream, Pagrus major growth, immune response and oxidative status. Fish Shellfish Immunol. 2016, 57, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, I.; Kim, S.-K. Immense essence of excellence: Marine microbial bioactive compounds. Mar. Drugs 2010, 8, 2673–2701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Floris, R.; Scanu, G.; Fois, N.; Rizzo, C.; Malavenda, R.; Spanò, N.; Giudice, A.L. Intestinal bacterial flora of Mediterranean gilthead sea bream (Sparus aurataLinnaeus) as a novel source of natural surface active compounds. Aquac. Res. 2018, 49, 1262–1273. [Google Scholar] [CrossRef]
- Floris, R.; Manca, S.; Fois, N. Microbial ecology of intestinal tract of gilthead sea bream (Sparus aurata Linnaeus, 1758) from two coastal lagoons of Sardinia (Italy). Trans. Water Bullet. 2013, 7, 4–12. [Google Scholar] [CrossRef]
- Jöborn, A.; Olsson, J.C.; Westerdahl, A.; Conway, P.L.; Kjelleberg, S. Colonization in the fish intestinal tract and production of inhibitory substances in intestinal mucus and faecal extracts by Carnobacterium sp. strain K1. J. Fish Dis. 1997, 20, 383–392. [Google Scholar] [CrossRef]
- Ravi, A.V.; Musthafa, K.; Jegathammbal, G.; Kathiresan, K.; Pandian, S. Screening and evaluation of probiotics as a biocontrol agent against pathogenic Vibrios in marine aquaculture. Lett. Appl. Microbiol. 2007, 45, 219–223. [Google Scholar] [CrossRef]
- Sun, Y.-Z.; Yang, H.-L.; Ma, R.-L.; Lin, W.-Y. Probiotic applications of two dominant gut Bacillus strains with antagonistic activity improved the growth performance and immune responses of grouper Epinephelus coioides. Fish Shellfish Immunol. 2010, 29, 803–809. [Google Scholar] [CrossRef]
- Kumar, R.S.; Kanmani, P.; Yuvaraj, N.; Paari, K.; Pattukumar, V.; Arul, V. Purification and characterization of enterocin MC13 produced by a potential aquaculture probiont Enterococcus faeciumMC13 isolated from the gut of Mugil cephalus. Can. J. Microbiol. 2011, 57, 993–1001. [Google Scholar] [CrossRef]
- Fidopiastis, P.M.; Bezdek, D.J.; Horn, M.H.; Kandel, J.S. Characterizing the resident, fermentative microbial consortium in the hindgut of the temperate-zone herbivorous fish, Hermosilla azurea (Teleostei: Kyphosidae). Mar. Biol. 2005, 148, 631–642. [Google Scholar] [CrossRef] [Green Version]
- Ringø, E.; Sinclair, P.D.; Birkbeck, H.; Barbour, A. Production of Eicosapentaenoic Acid (20:5 n-3) by Vibrio pelagius isolated from turbot (Scophthalmus maximus (L.)) Larvae. Appl. Environ. Microbiol. 1992, 58, 3777–3778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kihara, M.; Sakata, T. Influences of incubation temperature and various saccharides on the production of organic acids and gases by gut microbes of rainbow trout Oncorhynchus mykiss in a micro-scale batch culture. J. Comp. Physiol. B 2001, 171, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhao, K.-N.; Vitetta, L. Effects of intestinal microbial-elaborated butyrate on oncogenic signaling pathways. Nutrients 2019, 11, 1026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bălașa, A.F.; Chircov, C.; Grumezescu, A.M. Marine biocompounds for neuroprotection-A review. Mar. Drugs 2020, 18, 290. [Google Scholar] [CrossRef]
- Sugita, H.; Ito, Y. Identification of intest\inal bacteria from Japanese flounder (Paralichthys olivaceus) and their ability to digest chitin. Lett. Appl. Microbiol. 2006, 43, 336–342. [Google Scholar] [CrossRef]
- Itoi, S.; Okamura, T.; Koyama, Y.; Sugita, H. Chitinolytic bacteria in the intestinal tract of Japanese coastal fishes. Can. J. Microbiol. 2006, 52, 1158–1163. [Google Scholar] [CrossRef]
- Ringø, E.; Zhou, Z.; Olsen, R.; Song, S. Use of chitin and krill in aquaculture-the effect on gut microbiota and the immune system: A review. Aquac. Nutr. 2012, 18, 117–131. [Google Scholar] [CrossRef]
- Esakkiraj, P.; Immanuel, G.; Sowmya, S.M.; Iyapparaj, P.; Palavesam, A. Evaluation of protease-producing ability of fish gut isolate Bacillus cereus for aqua feed. Food Bioprocess. Technol. 2008, 2, 383–390. [Google Scholar] [CrossRef]
- Askarian, F.; Zhou, Z.; Olsen, R.E.; Sperstad, S.; Ringø, E. Culturable autochthonous gut bacteria in Atlantic salmon (Salmo salar L.) fed diets with or without chitin. Characterization by 16S rRNA gene sequencing, ability to produce enzymes and in vitro growth inhibition of four fish pathogens. Aquaculture 2012, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Askarian, F.; Sperstad, S.; Merrifield, D.L.; Ray, A.K.; Ringø, E. The effect of different feeding regimes on enzyme activities of gut microbiota in Atlantic cod (Gadus morhuaL.). Aquac. Res. 2012, 44, 841–846. [Google Scholar] [CrossRef] [Green Version]
- De, D.; Ghoshal, T.K.; Raja, R.A. Characterization of enzyme-producing bacteria isolated from the gut of Asian seabass, Lates calcariferand milkfish, Chanos chanosand their application for nutrient enrichment of feed ingredients. Aquac. Res. 2014, 45, 1573–1580. [Google Scholar] [CrossRef]
- Gatesoupe, F.-J.; Infante, J.-L.Z.; Cahu, C.; Quazuguel, P. Early weaning of seabass larvae, Dicentrarchus labrax: The effect on microbiota, with particular attention to iron supply and exoenzymes. Aquaculture 1997, 158, 117–127. [Google Scholar] [CrossRef]
- Ray, A.K.; Ghosh, K.; Ringø, E. Enzyme-producing bacteria isolated from fish gut: A review. Aquac. Nutr. 2012, 18, 465–492. [Google Scholar] [CrossRef]
- Das, P.; Mukherjee, S.; Sen, R. Improved bioavailability and biodegradation of a model polyaromatic hydrocarbon by a biosurfactant producing bacterium of marine origin. Chemosphere 2008, 72, 1229–1234. [Google Scholar] [CrossRef] [PubMed]
- Das, P.; Mukherjee, S.; Sen, R. Biosurfactant of marine origin exhibiting heavy metal remediation properties. Bioresour. Technol. 2009, 100, 4887–4890. [Google Scholar] [CrossRef]
- Gudiña, E.J.; Teixeira, J.A.; Rodrigues, L.R. Biosurfactants produced by marine microorganisms with therapeutic applications. Mar. Drugs 2016, 14, 38. [Google Scholar] [CrossRef] [Green Version]
- Floris, R.; Rizzo, C.; Giudice, A.L. Biosurfactants from Marine Microorganisms. In Metabolomics-New Insights into Biology and Medicine; IntechOpen: London, UK, 2020. [Google Scholar]
- Olano, C.; Lombó, F.; Méndez, M.T.P.; Salas, J.A. Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering. Metab. Eng. 2008, 10, 281–292. [Google Scholar] [CrossRef]
- Gatesoupe, F. Live yeasts in the gut: Natural occurrence, dietary introduction, and their effects on fish health and development. Aquaculture 2007, 267, 20–30. [Google Scholar] [CrossRef] [Green Version]
- Ortuño, J.; Cuesta, A.; Rodríguez, A.; Esteban, M.; Meseguer, J. Oral administration of yeast, Saccharomyces cerevisiae, enhances the cellular innate immune response of gilthead seabream (Sparus aurata L.). Veter- Immunol. Immunopathol. 2002, 85, 41–50. [Google Scholar] [CrossRef]
- Tovar, D.; Zambonino-Infante, J.-L.; Cahu, C.; Gatesoupe, F.; Vázquez-Juárez, R.; Lésel, R. Effect of live yeast incorporation in compound diet on digestive enzyme activity in sea bass (Dicentrarchus labrax) larvae. Aquaculture 2002, 204, 113–123. [Google Scholar] [CrossRef]
- Harrison, F.C. The discoloration of halibut. Can. J. Res. 1929, 1, 214–239. [Google Scholar] [CrossRef]
- Gram, L.; Ringø, E. Chapter 17 Prospects of fish probiotics. In Microbial Ecology in Growing Animals; Elsevier BV: Amsterdam, The Netherlands, 2005; Volume 2, pp. 379–417. [Google Scholar]
- Ringø, E.; Holzapfe, W. Identification and characterization of Carnobacteria associated with the gills of Atlantic salmon (Salmo salar L.). Syst. Appl. Microbiol. 2000, 23, 523–527. [Google Scholar] [CrossRef]
- Pérez-Sánchez, T.; Balcazar, J.L.; García, Y.; Halaihel, N.; Vendrell, D.; De Blas, I.; Merrifield, D.L.; Ruiz-Zarzuela, I. Identification and characterization of lactic acid bacteria isolated from rainbow trout, Oncorhynchus mykiss (Walbaum), with inhibitory activity against Lactococcus garvieae. J. Fish Dis. 2011, 34, 499–507. [Google Scholar] [CrossRef]
- Landeira-Dabarca, A.; Sieiro, C.; Álvarez, M. Change in food ingestion induces rapid shifts in the diversity of microbiota associated with cutaneous mucus of Atlantic salmonSalmo salar. J. Fish Biol. 2013, 82, 893–906. [Google Scholar] [CrossRef]
- Liu, X.; Ashforth, E.; Ren, B.; Song, F.; Dai, H.; Liu, M.; Wang, J.; Xie, Q.; Zhang, L. Bioprospecting microbial natural product libraries from the marine environment for drug discovery. J. Antibiot. 2010, 63, 415–422. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Zhang, M.; Bhandari, B.; Gao, Z. Novel technologies in utilization of byproducts of animal food processing: A review. Crit. Rev. Food Sci. Nutr. 2018, 59, 3420–3430. [Google Scholar] [CrossRef]
- Herrero, M.; Mendiola, J.A.; Cifuentes, A.; Ibáñez, E. Supercritical fluid extraction: Recent advances and applications. J. Chromatogr. A 2010, 1217, 2495–2511. [Google Scholar] [CrossRef] [Green Version]
- Serangeli, C.; Salz, P.; Di Paola, L. Fish biorefinery: A waste-to-value chain for landing obligations. Biol. Mar. Medit. 2018, 25, 279–280. [Google Scholar]
- Blondeau, N. The nutraceutical potential of omega-3 alpha-linolenic acid in reducing the consequences of stroke. Biochimie 2016, 120, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Pike, I.H.; Jackson, A. Fish oil: Production and use now and in the future. Lipid Technol. 2010, 22, 59–61. [Google Scholar] [CrossRef]
- Rubio-Rodríguez, N.; De Diego, S.M.; Beltrán, S.; Jaime, I.; Sanz, M.T.; Rovira, J. Supercritical fluid extraction of the omega-3 rich oil contained in hake (Merluccius capensis-Merluccius paradoxus) by-products: Study of the influence of process parameters on the extraction yield and oil quality. J. Supercrit. Fluids 2008, 47, 215–226. [Google Scholar] [CrossRef]
- Mercer, P.; Armenta, R.E. Developments in oil extraction from microalgae. Eur. J. Lipid Sci. Technol. 2011, 113, 539–547. [Google Scholar] [CrossRef]
- Ruiz, J.C.R.; Vazquez, E.D.L.L.O.; Campos, M.R.S. Encapsulation of vegetable oils as source of omega-3 fatty acids for enriched functional foods. Crit. Rev. Food Sci. Nutr. 2017, 57, 1423–1434. [Google Scholar] [CrossRef]
- Silva, J.C.; Barros, A.A.; Aroso, I.M.; Fassini, D.; Silva, T.H.; Reis, R.L.; Duarte, A.R.C. Extraction of collagen/gelatin from the marine demosponge Chondrosia reniformis (Nardo, 1847) using water acidified with carbon dioxide-process optimization. Ind. Eng. Chem. Res. 2016, 55, 6922–6930. [Google Scholar] [CrossRef]
- Di Paola, L.; Cicci, A.; Bravi, M. Toward an efficient biorefining of microalgae and biomass alike: A unit operating view on how to mimick the optimisation history of the crude oil refining industry. Chem. Eng. Trans. 2015, 43, 1321–1326. [Google Scholar] [CrossRef]
- Cicci, A.; Sed, G.; Jessop, P.G.; Marco, B. Circular extraction: An innovative use of switchable solvents for the biomass biorefinery. Green Chem. 2018, 20, 3908–3911. [Google Scholar] [CrossRef]
- Péron, G.; Mittaine, J.F.; Le Gallic, B. Where do fishmeal and fish oil products come from? An analysis of the conversion ratios in the global fishmeal industry. Mar. Policy 2010, 34, 815–820. [Google Scholar] [CrossRef]
- Je, J.-Y.; Park, P.-J.; Kim, S.-K. Antioxidant activity of a peptide isolated from Alaska pollack (Theragra chalcogramma) frame protein hydrolysate. Food Res. Int. 2005, 38, 45–50. [Google Scholar] [CrossRef]
- Je, J.-Y.; Qian, Z.-J.; Byun, H.-G.; Kim, S.-K. Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis. Process Biochem. 2007, 42, 840–846. [Google Scholar] [CrossRef]
- Park, P.-J.; Jung, W.-K.; Kim, S.-K.; Jun, S.-Y. Purification and characterization of an antioxidative peptide from enzymatic hydrolysate of yellowfin sole (Limanda aspera) frame protein. Eur. Food Res. Technol. 2004, 219, 20–26. [Google Scholar] [CrossRef]
- Kim, S.-K. Marine Nutraceuticals: Prospects and Perspectives; CRC Press: Boca Raton, FL, USA, 2013; pp. 1–464. [Google Scholar]
- Giannetto, A.; Esposito, E.; Lanza, M.; Oliva, S.; Riolo, K.; Di Pietro, S.; Abbate, J.M.; Briguglio, G.; Cassata, G.; Cicero, L.; et al. Protein hydrolysates from anchovy (Engraulis encrasicolus) waste: In vitro and in vivo biological activities. Mar. Drugs 2020, 18, 86. [Google Scholar] [CrossRef]
- Buckley, J.D.; Howe, P.R.C. Long-chain Omega-3 polyunsaturated fatty acids may be beneficial for reducing obesity-A review. Nutrients 2010, 2, 1212–1230. [Google Scholar] [CrossRef]
- Chan, E.J.; Cho, L. What can we expect from omega-3 fatty acids? Clevel. Clin. J. Med. 2009, 76, 245–251. [Google Scholar] [CrossRef]
- Lordan, S.; Ross, R.P.; Stanton, C. Marine bioactives as functional food ingredients: Potential to reduce the incidence of chronic diseases. Mar. Drugs 2011, 9, 1056–1100. [Google Scholar] [CrossRef] [Green Version]
- Senevirathne, M.; Kim, S.-K. Utilization of seafood processing by-products. Adv. Food Nutr. Res. 2012, 65, 495–512. [Google Scholar] [CrossRef]
- Hamed, I.; Özogul, F.; Özogul, Y.; Regenstein, J.M. Marine bioactive compounds and their health benefits: A review. Compr. Rev. Food Sci. Food Saf. 2015, 14, 446–465. [Google Scholar] [CrossRef]
- Ashraf, S.A.; Adnan, M.; Patel, M.; Siddiqui, A.J.; Sachidanandan, M.; Snoussi, M.; Hadi, S. Fish-based bioactives as potent nutraceuticals: Exploring the therapeutic perspective of sustainable food from the Sea. Mar. Drugs 2020, 18, 265. [Google Scholar] [CrossRef]
- Calon, F.; Cole, G. Neuroprotective action of omega-3 polyunsaturated fatty acids against neurodegenerative diseases: Evidence from animal studies. Prostaglandins Leukot. Essent. Fat. Acids 2007, 77, 287–293. [Google Scholar] [CrossRef]
- Picot, L.; Bordenave, S.; Didelot, S.; Fruitier-Arnaudin, I.; Sannier, F.; Thorkelsson, G.; Bergé, J.; Guérard, F.; Chabeaud, A.; Piot, J. Antiproliferative activity of fish protein hydrolysates on human breast cancer cell lines. Process Biochem. 2006, 41, 1217–1222. [Google Scholar] [CrossRef]
- Menon, V.V. Enzymes from seafood processing waste and their applications in seafood processing. Adv. Food Nutr. Res. 2016, 78, 47–69. [Google Scholar] [CrossRef]
- Samat, A.F.; Muhamad, N.A.S.; Rasib, N.A.A.; Hassan, S.A.M.; Sohaimi, K.S.A.; Iberahim, N.I. The potential of biodiesel production derived from fish waste. IOP Conf. Ser. Mater. Sci. Eng. 2018, 318, 012017. [Google Scholar] [CrossRef]
- Ahuja, I.; Dauksas, E.; Remme, J.F.; Richardsen, R.; Løes, A.-K. Fish and fish waste-based fertilizers in organic farming-With status in Norway: A review. Waste Manag. 2020, 115, 95–112. [Google Scholar] [CrossRef]
- Caldeira, M.; Barreto, C.; Pestana, P.; Cardoso, M.A.T. Fish residue valorisation by the production of value-added compounds towards a sustainable zero waste industry: A critical review. J. Sci. Eng. Res. 2018, 5, 418–447. [Google Scholar]
- Parker, R.W.R.; Blanchard, J.L.; Gardner, C.; Green, B.S.; Hartmann, K.; Tyedmers, P.; Watson, R.A. Fuel use and greenhouse gas emissions of world fisheries. Nat. Clim. Chang. 2018, 8, 333–337. [Google Scholar] [CrossRef]
- Scheffer, M.; Carpenter, S.; De Young, B. Cascading effects of overfishing marine systems. Trends Ecol. Evol. 2005, 20, 579–581. [Google Scholar] [CrossRef]
- Asche, F.; Garlock, T.M.; Anderson, J.L.; Bush, S.R.; Smith, M.D.; Anderson, C.M.; Chu, J.; Garrett, K.A.; Lem, A.; Lorenzen, K.; et al. Three pillars of sustainability in fisheries. Proc. Natl. Acad. Sci. USA 2018, 115, 11221–11225. [Google Scholar] [CrossRef] [Green Version]
- Cherubini, F. The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Convers. Manag. 2010, 51, 1412–1421. [Google Scholar] [CrossRef]
- Ajanovic, A. Biofuels versus food production: Does biofuels production increase food prices? Energy 2011, 36, 2070–2076. [Google Scholar] [CrossRef]
- Dahiya, S.; Kumar, A.N.; Sravan, J.S.; Chatterjee, S.; Sarkar, O.; Mohan, S.V. Food waste biorefinery: Sustainable strategy for circular bioeconomy. Bioresour. Technol. 2018, 248, 2–12. [Google Scholar] [CrossRef]
- Catchpole, T.L.; Ribeiro-Santos, A.; Mangi, S.C.; Hedley, C.; Gray, T. The challenges of the landing obligation in EU fisheries. Mar. Policy 2017, 82, 76–86. [Google Scholar] [CrossRef] [Green Version]
- Kerton, F.M.; Liu, Y.; Omari, K.W.B.; Hawboldt, K. Green chemistry and the ocean-based biorefinery. Green Chem. 2013, 15, 860–871. [Google Scholar] [CrossRef] [Green Version]
- Shahidi, F.; Naczk, M.; Pegg, R.B.; Synowiecki, J. Chemical composition and nutritional value of processing discards of cod (Gadus morhua). Food Chem. 1991, 42, 145–151. [Google Scholar] [CrossRef]
- Nnali, K.E.; Oke, A.O. The utilization of fish and fish farm wastes in biogas production: “A review”. Adv. Agric. Sci. Eng. Res. 2013, 3, 657–667. [Google Scholar]
- Jayasinghe, P.; Hawboldt, K. A review of bio-oils from waste biomass: Focus on fish processing waste. Renew. Sustain. Energy Rev. 2012, 16, 798–821. [Google Scholar] [CrossRef]
- Huang, J.; Qiao, Y.; Wang, Z.; Liu, H.; Wang, B.; Yu, Y. Valorization of food waste via torrefaction: Effect of food waste type on the characteristics of torrefaction products. Energy Fuels 2020, 34, 6041–6051. [Google Scholar] [CrossRef]
- Maschmeyer, T.; Luque, R.; Selva, M. Upgrading of marine (fish and crustaceans) biowaste for high added-value molecules and bio(nano)-materials. Chem. Soc. Rev. 2020, 49, 4527–4563. [Google Scholar] [CrossRef]
- Kratky, L.; Zamazal, P. Economic feasibility and sensitivity analysis of fish waste processing biorefinery. J. Clean. Prod. 2020, 243, 118677. [Google Scholar] [CrossRef]
- Torres-León, C.; Ramírez-Guzman, N.; Londoño-Hernandez, L.; Martinez-Medina, G.A.; Díaz-Herrera, R.; Navarro-Macias, V.; Alvarez-Pérez, O.B.; Picazo, B.; Villarreal-Vázquez, M.; Ascacio-Valdes, J.; et al. Food Waste and Byproducts: An opportunity to minimize malnutrition and hunger in developing countries. Front. Sustain. Food Syst. 2018, 2, 52. [Google Scholar] [CrossRef]
- Xu, C.; Nasrollahzadeh, M.; Selva, M.; Issaabadi, Z.; Luque, R. Waste-to-wealth: Biowaste valorization into valuable bio(nano)materials. Chem. Soc. Rev. 2019, 48, 4791–4822. [Google Scholar] [CrossRef]
- Nawaz, A.; Li, E.; Irshad, S.; Xiong, Z.; Xiong, H.; Shahbaz, H.M.; Siddique, F. Valorization of fisheries by-products: Challenges and technical concerns to food industry. Trends Food Sci. Technol. 2020, 99, 34–43. [Google Scholar] [CrossRef]
Fishery By-Catch and Processing By-Products | ||
---|---|---|
Negative Issues | Positive Issues | |
Utilization of fishery by-products involves: | ||
Environmental impact | Contribution to fishery sustainability and environmentally friendly disposal methods | |
Losses of fresh and high quality, potentially exploitable, bioactive compounds | Valorization of high-value compounds (i.e., probiotics, bioactive metabolites, enzymes, antibiotics) | New perspectives of application in nutritional, pharmaceutical, industrial sectors (i.e., biorefinery); beneficial effects for human and animal health (i.e., probiotics) |
Lack of standardized protocols for extraction | ||
Operational costs for the use of fishery by-products | Green technologies allowing preservation and even enhancement of the quality and the extraction efficiency |
Component | Average Weight (%) |
---|---|
Fillet | 36 |
Head | 21 |
Bones | 14 |
Fins | 10 |
Gut | 7 |
Liver | 5 |
Skin | 3 |
Ovaries | 4 |
Compound | Fish Discards |
---|---|
Crude protein (%) | 57.92 ± 5.26 |
Ash (%) | 21.79 ± 3.52 |
Fat (%) | 19.10 ± 6.06 |
Crude fiber (%) | 1.19 ± 1.21 |
Calcium (%) | 5.80 ± 1.35 |
Phosphorous (%) | 2.04 ± 0.64 |
Potassium (%) | 0.68 ± 0.11 |
Sodium (%) | 0.61 ± 0.08 |
Magnesium (%) | 0.17 ± 0.04 |
Iron (mg/kg) | 100.00 ± 42.00 |
Zinc (mg/kg) | 62.00 ± 12.00 |
Manganese (mg/kg) | 6.00 ± 7.00 |
Copper (mg/kg) | 1.00 ± 1.00 |
Fishery By-Products | High Value Components | Content (% w/w) | Market Value (Euro/kg) |
---|---|---|---|
Fish skin, scales and bones | Collagen and gelatin | Up to 80% in skin, up to 50% in scales | 9–14 |
Fish skin, scales and bones | Hydroxyapatite | 60–70% in bones, up to 50% in scales | not available |
Fish viscera | Enzymes | 14.400 (cod proteases) | |
White fish flesh residues | Free aminoacids | 0.8–2% of taurin, 2.7% of creatine (on dry matter) | not available |
Cod liver, mackerel oil | Polyunsaturated fatty acids-PUFA (ω3 and ω6) | 50–80% in cod liver, 23% are w3 PUFA | 24 (as cod liver oil) |
Host Species | Fish Organs | Microbial Group/Species | Biomolecule/Type | Activity | References |
---|---|---|---|---|---|
Scophthalmus maximus, Oncorhynchus mykiss, Hermosillaazurea, Dicentrarchus labrax, Anguilla japonica, Sparus aurata, Paralichthys olivaceus | gut | Bacteria Enterovibrio spp., Faecalibacterium, Desulfovibrio, Enterobacter sp., Aeromonas spp., Plesiomonas shigelloides, Hafnia alvei, Citrobacter freundii, Lysinibacillus fusiformis, Staphylococcus equorum, Flavobacterium sasangense, Shewanella xiamenensis, Vibrio pelagius, Vibrio spp., Photobacterium sp., Agrobacterium sp., Brevibacterium sp., Pseudomonas spp., Microbacterium sp., Staphylococcus sp., Acinetobacter sp., Sphingomonas spp. | EPA (20:5 (n-3)), fatty acids (16:1 (n-7), 18:1 (n-9); 20:1, 22:1), SCFAs, acetate, propionate, valerate, butyrate, isobutyrate, formate, lactate, amilase, saccarase, cellulase, lipase; protease, chitinase, vitamin B12; glycolipid/rhamnolipid | Antimicrobial, antitumor, cardio-protective, immunomodulatory, digestive efficiency, energy supply, surfactant/bioemulsifying | [91,98,104,105,106,109,116,117] |
Chaeturichthys stigmatias, Salmo salar, Sparus aurata, Dicentrarchus labrax, Mugil cephalus, Gadus morhua, Lates calcarifer, Chanos chanos, Anguilla japonica, Epinephelus coioides, Solea solea | Carnobacterium sp., Enterococcus faecium, Lactobacillus pentosus, L. fructivorans, L. delbrueckii, Bacillus spp., B. cereus, B. subtilis, Brochothrix, Staphylococcus sp., Jeotgalibacillus sp., Psychrobacter sp., Leuconostoc sp., Micrococcus spp., Macrococcus sp., Microbacterium sp., Paenibacillus spp. | Enterocin (peptide), intracellular, lactonase, amilase, cellulase, protease, phytase, lipase, chitinase | Antimicrobial, competitive exclusion of pathogens, immunomodulatory, growth promotion, fry mortality reduction, digestive efficiency | [88,90,94,100,101,102,103,112,113,114,115] | |
Sparus aurata, Synaphobranchus kaupi, Oncorhynchus spp., Holothuria scabra, Hexagrammos otakii, Synecogobius hasts, Pleuronectes platessa, Scophthalmus maximus, Pagrus major, Platichthys flesus, Dicentrarchus labrax, Pomatomus saltatrix | Yeast Metschnikowia zobelii, Trichosporon cutaneum, Debaryomyces hansenii, Candida spp., Pichia sp., Kodamea ohmeri, Saccaromyces cerevisiae, Leucosporidium sp., Rhodotorula spp. | Cell surface, glycoproteins, β-glucans, tannase, manno-proteins, chitin, phytase, extracellular proteases, siderophores, polyamines | Immunomodulatory, prebiotic, competitive exclusion of pathogens, growth promotion, feed efficiency, maturation of digestive system, increase larvae survival | [85,123,124,125] | |
Hippoglossus hippoglossus, Chaeturichthys stigmatias, Salmo salar, Sparus aurata, Dicentrarchus labrax, Mugil cephalus, Lates calcarifer, Japanese eel, Epinephelus coioides, Solea solea, Oncorhynchus mykiss, Morone saxatilis, Scophthalmus maximus | gills/skin | Acinetobacter sp., Agrobacterium tumefaciens, Azospirillum orizae, Enterobacter spp., Erwinia persicina, Vibrio spp., Photobacterium sp., Pseudomonas spp., Moraxella sp., Sphingomonas spp., Myroides spp., Flavobacterium spp., Lactobacillus spp., Carnobacterium sp., Microccocus spp., Streptococcus spp., Kurthia sp., Clostridium spp., Actinobacteria (Arthrobacter arilaitensis; Mycobacterium sp.), Anoxybacillus spp., Bacillus cereus, Staphylococcus sp., Cyanobacteria, Fungi (Aspergillus spp., Candida santamariae, Trichosporon laibachii), Yeast | Peptides; (N/I) | Antimicrobial, immunomodulatory, increased fish and larvae survival, competitive esclusion of pathogens | [85,126,127,128,129,131] |
Conventional | Novel and in Progress |
---|---|
Ingredients animal/fish feed (fishmeal, fish oil, fish sauces, fish silage) [17] | Pharmaceutical and industrial, ingredients for nutraceutical, cosmetic, agricultural fields (bioactive peptides [33,34,35,36,40], FPH [44], hyaluronic acid [108]) |
Nutritional supplements, food industry, pharmaceutical (EPA–DHA, lipids, minerals) [13,25] | Low-cost systems for managing and valorizing fishery discards, industrial and biomedical applications (enzymes [66], collagen, gelatin [70,71]) |
Pharmaceutical (cancer drugs) and food industry (chitin and chitosan) [75,77,78] | |
Aquaculture, biomedical, food industry (probiotics), bioremediation [85,98,99,118,119,120,126,127,128,129] | |
Energy production (biodiesel or bio-oil production from fish oil) [156,157,158,159,160,161,162,163,164,165,166,167,168,169,170] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caruso, G.; Floris, R.; Serangeli, C.; Di Paola, L. Fishery Wastes as a Yet Undiscovered Treasure from the Sea: Biomolecules Sources, Extraction Methods and Valorization. Mar. Drugs 2020, 18, 622. https://doi.org/10.3390/md18120622
Caruso G, Floris R, Serangeli C, Di Paola L. Fishery Wastes as a Yet Undiscovered Treasure from the Sea: Biomolecules Sources, Extraction Methods and Valorization. Marine Drugs. 2020; 18(12):622. https://doi.org/10.3390/md18120622
Chicago/Turabian StyleCaruso, Gabriella, Rosanna Floris, Claudio Serangeli, and Luisa Di Paola. 2020. "Fishery Wastes as a Yet Undiscovered Treasure from the Sea: Biomolecules Sources, Extraction Methods and Valorization" Marine Drugs 18, no. 12: 622. https://doi.org/10.3390/md18120622
APA StyleCaruso, G., Floris, R., Serangeli, C., & Di Paola, L. (2020). Fishery Wastes as a Yet Undiscovered Treasure from the Sea: Biomolecules Sources, Extraction Methods and Valorization. Marine Drugs, 18(12), 622. https://doi.org/10.3390/md18120622