α-Conotoxin TxID and [S9K]TxID, α3β4 nAChR Antagonists, Attenuate Expression and Reinstatement of Nicotine-Induced Conditioned Place Preference in Mice
Abstract
:1. Introduction
2. Results
2.1. Effect of TxID and [S9K]TxID Alone on Physical Symptoms Caused by Acute Nicotine Exposure
2.2. Effect of TxID and [S9K]TxID on Nicotine Induced CPP Expression
2.3. Effect of TxID and [S9K]TxID on Nicotine Induced CPP Reinstatement
2.4. Effect of TxID and [S9K]TxID Alone on Locomotor Activity in Naïve Mice
3. Materials and Methods
3.1. Chemical Synthesis of TxID and [S9K]TxID
3.2. Animals
3.3. Intracerebroventricular Surgery
3.4. Acute Nicotine Assessment
3.5. Nicotine-Induced Conditioned Place Preference (CPP)
3.5.1. Pre-Conditioning
3.5.2. Conditioning
3.5.3. Post-Conditioning
3.5.4. Extinction
3.5.5. Reinstatement
3.6. Locomotor Activity
3.7. Treatment Groups
3.8. Statistical Analysis
4. Discussion
Author Contributions
Funding
Conflicts of Interest
Abbreviations
nAChR | Nicotinic acetylcholine receptor |
CPP | Conditioned place preference |
DA | Dopamine |
VTA | Ventral tegmental area |
NAc | Nucleus accumbens |
References
- World Health Organization; Research for International Tobacco Control. WHO Report on the Global Tobacco Epidemic; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Dervaux, A.; Kanit, M.; Laqueille, X. Efficacy of varenicline for smoking cessation. JAMA 2006, 296, 2555–2556. [Google Scholar] [CrossRef] [PubMed]
- Benli, A.R.; Erturhan, S.; Oruc, M.A.; Kalpakci, P.; Sunay, D.; Demirel, Y. A comparison of the efficacy of varenicline and bupropion and an evaluation of the effect of the medications in the context of the smoking cessation programme. Tob. Induc. Dis. 2017, 15, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reus, V.I.; Smith, B.J. Multimodal techniques for smoking cessation: A review of their efficacy and utilisation and clinical practice guidelines. Int. J. Clin. Pract. 2008, 62, 1753–1768. [Google Scholar] [CrossRef] [PubMed]
- Mansvelder, H.D.; Keath, J.R.; McGehee, D.S. Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas. Neuron 2002, 33, 905–919. [Google Scholar] [CrossRef] [Green Version]
- Berrettini, W.; Yuan, X.; Tozzi, F.; Song, K.; Francks, C.; Chilcoat, H.; Waterworth, D.; Muglia, P.; Mooser, V. Alpha-5/alpha-3 nicotinic receptor subunit alleles increase risk for heavy smoking. Mol. Psychiatry 2008, 13, 368–373. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.Z.; Tozzi, F.; Waterworth, D.M.; Pillai, S.G.; Muglia, P.; Middleton, L.; Berrettini, W.; Knouff, C.W.; Yuan, X.; Waeber, G.; et al. Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nat. Genet 2010, 42, 436–440. [Google Scholar] [CrossRef]
- Ware, J.J.; van den Bree, M.B.; Munafo, M.R. Association of the CHRNA5-A3-B4 gene cluster with heaviness of smoking: A meta-analysis. Nicotine Tob. Res. 2011, 13, 1167–1175. [Google Scholar] [CrossRef]
- Jackson, K.J.; Sanjakdar, S.S.; Muldoon, P.P.; McIntosh, J.M.; Damaj, M.I. The alpha3beta4* nicotinic acetylcholine receptor subtype mediates nicotine reward and physical nicotine withdrawal signs independently of the alpha5 subunit in the mouse. Neuropharmacology 2013, 70, 228–235. [Google Scholar] [CrossRef] [Green Version]
- Toll, L.; Zaveri, N.T.; Polgar, W.E.; Jiang, F.; Khroyan, T.V.; Zhou, W.; Xie, X.S.; Stauber, G.B.; Costello, M.R.; Leslie, F.M. AT-1001: A high affinity and selective alpha3beta4 nicotinic acetylcholine receptor antagonist blocks nicotine self-administration in rats. Neuropsychopharmacology 2012, 37, 1367–1376. [Google Scholar] [CrossRef] [Green Version]
- Costello, M.R.; Reynaga, D.D.; Mojica, C.Y.; Zaveri, N.T.; Belluzzi, J.D.; Leslie, F.M. Comparison of the reinforcing properties of nicotine and cigarette smoke extract in rats. Neuropsychopharmacology 2014, 39, 1843–1851. [Google Scholar] [CrossRef]
- Khroyan, T.V.; Yasuda, D.; Toll, L.; Polgar, W.E.; Zaveri, N.T. High affinity alpha3beta4 nicotinic acetylcholine receptor ligands AT-1001 and AT-1012 attenuate cocaine-induced conditioned place preference and behavioral sensitization in mice. Biochem. Pharmacol. 2015, 97, 531–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cippitelli, A.; Wu, J.; Gaiolini, K.A.; Mercatelli, D.; Schoch, J.; Gorman, M.; Ramirez, A.; Ciccocioppo, R.; Khroyan, T.V.; Yasuda, D.; et al. AT-1001: A high-affinity alpha3beta4 nAChR ligand with novel nicotine-suppressive pharmacology. Br. J. Pharmacol. 2015, 172, 1834–1845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, S.; Zhangsun, D.; Zhu, X.; Wu, Y.; Hu, Y.; Christensen, S.; Harvey, P.J.; Akcan, M.; Craik, D.J.; McIntosh, J.M. Characterization of a novel alpha-conotoxin TxID from Conus textile that potently blocks rat alpha3beta4 nicotinic acetylcholine receptors. J. Med. Chem. 2013, 56, 9655–9663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Zhangsun, D.; Zhu, X.; Kaas, Q.; Zhangsun, M.; Harvey, P.J.; Craik, D.J.; McIntosh, J.M.; Luo, S. alpha-Conotoxin [S9A]TxID Potently Discriminates between alpha3beta4 and alpha6/alpha3beta4 Nicotinic Acetylcholine Receptors. J. Med. Chem. 2017, 60, 5826–5833. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Zhu, X.; Harvey, P.J.; Kaas, Q.; Zhangsun, D.; Craik, D.J.; Luo, S. Single Amino Acid Substitution in alpha-Conotoxin TxID Reveals a Specific alpha3beta4 Nicotinic Acetylcholine Receptor Antagonist. J. Med. Chem. 2018, 61, 9256–9265. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Xiong, Y.; Liu, Y.; Yu, S.; Zhangsun, D.; Wu, Y.; Luo, S. Degradation kinetics of alpha-Conotoxin TxID. FEBS Open Bio. 2019. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain 1983, 16, 109–110. [Google Scholar] [CrossRef]
- Paulus, M.P.; Dulawa, S.C.; Ralph, R.J.; Mark, A.G. Behavioral organization is independent of locomotor activity in 129 and C57 mouse strains. Brain Res. 1999, 835, 27–36. [Google Scholar] [CrossRef]
- Caporaso, N.; Gu, F.; Chatterjee, N.; Sheng-Chih, J.; Yu, K.; Yeager, M.; Chen, C.; Jacobs, K.; Wheeler, W.; Landi, M.T.; et al. Genome-wide and candidate gene association study of cigarette smoking behaviors. PLoS ONE 2009, 4, e4653. [Google Scholar] [CrossRef] [Green Version]
- Saccone, N.L.; Wang, J.C.; Breslau, N.; Johnson, E.O.; Hatsukami, D.; Saccone, S.F.; Grucza, R.A.; Sun, L.; Duan, W.; Budde, J.; et al. The CHRNA5-CHRNA3-CHRNB4 nicotinic receptor subunit gene cluster affects risk for nicotine dependence in African-Americans and in European-Americans. Cancer Res. 2009, 69, 6848–6856. [Google Scholar] [CrossRef] [Green Version]
- Salas, R.; Pieri, F.; De Biasi, M. Decreased signs of nicotine withdrawal in mice null for the beta4 nicotinic acetylcholine receptor subunit. J. Neurosci. 2004, 24, 10035–10039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frahm, S.; Slimak, M.A.; Ferrarese, L.; Santos-Torres, J.; Antolin-Fontes, B.; Auer, S.; Filkin, S.; Pons, S.; Fontaine, J.F.; Tsetlin, V.; et al. Aversion to nicotine is regulated by the balanced activity of beta4 and alpha5 nicotinic receptor subunits in the medial habenula. Neuron 2011, 70, 522–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorlich, A.; Antolin-Fontes, B.; Ables, J.L.; Frahm, S.; Slimak, M.A.; Dougherty, J.D.; Ibanez-Tallon, I. Reexposure to nicotine during withdrawal increases the pacemaking activity of cholinergic habenular neurons. Proc. Natl. Acad. Sci. USA 2013, 110, 17077–17082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semenova, S.; Contet, C.; Roberts, A.J.; Markou, A. Mice lacking the beta4 subunit of the nicotinic acetylcholine receptor show memory deficits, altered anxiety- and depression-like behavior, and diminished nicotine-induced analgesia. Nicotine Tob. Res. 2012, 14, 1346–1355. [Google Scholar] [CrossRef] [Green Version]
- Sack, R.; Gochberg-Sarver, A.; Rozovsky, U.; Kedmi, M.; Rosner, S.; Orr-Urtreger, A. Lower core body temperature and attenuated nicotine-induced hypothermic response in mice lacking the beta4 neuronal nicotinic acetylcholine receptor subunit. Brain Res. Bull 2005, 66, 30–36. [Google Scholar] [CrossRef]
- Salas, R.; Cook, K.D.; Bassetto, L.; De Biasi, M. The alpha3 and beta4 nicotinic acetylcholine receptor subunits are necessary for nicotine-induced seizures and hypolocomotion in mice. Neuropharmacology 2004, 47, 401–407. [Google Scholar] [CrossRef]
- Nordberg, A.; Hellstrom-Lindahl, E.; Lee, M.; Johnson, M.; Mousavi, M.; Hall, R.; Perry, E.; Bednar, I.; Court, J. Chronic nicotine treatment reduces beta-amyloidosis in the brain of a mouse model of Alzheimer’s disease (APPsw). J. Neurochem. 2002, 81, 655–658. [Google Scholar] [CrossRef]
- Xiao, Y.; Baydyuk, M.; Wang, H.P.; Davis, H.E.; Kellar, K.J. Pharmacology of the agonist binding sites of rat neuronal nicotinic receptor subtypes expressed in HEK 293 cells. Bioorg. Med. Chem. Lett. 2004, 14, 1845–1848. [Google Scholar] [CrossRef]
- Gotti, C.; Riganti, L.; Vailati, S.; Clementi, F. Brain neuronal nicotinic receptors as new targets for drug discovery. Curr. Pharm. Des. 2006, 12, 407–428. [Google Scholar] [CrossRef]
- Mao, D.; Yasuda, R.P.; Fan, H.; Wolfe, B.B.; Kellar, K.J. Heterogeneity of nicotinic cholinergic receptors in rat superior cervical and nodose Ganglia. Mol. Pharmacol. 2006, 70, 1693–1699. [Google Scholar] [CrossRef]
- Hernandez, S.C.; Vicini, S.; Xiao, Y.; Davila-Garcia, M.I.; Yasuda, R.P.; Wolfe, B.B.; Kellar, K.J. The nicotinic receptor in the rat pineal gland is an alpha3beta4 subtype. Mol. Pharmacol. 2004, 66, 978–987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tapper, A.R.; McKinney, S.L.; Nashmi, R.; Schwarz, J.; Deshpande, P.; Labarca, C.; Whiteaker, P.; Marks, M.J.; Collins, A.C.; Lester, H.A. Nicotine activation of alpha4* receptors: Sufficient for reward, tolerance, and sensitization. Science 2004, 306, 1029–1032. [Google Scholar] [CrossRef] [PubMed]
- Exley, R.; Cragg, S.J. Presynaptic nicotinic receptors: A dynamic and diverse cholinergic filter of striatal dopamine neurotransmission. Br. J. Pharmacol. 2008, 153 (Suppl. 1), S283–S297. [Google Scholar] [CrossRef] [Green Version]
- Mineur, Y.S.; Picciotto, M.R. Genetics of nicotinic acetylcholine receptors: Relevance to nicotine addiction. Biochem. Pharmacol. 2008, 75, 323–333. [Google Scholar] [CrossRef] [Green Version]
- Brunzell, D.H.; McIntosh, J.M. Alpha7 nicotinic acetylcholine receptors modulate motivation to self-administer nicotine: Implications for smoking and schizophrenia. Neuropsychopharmacology 2012, 37, 1134–1143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramachandran Nair, L.; Liu, X. Targeting the alpha4beta2- and alpha7-Subtypes of Nicotinic Acetylcholine Receptors for Smoking Cessation Medication Development. J. Addict Res. Ther. 2019, 10, 381. [Google Scholar] [PubMed]
- Jackson, K.J.; McIntosh, J.M.; Brunzell, D.H.; Sanjakdar, S.S.; Damaj, M.I. The role of alpha6-containing nicotinic acetylcholine receptors in nicotine reward and withdrawal. J Pharmacol. Exp. Ther. 2009, 331, 547–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanjakdar, S.S.; Maldoon, P.P.; Marks, M.J.; Brunzell, D.H.; Maskos, U.; McIntosh, J.M.; Bowers, M.S.; Damaj, M.I. Differential roles of alpha6beta2* and alpha4beta2* neuronal nicotinic receptors in nicotine- and cocaine-conditioned reward in mice. Neuropsychopharmacology 2015, 40, 350–360. [Google Scholar] [CrossRef] [Green Version]
- You, S.; Li, X.; Xiong, J.; Zhu, X.; Zhangsun, D.; Zhu, X.; Luo, S. alpha-Conotoxin TxIB: A Uniquely Selective Ligand for alpha6/alpha3beta2beta3 Nicotinic Acetylcholine Receptor Attenuates Nicotine-Induced Conditioned Place Preference in Mice. Mar. Drugs 2019, 17, 490. [Google Scholar] [CrossRef] [Green Version]
- McCallum, S.E.; Cowe, M.A.; Lewis, S.W.; Glick, S.D. alpha3beta4 nicotinic acetylcholine receptors in the medial habenula modulate the mesolimbic dopaminergic response to acute nicotine in vivo. Neuropharmacology 2012, 63, 434–440. [Google Scholar] [CrossRef] [Green Version]
- Eggan, B.L.; McCallum, S.E. alpha3beta4 nicotinic receptors in the medial habenula and substance P transmission in the interpeduncular nucleus modulate nicotine sensitization. Behav. Brain Res. 2017, 316, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Glick, S.D.; Sell, E.M.; McCallum, S.E.; Maisonneuve, I.M. Brain regions mediating alpha3beta4 nicotinic antagonist effects of 18-MC on nicotine self-administration. Eur. J. Pharmacol. 2011, 669, 71–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salas, R.; Sturm, R.; Boulter, J.; De Biasi, M. Nicotinic receptors in the habenulo-interpeduncular system are necessary for nicotine withdrawal in mice. J. Neurosci. 2009, 29, 3014–3018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, M.; Malagon, A.M.; Yasuda, D.; Belluzzi, J.D.; Leslie, F.M.; Zaveri, N.T. The alpha3beta4 nAChR partial agonist AT-1001 attenuates stress-induced reinstatement of nicotine seeking in a rat model of relapse and induces minimal withdrawal in dependent rats. Behav. Brain Res. 2017, 333, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Hooks, M.S.; Jones, G.H.; Smith, A.D.; Neill, D.B.; Justice, J.B., Jr. Individual differences in locomotor activity and sensitization. Pharmacol. Biochem. Behav. 1991, 38, 467–470. [Google Scholar] [CrossRef]
- Mandt, B.H.; Allen, R.M.; Zahniser, N.R. Individual differences in initial low-dose cocaine-induced locomotor activity and locomotor sensitization in adult outbred female Sprague-Dawley rats. Pharmacol. Biochem. Behav. 2009, 91, 511–516. [Google Scholar] [CrossRef] [Green Version]
- Pierre, P.J.; Vezina, P. Predisposition to self-administer amphetamine: The contribution of response to novelty and prior exposure to the drug. Psychopharmacology 1997, 129, 277–284. [Google Scholar] [CrossRef]
- Dellu, F.; Piazza, P.V.; Mayo, W.; Le Moal, M.; Simon, H. Novelty-seeking in rats--biobehavioral characteristics and possible relationship with the sensation-seeking trait in man. Neuropsychobiology 1996, 34, 136–145. [Google Scholar] [CrossRef]
Treatment Group | Dose (nmol) | n | Hot Plate (s) | Body Temperature (°C) |
---|---|---|---|---|
Saline-vehicle | - | 10 | 9.31 ± 0.80 | 36.51 ± 0.23 |
Vehicle | - | 12 | 20.02 ± 1.57 * | 33.35 ± 0.47 *** |
TxID | 0.2 | 9 | 21.11 ± 5.64 | —— |
TxID | 1 | 10 | 20.65 ± 2.58 * | —— |
TxID | 5 | 12 | 20.14 ± 3.40 * | 32.77 ± 0.33 *** |
[S9K]TxID | 0.2 | 13 | 19.17 ± 2.06 * | —— |
[S9K]TxID | 1 | 13 | 19.65 ± 2.06 * | —— |
[S9K]TxID | 5 | 10 | 18.69 ± 2.04 * | 33.86 ± 0.54 *** |
Group | Dose (nmol) | n | Pre-Condition | Post-Condition | CPP Score | |
---|---|---|---|---|---|---|
Saline | Saline | - | 10 | 246.2 ± 23.6 | 272.1 ± 51.2 | 25.8 ± 58.4 |
TxID | 5 | 10 | 244.4 ± 31.0 | 261.8 ± 44.9 | 17.4 ± 43.9 | |
[S9K]TxID | 5 | 10 | 274.4 ± 35.5 | 275.2 ± 77.6 | 0.8 ± 73.2 | |
Nicotine | Saline | - | 12 | 247.4 ± 45.1 | 391.7 ± 64.9 *** | 144.3 ± 49.5 *** |
TxID | 0.2 | 10 | 262.1 ± 33.8 | 405.9 ± 65.9 *** | 143.8 ± 61.8 *** | |
TxID | 1 | 12 | 246.9 ± 37.96 | 400.6 ± 92.1 *** | 153.7 ± 60.3 *** | |
TxID | 5 | 15 | 254.6 ± 40.9 | 406.6 ± 72.7 *** | 151.9 ± 77.5 *** | |
[S9K]TxID | 0.2 | 13 | 242.2 ± 24.5 | 375.3 ± 63.6 *** | 133.1 ± 52.6 *** | |
[S9K]TxID | 1 | 11 | 237.4 ± 22.2 | 368.8 ± 76.0 *** | 131.4 ± 67.9 *** | |
[S9K]TxID | 5 | 11 | 220.6 ± 29.8 | 350.6 ± 51.1 *** | 130.0 ± 39.3 *** |
Group | Dose (nmol) | n | Total Distances (cm) | Ratios of Center Distance/Total Distance (%) | Ratios of Center Time/Total Time (%) |
---|---|---|---|---|---|
Saline | 10 | 6329 ± 870.0 | 0.32 ± 0.021 | 0.25 ± 0.086 | |
TxID | 0.2 | 12 | 5741 ± 706.3 | 0.30 ± 0.022 | 0.17 ± 0.051 |
TxID | 1 | 11 | 6561 ± 1018 | 0.33 ± 0.018 | 0.29 ± 0.094 |
TxID | 5 | 12 | 6265 ± 902.5 | 0.30 ± 0.016 | 0.10 ± 0.035 |
[S9K]TxID | 0.2 | 11 | 7239 ± 543.3 | 0.29 ± 0.019 | 0.15 ± 0.040 |
[S9K]TxID | 1 | 15 | 6344 ± 668.2 | 0.25 ± 0.015 | 0.12 ± 0.041 |
[S9K]TxID | 5 | 14 | 6828 ± 781.8 | 0.27 ± 0.016 | 0.12 ± 0.026 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; You, S.; Xiong, J.; Qiao, Y.; Yu, J.; Zhangsun, D.; Luo, S. α-Conotoxin TxID and [S9K]TxID, α3β4 nAChR Antagonists, Attenuate Expression and Reinstatement of Nicotine-Induced Conditioned Place Preference in Mice. Mar. Drugs 2020, 18, 646. https://doi.org/10.3390/md18120646
Li X, You S, Xiong J, Qiao Y, Yu J, Zhangsun D, Luo S. α-Conotoxin TxID and [S9K]TxID, α3β4 nAChR Antagonists, Attenuate Expression and Reinstatement of Nicotine-Induced Conditioned Place Preference in Mice. Marine Drugs. 2020; 18(12):646. https://doi.org/10.3390/md18120646
Chicago/Turabian StyleLi, Xiaodan, Shen You, Jian Xiong, Yamin Qiao, Jinpeng Yu, Dongting Zhangsun, and Sulan Luo. 2020. "α-Conotoxin TxID and [S9K]TxID, α3β4 nAChR Antagonists, Attenuate Expression and Reinstatement of Nicotine-Induced Conditioned Place Preference in Mice" Marine Drugs 18, no. 12: 646. https://doi.org/10.3390/md18120646
APA StyleLi, X., You, S., Xiong, J., Qiao, Y., Yu, J., Zhangsun, D., & Luo, S. (2020). α-Conotoxin TxID and [S9K]TxID, α3β4 nAChR Antagonists, Attenuate Expression and Reinstatement of Nicotine-Induced Conditioned Place Preference in Mice. Marine Drugs, 18(12), 646. https://doi.org/10.3390/md18120646